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Abstract
Background  Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the 
co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more 
advanced understanding of the disease by combining multi-omics analysis with prior knowledge. We applied 
molecular subnetwork identification to find highly interconnected subnetworks with a high degree of change in 
Inclusion Body Myositis. These could be used as hypotheses for potential pathomechanisms and biomarkers that are 
implicated in this disease.

Results  Our multi-omics analysis resulted in five subnetworks that exhibit changes in multiple omics layers. These 
subnetworks are related to antigen processing and presentation, chemokine-mediated signaling, immune response-
signal transduction, rRNA processing, and mRNA splicing. An interesting finding is that the antigen processing and 
presentation subnetwork links the underexpressed miR-16-5p to overexpressed HLA genes by negative expression 
correlation. In addition, the rRNA processing subnetwork contains the RPS18 gene, which is not differentially 
expressed, but has significant variant association. The RPS18 gene could potentially play a role in the underexpression 
of the genes involved in 18 S ribosomal RNA processing, which it is highly connected to.

Conclusions  Our analysis highlights the importance of interrogating multiple omics to enhance knowledge 
discovery in rare diseases. We report five subnetworks that can provide additional insights into the molecular 
pathogenesis of Inclusion Body Myositis. Our analytical workflow can be reused as a method to study disease 
mechanisms involved in other diseases when multiple omics datasets are available.

Keywords  Inclusion body myositis, Multi-omics, Transcriptomics, Genomics, Network analysis, Active subnetwork 
identification, Rare diseases, Data integration, Multiplex network
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Background
Inclusion body Myositis (IBM) is a rare, acquired muscle 
disease with a prevalence ranging from 24.8 to 45.6 per 
million people [1], but the most common muscle disease 
with onset after age 50 [2]. The molecular pathogenesis 
of IBM has consistently been of high interest due to the 
unexplained combination of inflammatory changes, 
degenerative features, and mitochondrial abnormalities 
in the muscle tissue [3, 4]. One hypothesis suggests that 
autoimmunity drives protein aggregation, resulting in 
high interferon-gamma and cytotoxic T-cell responses 
[5]. Endomysial infiltration of CD8 + T cells in IBM mus-
cles and the reported clonal expansion of these T cells 
in the blood and muscles of IBM patients suggest the 
presence of unknown antigens [6]. Currently, the links 
between these antigens, protein aggregate pathology, and 
the immune response are poorly understood. Identifying 
these links could contribute to understanding the disease 
pathomechanisms and thereby to the development of 
more effective diagnosis and treatment.

The integrated analysis of multiple types of omics data-
sets (multi-omics analysis) may provide new insights into 
potential disease causing mechanisms as well as knowl-
edge about their interplay. A single omics layer often 
provides information about a single aspect of one type 
of molecule. For instance, in processed transcriptomics 
datasets, the abundance of the mRNA is usually the only 
information provided. Integrating this data with other 
omics, like genomics and microRNA (miRNA) tran-
scriptomics, can provide a better picture of the molecu-
lar state of cells in the disease. In addition, a multi-omics 
approach can increase the statistical power of analy-
ses, even when the number of available patient samples 
is limited due to the rare occurrence of the disease [7]. 
Finally, multi-omics approaches can give more insight 
into the flow of information in the disease, for example, 
from genetic factors to their consequences [8].

In biological research, there is an abundance of knowl-
edge available from previous experiments and research, 
such as protein-protein interactions and pathway infor-
mation. This prior knowledge can be used in research, 
and benefit the study of rare diseases by allowing more 
and diverse information to be used in the analysis, 
despite the limited number of patient samples. To fully 
exploit prior knowledge and multi-omics data analysis, 
we combined these two to increase the amount of infor-
mation available. This has several benefits [9] (i) focusing 
the analysis on the results that are more likely to be bio-
logically relevant, (ii) deprioritizing spurious results aris-
ing from noise instead of biological signals, since they are 
less likely to be associated with prior knowledge, and (iii) 
providing extra knowledge and data together with the 
results, which supports the formulation of hypotheses 
after analysis.

In this work, we performed an integrative multi-omics 
data analysis with prior knowledge to investigate mech-
anisms that are disrupted in IBM. We created a large-
scale network combining different types of interactions 
involving genes/proteins and miRNAs. Using an active 
subnetwork identification algorithm, we identified sev-
eral subnetworks that were highly relevant for IBM and 
reflected processes that are already known to be affected 
in IBM, but also some novel ones.

Methods
Workflow
We implemented a workflow that consists of mul-
tiple steps, namely differential expression testing, bur-
den testing, network construction, active subnetwork 
identification and functional profiling. An overview of 
the workflow is shown in Fig.  1. To make the workflow 
more Findable, Accessible, Interoperable and Reusable 
(FAIR) [10], we made it available on WorkflowHub [11]. 
The workflow is developed in Common Workflow Lan-
guage (CWL) [12], which ensures the scripts always run 
the same way when reused. It also allows metadata to be 
embedded in the inputs, outputs and steps of the work-
flow for the purpose of findability and reusability. Finally, 
we made a Docker container [13], and attached it to the 
workflow to ensure our computational environment is 
reproduced upon reuse.

RNA-Seq differential expression analysis
We obtained gene expression count datasets (both 
mRNA and miRNA) from the Gene Expression Omni-
bus database (GEO) using the GSE151758 accession 
code, which have samples for IBM patients and amputee 
controls. This dataset was generated by Johari et al. [14] 
using short-read polyA + RNA sequencing from muscle 
biopsy tissues. To ensure that we have an integrated net-
work in which the miRNA and mRNA results reflect the 
same biological changes, we used only the eighteen IBM 
and nine control samples which had both mRNA and 
miRNA data available.

We repeated the differential gene expression analysis 
(with the original script) that was performed by Johari 
et al. [14] in R (version 4.0.5) [15, 16], using Bioconduc-
tor (version 1.30.10) [17] and DESeq2 (version 1.30.1) 
[18]. With DESeq2, the raw data was transformed to be 
approximately homoskedastic and normalized for factor 
and library size. The data was then fitted to a Negative 
Binomial Generalized Linear Model and tested for differ-
ential expression between the IBM and amputee cohorts 
using the Wald test (additional file 1 and 2).

Exome sequencing variant burden test
We expanded upon our previously published Finnish 
IBM cohort [19], bringing the total to 81 Finnish IBM 
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patients. For the 51 additional individuals, we produced 
exome sequencing data as described previously [19]. This 
dataset includes the 18 Finnish IBM patients for whom 
we also have mRNA and miRNA data available. We used 
Finnish controls (n = 99) from 1000 Genomes project 
and downloaded the exome sequencing datasets for the 
same. We then generated genotypes in VCF format for 
both cases and controls. To increase the statistical power 
of the analysis, we performed a rare variant burden test 
using the “RVTESTS” software (version 2.1.0) [20, 21], 
suitable for testing rare variants with different direc-
tions of effects. We used RVTESTS with the following 
parameters: Burden = CMC (Combined Multivariate and 
Collapsing), Kernel = SKAT (Sequence Kernel Associa-
tion Test), and Variable threshold model by permutation 
(price). We used the resulting p-values from the SKAT 
test in subsequent analysis.

IBM multi-omics multiplex network construction
We created a multiplex multi-omics IBM network com-
prising two layers (Fig.  2). The first layer is composed 
of protein-protein interactions that have an experimen-
tal evidence score of at least 0.200 (to filter out low-
confidence interactions) in STRING [22] (version 11.0) 
and miRNA-mRNA target pairs from miRTarBase [23] 

(version 8.0). The second layer comprises mRNA-mRNA 
and miRNA-mRNA pairs, with their biweight midcor-
relation calculated from the normalized transcriptomics 
data using the equation defined in [24]. In our calcula-
tion, only samples that had data in both transcriptomics 
datasets, and only genes with expression in more than 
half of the samples were used. In order to capture the cor-
relations (and directions of correlations) with the most 
biologically informative information, the correlations 
were transformed to a binary form by setting a thresh-
old of > 0.7 for mRNA-mRNA pairs and a more relaxed 
threshold of <-0.5 for miRNA-mRNA pairs (lower mean 
correlation). In the resulting multiplex multi-omics net-
work, a node represents either a miRNA or a gene. Note 
that the gene node corresponds to both the mRNA and 
the protein. Regarding the miRNA nodes, we assigned 
a p-value on each node based on their differential gene 
expression. Similarly, for each gene node we assigned a 
combined p-value using Fisher’s method based on the 
differential gene expression and the variant burden of 
each particular gene. Note that this p-value is only valid 
for prioritization and not for statistical inference, since 
different null hypotheses are combined.

Finally, to connect everything in the network, we used 
BridgeDB [25] and miRBaseConverter [26] to map the 

Fig. 1  The overview of the complete workflow. The IBM data is combined with knowledge from databases in order to construct a network. Active 
subnetwork identification is applied on this network to find active subnetworks. These subnetworks are subsequently annotated with Gene Ontology 
annotation
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Fig. 2  The workflow for the network creation. Step 1: Interaction data is downloaded from STRING DB and miRTarBase. Expression correlation is calcu-
lated from the IBM expression datasets. These are mapped and combined into a database layer, and a correlation layer. Step 2: Differential gene expression 
testing is applied to the mRNA and miRNA data. Burden testing is applied to the exome sequencing data. In the case of mRNAs, the two p-values are 
combined into one. Step 3: The node values are overlaid on top of the network created from the edges
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identifiers of STRING and miRTarBase to the identifiers 
of the transcriptome and exome datasets. Specifically, 
we mapped NCBI gene identifiers to Ensembl identifiers, 
and mapped miRNA names to miRBase accessions. We 
removed isolated nodes that were not connected to the 
largest connected component of the network, because we 
are using an iterative analysis method that traverses the 
network. The resulting network consists of 17,405 nodes 
and 3,353,996 edges of different types (Table 1).

Active subnetwork identification
We used MOGAMUN [27] to identify highly intercon-
nected subnetworks that have a high degree of biological 
significance (active subnetworks) using default param-
eters. Thirty parallel runs were performed with 500 gen-
erations of optimization each. Since subnetworks are 
allowed to overlap, they were merged during post pro-
cessing in MOGAMUN. In this process, the maximum 
number of nodes per subnetwork was increased to 200, 
and the Jaccard Index threshold was lowered to 0.2, in 
order to obtain subnetworks that are highly distinctive. 
We performed functional profiling of each resulting sub-
network with Gene Ontology Biological Processes terms 
using the g: GOSt function in the gProfiler2 R package 
(version 2.0) [28]. We also calculated the correlation of 
each subnetwork’s first principal component with the 
estimation of several cell types as estimated by Johari et 
al. [14, 29, 30].

Results
In order to elucidate IBM disease mechanisms from 
multi-omics data, we applied active subnetwork iden-
tification [27] on our IBM network. This resulted in five 
distinct subnetworks which we labeled according to their 
top GO terms: “Antigen processing and presentation”, 
“Chemokine-mediated signaling”, “Immune response 
– signal transduction”, “rRNA processing”, and “mRNA 
splicing”, respectively (Fig.  3). These subnetworks are 
optimized based on both the density of interactions 
and the scores (p-values) of the nodes. All p-values, 

correlations and fold changes in these subnetworks are 
available in additional file 3 and 4.

The “Antigen processing and presentation” subnet-
work (Fig. 3a) contains 20 nodes, of which 19 are genes, 
and one is a miRNA. These 20 nodes are all significantly 
differentially expressed (padj < 0.05) and two of those 
(HLA-C and BAG6) also have a significant variant burden 
(padj = 0.013 and padj = 0.008, respectively). Six nodes 
are overexpressed HLA genes (HLA-A, HLA-B, HLA-C, 
HLA-E, HLA-F, and HLA-G). In previous studies, their 
overexpression was consistent in IBM and other inflam-
matory myopathies [14, 31]. This subnetwork also con-
tains several overexpressed CD genes, namely CD2, CD5, 
CD48, CD79A, CD8A, and CD8B, which are markers of 
Leukocytes [32]. LCK was another overexpressed gene 
in this subnetwork, previously proposed as an apoptosis 
regulator involved in IBM [14]. Besides protein-coding 
genes, this subnetwork contains the miRNA miR-16-5p, 
linked to the HLA-A, HLA-B, and HLA-C genes, with 
negative correlation coefficients ranging from − 0.51 to 
-0.58. Finally, this subnetwork is strongly correlated to 
the proportion estimation of CD8 T cells, CD4 memory 
activated T cells, regulatory T cells (additional file 5).

The “Chemokine-mediated signaling” subnetwork 
(Fig.  3b) contains 29 genes and three miRNAs. Most of 
the genes involved in this subnetwork are overexpressed 
(padj < 0.05). These genes mainly include various cyto-
kines, specifically chemokine ligands and receptors such 
as CCL5, CCR4, CXCL10, and XCL1. Many of these che-
mokines are involved in calcium signaling, which has 
been hypothesized by Johari et al. to play a role in IBM 
[14].

The “Immune response - signal transduction” subnet-
work (Fig. 3c) shares several genes with the previous two 
subnetworks, though the overlap is below the merging 
threshold. It shares LCK, CD2, CD8A, UBC, and PTPRC 
with the “antigen processing and presentation” subnet-
work and CD4, UBC, and SYK with the “chemokine-
mediated signaling” subnetwork, connecting to these two 
subnetworks. Only the CD247, ZAP70, PIK3R1, VAV1, 
STAT1, CD28, FYN, LCP2 and RACK1 genes are unique 
to this subnetwork. Genes such as LCK, FYN, ZAP70 and 
VAV1 are part of T cell receptor signaling [33], which is 
triggered by binding of the T cell receptor to antigen pre-
senting MHC complexes [34].

The “rRNA processing” subnetwork (Fig.  3d) con-
tains 15 genes. In this subnetwork, the RPS18 (ribo-
somal protein S18) gene has a significant variant burden 
(padj = 0.046) but, interestingly, is not significantly dif-
ferentially expressed (padj = 0.22). The rest of the genes 
in this subnetwork are downregulated (padj < 0.05) with 
no significant variant burden. These include genes like 
WDR43, IMP4, NOP14, RRP9, PDCD11, UTP18, and 

Table 1  Summary statistics for the multiplex network
Statistic Count
Number of nodes 17,405
  Number of gene nodes 15,574
  Number of miRNA nodes 1,831
  Number of genes with variant burden (padj < 0.05) 209
  Number of mRNA differentially expressed (padj < 0.05) 8215
  Number of miRNA differentially expressed (padj < 0.05) 628
Number of edges 3,353,996
  Number of STRING edges 300,536
  Number of miRTarBase edges 153,694
  Number of mRNA-mRNA correlation edges 2,157,070
  Number of miRNA-mRNA correlation edges 742,696
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Fig. 3  The five subnetworks that were identified by the active subnetwork identification algorithm together with their top-scoring GO annotations. Node 
shapes indicate the type of each entity. The gene and miRNA expression fold change is shown using color (red indicates upregulation; dark red indicates 
a fold change > 5.5; blue indicates downregulation; white indicates no change). Variant burden significance is shown with a solid line around a node. The 
different types of an edge are depicted with the line type
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UTP15, which have a role in the processing of the 18 S 
ribosomal RNA [35–41].

Finally, the last subnetwork is annotated with “mRNA 
splicing” (Fig.  3e). Although five of the 38 genes in this 
subnetwork (ASPN, LRRC17, PPIC, DOCK4, and TLR3) 
are overexpressed (padj < 0.05), the rest of the genes are 
underexpressed (padj < 0.05). Many of these genes, such 
as DDX21, RBM8A, CWC25 and EFTUD2 are involved in 
mRNA splicing [42–45]. This subnetwork also contains 
genes with a significant variant burden, namely SNAPC4 
and DOCK4.

Discussion
This work presents the identification of multi-omics 
signatures in IBM that provide insights into potential 
disease mechanisms that are at play. We identified five 
subnetworks that represent these signatures. Within 
these subnetworks, we find several interesting interac-
tions which can be the basis for forming hypotheses in 
IBM.

Many of our results correspond to earlier findings. For 
example, the HLA genes in the “Antigen processing and 
presentation” subnetwork are consistently found to be 
overexpressed in IBM [14, 31]. LCK was another overex-
pressed gene in this subnetwork, previously proposed as 
an apoptosis regulator involved in IBM [14].

There are also novel findings, such as the miR-16-5p. 
This miRNA was connected with many HLA genes in the 
“Antigen processing and presentation” subnetwork. Here, 
the downregulation of miR-16-5p was negatively cor-
related with the upregulation of the HLA genes, which 
is coherent with the canonical mechanism of miRNAs 
suppressing gene expression. Interestingly, the overex-
pression of miR-16 and miR-15a led to a significantly 
decreased pro-inflammatory signaling through IL-1β, 
TNFα, and NF-κB in a study in mice [46]. In addition, 
another study in mice links the conditional deletion of 
these microRNAs to proliferation of T regulatory cells (of 
which the estimated abundance is correlated to several 
of our subnetworks) and loss of immune tolerance [47]. 
At the same time, in an epithelial-like cell line, transfec-
tion of miR-16 led to upregulation of HLA-G, HLA-A, 
HLA-B, and HLA-C [48]. We speculate that miR-16 could 
play a role in regulating MHC class I gene transcription 
in IBM, which in turn regulates immune system activa-
tion. Recently, Lucchini et al. identified dysregulation 
of hsa-miR-192-5p and hsa-miR-372-3p in serum of 
IBM patients [49]. Furthermore, miR-16 specifically was 
implicated in several inflammatory diseases including 
rheumatoid arthritis, ankylosing Spondylitis and inflam-
matory bowel disease [50–53]. These findings highlight 
the importance of studying the role of miRNAs in the 
context of molecular pathomechanisms of IBM. Interest-
ingly, miR-16 is also connected to SQSTM1, of which the 

encoded protein is aggregated in IBM and other myopa-
thies [54, 55]. Despite SQSTM1 being a proposed target 
of miR-16 [49], its expression is not negatively correlated 
with the miR-16 in our data,perhaps due the influence 
of other regulatory factors. SQSTM1 was also underex-
pressed as it was in previous studies with RNA-Seq [55].

The “Chemokine-mediated signaling” subnetwork is 
interesting because many chemokines are involved in 
calcium signaling. Disturbed calcium signaling has been 
proposed as a candidate mechanism in IBM [14, 57]. 
The prominence of this signature in our results (many 
strongly dysregulated genes that are interconnected) sup-
ports this.

Another gene of interest is RPS18, which encodes a 
ribosomal protein. Interestingly, some of the surrounding 
genes are involved in processing the 18 S ribosomal RNA, 
which is essential for ribosome function [58]. Alterations 
in RNA metabolism have been implicated in IBM [59]. In 
addition, in a proteomics study, ribosomal and nuclear 
proteins were overrepresented in rimmed vacuoles in 
IBM compared to controls [60]. These findings suggest a 
role of altered protein synthesis in IBM.

Similarly, the “mRNA splicing” subnetwork, which 
contains many underexpressed genes, points to a poten-
tial dysfunction of the spliceosome in IBM, especially 
since there is evidence for genes that have altered splic-
ing in IBM [14, 61, 62]. Specifically, the SNAPC4 gene is 
involved in the transcription of snRNAs that are part of 
the spliceosome. It has a significant variant burden and 
thus could play a more causal role in altered splicing. 
SNAPC4 is also associated with ankylosing spondylitis, 
an inflammatory disease that affects the spine, and like 
IBM, has the MHC implicated in its pathogenesis [63].

Finally, our study demonstrates how the application 
of active subnetwork identification on multi-omics data 
can connect findings and interactions in different omics, 
and thereby provide hypotheses about their interplay, An 
example of this is the link between miR-16-5p and the 
HLA genes in the antigen processing and presentation 
subnetwork as shown in our study. In addition, in the 
rRNA processing subnetwork, we found the RPS18 gene 
as having a significant variant burden without exhibit-
ing any significant changes in gene expression. We found 
this gene because it was linked with many downregulated 
genes that have functions directly related to RPS18. We 
speculate that variants in RPS18 may affect the expres-
sion of the related genes.

Some limitations of our approach are important to 
note. Although prior knowledge aids in the analysis of 
omics data in several ways, prior knowledge is also lim-
ited by our current understanding of biology and can be 
biased towards biological concepts that have been studied 
more. For example, genes that are studied more, such as 
genes involved in cancer, have more known interactions 



Page 8 of 10Wijnbergen et al. Orphanet Journal of Rare Diseases           (2025) 20:27 

and are therefore more likely to be overrepresented in 
network analysis. However, this limitation is mitigated 
since in our approach we included experimental data 
in the network. Another limitation primarily affecting 
multi-omics analysis is the different number of features 
in each omics. For example, in our analysis, 15,574 nodes 
represent protein coding genes in our analysis, but only 
1831 nodes represent miRNAs. Consequently, relatively 
few miRNAs were present in the results, which limits the 
priority of miRNAs in this study.

Our study also has some limitations in terms of data 
availability. Although for the expression data, a subset 
was used with a balanced representation in terms of age 
and sex, the limited sample size still makes our study 
more sensitive to sampling error caused by individual 
variation. Further, the accuracy of the cell type propor-
tion through deconvolution estimation is limited since 
the used reference cell type expression profile (blood) 
deviates from the muscle disease. Finally, histopathol-
ogy could not be directly correlated because of subjectiv-
ity in sample classification. In order to make also muscle 
pathology data available as addendum in future studies, 
streamlining the biopsy procedures and light microscopic 
analysis processing is recommended.

In future work, the hypotheses surrounding miR-16-5p 
and the RPS18 gene in IBM could be further studied to 
increase understanding of the disease and thereby pro-
vide opportunities for treatments. Expanding to other 
diseases, our network based approach can also be applied 
in diseases with multi-omics data available in order to 
gain new insights into the interplay between different 
omics. Finally, the methodology to apply active subnet-
work identification on multi-omics datasets Could also 
be further improved, for example, by exploring normal-
ization and weighting schemes for the multiple omics 
layers and data sources.

Conclusions
In this work, we present an integrative approach that 
combines experimental multi-omics data and prior 
knowledge for elucidating the mechanisms that are 
implicated in IBM. We identified five subnetworks that 
combine findings from different omics datasets and 
interactions. For example, the antigen processing and 
presentation subnetwork links genes with differential 
gene expression to genes with significant variant burden 
and miRNAs. Specifically, the underexpressed miR-16-5p 
was connected to multiple overexpressed HLA genes by 
negative expression correlation. This connection could 
potentially play a role in the regulation of the HLA genes.

Similarly, we found the RPS18 gene having both a vari-
ant burden and being connected to many underexpressed 
genes involved in 18 S ribosomal RNA processing. Muta-
tions in this gene could thus affect the expression of the 

connected genes and play a role in IBM. Moreover, our 
analytical workflow which was implemented using the 
common workflow language can be reused for other case 
studies.
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w​h​u​b​.​w​o​r​k​f​l​o​w​.​6​8​1​.​7​​​​​​)​.​ The Docker image is available on ​h​t​t​​p​s​:​/​​/​h​u​​b​.​​d​o​c​k​e​r​.​c​
o​m​/​R​/​j​d​w​i​j​n​b​e​r​g​e​n​/​m​u​l​t​i​-​o​m​i​c​s​_​a​s​i​​​​​, and it’s build requirements are available 
on Zenodo (https:/​/doi.or​g/10.52​81/z​enodo.10210364). The input data of our 
workflow is available on Zenodo at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​0​4​1​1​1​2​5​​​​​.​​
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