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�
 ABSTRACT 

High-risk multiple myeloma is genomically unstable, comprising hetero-
geneous populations of tumor cells that evolve over time. Light chain 
escape (LCE) is a clinical phenomenon observed when light chains rise 
separately from M-spike values, which implies divergent tumor evolution. 
We sought to understand LCE by performing high-depth transcriptomic 
and phenotypic studies. We performed single-cell RNA-sequencing 
(scRNA-seq) and ex vivo drug sensitivity profiling on serial bone mar-
row biopsies from a patient with LCE at diagnosis, first relapse, and 
relapsed/refractory timepoints. scRNA-seq revealed distinct transcriptomic 
subpopulations with phenotypes that could be tracked separately by clinical 
serum light chain and M-spike values. Genes differentially expressed be-
tween subpopulations were assessed for generalizable effects on prognosis 
from the Multiple Myeloma Research Foundation CoMMpass and 
GSE24080 datasets. Notably, the LCE subpopulation exhibited gene ex-
pression profile featuring prominent LAMP5 overexpression, which was 

associated with risk for osteolytic bone lesions. Ex vivo drug sensitivity 
testing displayed differential sensitivity of the subpopulations. Copy 
number variant inference showed that the transcriptomic subpopulation 
underlying LCE was related to a genetic subclone that evolved over time. 
Our findings illustrate that malignant subpopulations underly LCE in 
multiple myeloma. These studies imply that LCE and LAMP5 gene over-
expression portends for increased risk of osteolytic bone disease and ad-
verse prognosis, findings that were confirmed in the subset of patients from 
the CoMMpass database with LCE. 

Significance: scRNA-seq was used to study a patient with high-risk 
multiple myeloma featuring LCE. LCE was rooted in a transcriptomic 
subpopulation that corresponded to a genetic subclone and established 
novel links between LCE and LAMP5 overexpression to osteolysis and 
prognosis, validated in RNA-seq databases. 

Introduction 
Although significant advances have been made in the treatment of multiple 
myeloma, some patients remain at risk for early mortality. With standard 
treatment including autologous stem cell transplant and immunomodulatory 
drug (IMiD) maintenance, the median survival now exceeds 10 years (1). 

However, high-risk subgroups have been recognized with much shorter 
survival (2, 3). One less understood feature of high-risk disease may be 
intrapatient tumoral heterogeneity. Light chain escape (LCE) is a clinical 
phenomenon that occurs in ∼10% of patients when isolated elevations in free 
light chain occur without detectable serum or urine monoclonal protein 
(medRxiv 2021.08.02.21261211v1; ref. 4). Some patients with LCE have been 
noted to have separate populations of cells expressing fully intact immu-
noglobulin and light chain only, suggesting that LCE may be a marker of 
subclonal evolution (5). 

Recently, analysis of the Multiple Myeloma Research Foundation (MMRF) 
CoMMpass Study identified a total of 12 disease subtypes, of which prolif-
erative, MAF bZIP transcription factor, and hyperdiploidy/p53 low subtypes 
had the shortest survival (medRxiv 2021.08.02.21261211v1). However, bulk 
mRNA sequencing could miss high-risk populations of cells, and tumor 
heterogeneity may influence patient outcomes. Comparative genomic hy-
bridization studies have previously revealed a dynamic process of subclonal 
evolution and competition in multiple myeloma (6). Through next- 
generation DNA sequencing, essentially all patients have heterogeneous 
numbers of both clonal and subclonal genomic changes, even when first 
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diagnosed (7). Recently, novel techniques such as single-cell RNA se-
quencing (scRNA-seq) have shed light on disease heterogeneity. The first 
such study discovered that transcriptomically distinct subpopulations were 
present in 34% (10/29) patients with newly diagnosed plasma cell neoplasms 
and that these were not explained by DNA mutation status alone (8). In-
terestingly, simultaneous sampling of bone marrow and lytic bone lesions 
showed to be related, but distinct subpopulation expression patterns between 
the two locations (9). Further use of scRNA-seq in different contexts will 
help understand intrapatient disease heterogeneity. 

Here we performed an in-depth study of a patient with high-risk multiple 
myeloma and LCE with single-cell mRNA sequencing and ex vivo drug 
sensitivity profiling in serial samples through the course of their disease. In 
parallel, we also profiled the effects of anti-myeloma drugs on multiple 
myeloma cells using myeloma drug sensitivity testing (My-DST; ref. 10). In 
serial samples, distinct separate multiple myeloma cell subpopulations as-
sociated with LCE and full immunoglobulin heavy chain (IGH) production 
were found. Analysis of the differential gene expression of these subpopu-
lations revealed how intrapatient heterogeneity influenced osteolysis and 
patient prognosis. These findings were extrapolated to large multiple mye-
loma datasets to show generalizable effects on prognosis and occurrence of 
osteolytic bone disease in multiple myeloma. 

Materials and Methods 
Sample acquisition 
Bone marrow aspirates were collected at the University of Colorado 
Anschutz Medical Campus after informed consent and protocol approval. 
The study was performed following the guidelines of the Declaration of 
Helsinki. Mononuclear cells were isolated using SepMate Ficoll tubes 
(StemCell Technologies) and cryopreserved in Iscove Modified Dulbecco 
medium with 45% FBS and 10% DMSO as previously described (11). 

scRNA-seq 
Bone marrow samples were thawed, resuspended in DNAse, and washed in 
PBS. A sort using a FACSAria (BD) was performed to remove dead cells. 
Single cells were captured using a Chromium X Series (10X Genomics) and 
sequenced on a NovaSeq6000 (Illumina). Feature-barcode matrix was pro-
duced from reads using Cellranger v.3.1.0 (10X Genomics). Data were an-
alyzed using the Seurat package in R (12). Cells with low RNA detection 
(<250 genes) or high mitochondrial reads (>10% of all reads) were removed. 
Gene counts were normalized to the total number from each cell and natural 
log transformed. Variable genes used for clustering were identified using the 
M3Drop package (13). Cell clusters were visualized using the uniform 
manifold approximation and projection (UMAP) algorithm on the first 
30 principal components from mitochondrial RNA regressed expression 
data. Doublets were removed using the DoubletFinder package 
(RRID:SCR_018771; ref. 14). Cell types were assigned using canonical 
markers as follows: T cells-CD3, B cells-CD20 (MS4A1), NK cells-NKG7, red 
blood cells-HBB/HBA1, megakaryocytes-PPBP, monocytes-CD14, and mul-
tiple myeloma-CD38/CD138 and IGKC. Differential expression was assessed 
between timepoints and multiple myeloma subpopulations. Gene-set en-
richment was identified using the EnrichR package (RRID:SCR_001575) 
with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (RRID: 
SCR_018771; refs. 15, 16). Copy number variant (CNV) inference based on 

the over- or underexpression of genes in continuous chromosomal locations 
was executed using the inferCNV package (bioRxiv 2021.10.18.463991v1). A 
more updated custom reanalysis was performed using STARsolo (https:// 
github.com/alexdobin/STAR/blob/master/docs/STARsolo.md; ref. 17), and 
key findings did not change. 

Application of gene-sets to publicly available data 
Subpopulation-specific gene-sets were defined by genes with an absolute fold 
change >2 and adjusted P value <0.05. Bulk gene expression and clinical data 
were obtained from the MMRF CoMMpass study (https://themmrf.org/we- 
are-curing-multiple-myeloma/mmrf-commpass-study/) and MAQC-II 
Project multiple myeloma dataset (GSE24080; ref. 18). IA13 TPM (tran-
scripts per million) expression estimates from Salmon V7.2 were used for 
MMRF CoMMpass data. GSE24080 probes were annotated to the 
hgu133plus2 database; probes mapping to the same gene were averaged. 
Genes present in subpopulation gene-sets but not present in the publicly 
available datasets were not included in the analyses. For both datasets, gene- 
wise z-scores were calculated and summed to provide a gene-set score. 
Samples with a gene-set score >1 SD from the mean were considered high 
and <1 SD considered low. Overall survival (OS) was compared between 
high and low subtypes using the Survival package in R. 

Ex vivo drug sensitivity testing 
To assess drug sensitivity, samples were subjected to myeloma drug sensi-
tivity testing (My-DST) as described previously (10). In brief, thawed sam-
ples were resuspended in RPMI 1640 with l-glutamine containing 10% FBS, 
100 U/mL penicillin, 100 μg/mL streptomycin (Thermo Fisher Scientific), 
and 2 ng/mL IL-6 (PeproTech) and treated for 48 hours. Agents tested in 
triplicate included bortezomib, carfilzomib, lenalidomide, pomalidomide, 
dexamethasone (Thermo Fisher Scientific), 4-hydroperoxy cyclophospha-
mide (Santa Cruz Biotechnology), and daratumumab (UC Health Phar-
macy). To identify multiple myeloma cells, samples were stained with anti- 
CD38-PerCP-Cy5.5, anti-CD138-BV421, anti-CD45-BV510, anti-CD19- 
BB515, and anti-CD46-APC (BD Biosciences). Changes in viability were 
assessed by staining with LIVE/DEAD Fixable Near-IR Stain (Thermo Fisher 
Scientific). Samples were analyzed using a BD FACSCelesta equipped with a 
higher throughput sampler. Flow cytometry data were analyzed with FlowJo 
software (BD, RRID:SCR_008520). 

Histology and Ki-67 staining 
For morphologic evaluation the bone marrow or tissue samples were for-
malin fixed and paraffin embedded and subsequently sectioned at 4.0 μm for 
hematoxylin and eosin staining. Immunohistochemical stains were per-
formed using the Ventana Benchmark Ultra immunostainer (Ventana 
Medical Systems). Ki67 was utilized to assess the proliferation rate. 

Statistical analysis 
Statistical significance was tested as follows (cut point of P < 0.05 for all 
comparisons): For scRNA-seq, P values were determined by logistic re-
gression using FindMarkers in Seurat, with Bonferroni adjustment for 
multiple comparisons. For gene-set enrichment, hypergeometric test was 
used in the EnrichR package. For My-DST, t test was used for comparing cell 
viability between conditions. For osteolytic lesions, Fisher exact test was used 
for categorical data and t test for continuous data. For time to development 
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of diffuse osteolytic lesions and OS, Cox proportional hazards model 
was used. 

Ethics approval statement 
This study was performed following the guidelines of the Declaration of 
Helsinki. Written informed consent was obtained from all patients after 
Institutional Review Board approval. 

Data availability 
The data generated in this study will be made publicly available in Gene 
Expression Omnibus (RRID:SCR_005012) with publication of the manu-
script at GSE281459. 

Results 
scRNA-seq identifies malignant subpopulations with 
distinct transcriptomes 
To investigate the biology of high-risk multiple myeloma, we used scRNA- 
seq in serial bone marrow biopsies from a 49-year-old male diagnosed with 
high-risk, R-ISS stage III, and R2-ISS stage IV multiple myeloma at our 
center. Cytogenetic analysis showed t(4;14), gain of chromosome 1q, loss of 
13q, and a subclonal t(8;14; Supplementary Table S1). Despite aggressive 
treatment, this patient survived less than 2 years. Samples were obtained at 
diagnosis (sample #1093.1), first relapse when the patient’s clinical labs 
showed free LCE (sample #1093.2), and third relapse when the patient de-
veloped relapsed/refractory (R/R) disease (sample #1093.3). Live mononu-
clear cells were purified by FACS to remove dead cells. After quality control 
using the Seurat package in R (12), 17,629 of the 25,508 detected cell barc-
odes passed QC parameters: 9,426 from the diagnosis sample, 4,939 from 
first relapse sample, and 3,264 from the R/R sample. In aggregate analysis of 
all three timepoints, the patient displayed two distinct subpopulations by 
UMAP clustering, whereas normal cell types formed more discrete singlet or 
doublet clusters (Fig. 1A; “LCE-multiple myeloma” and “IGH-multiple 
myeloma”). LCE-multiple myeloma had restricted kappa light chain ex-
pression but did not have detectable IGH expression, whereas IGH-multiple 
myeloma expressed both IGH and a higher level of kappa light chain 
(Fig. 1B). Both subpopulations had prototypical multiple myeloma charac-
teristics of high CD138, CD38, and clonally restricted kappa light chain 
expression. The remaining normal populations of lymphocytes, progenitors, 
etc., were identified by characteristic gene expression (Supplementary Fig. 
S1). Repeated analysis but with removal of IGH genes still showed two 
subpopulations (Supplementary Fig. S2A–S2D). The contrasting IGH ex-
pression suggested that only IGH-multiple myeloma would secrete fully 
intact antibody protein detectable by serum protein electrophoresis (SPEP), 
and LCE-multiple myeloma would only secrete kappa light chain and was 
ultimately responsible for free LCE. 

Review of the patient’s clinical measurements of serum monoclonal (M) 
protein and free kappa light chain showed that elevation of their values 
alternated during the disease course, potentially coinciding with the two 
transcriptomic subpopulations (Fig. 1C). Both M-spike and kappa light 
chain decreased with induction treatment of lenalidomide/bortezomib/ 
dexamethasone, culminating in a very good partial response. However, upon 
admission for postinduction autologous stem cell transplant, the patient was 
found to have LCE, with serum exhibiting only free kappa elevation and 

scRNA-seq detecting only the LCE-multiple myeloma cluster (Fig. 1D). The 
patient was re-induced with doxorubicin, cyclophosphamide, etoposide, and 
cisplatin and kept on high-dose melphalan and transplant. Unfortunately, 
the patient relapsed for a second time just 3 months after transplant, again 
showing isolated kappa elevation. The patient regained response with a third 
line consisting of daratumumab, pomalidomide, and dexamethasone, but 
relapsed again shortly after. Surprisingly, this third relapse showed only 
M-spike elevation by clinical labs. The sample obtained at the third time-
point was unfortunately limited an apparent processing issue with low final 
cell number submitted for scRNA-seq, but seemed to detect cells from both 
subpopulations (Fig. 1D and E). Thereafter, the patient’s disease was not 
controlled, with M-spike remaining high despite multiple lines of therapy. 
Bone marrow biopsy of the R/R disease was obtained after progressing 
through multiple lines of attempted therapy. Unfortunately, the disease was 
refractory and disease-directed treatment was discontinued. 

As the multiple myeloma cell production of either kappa light chain or 
M-spike was associated with different clinical behavior, we compared gene 
expression of the two malignant subpopulations at the diagnosis timepoint 
to understand their distinct biology. Differential expression between the 
subpopulations at diagnosis identified 579 genes that were higher in LCE- 
multiple myeloma and 127 genes higher in IGH-multiple myeloma, with 
significance defined as multiple comparison adjusted P value < 0.05 with a 
log2 fold-change (l2FC) > 0.25 (Fig. 2A; Supplementary Tables S2 and S3). 
LAMP5 was the specifically overexpressed just in LCE-multiple myeloma 
(Fig. 2B). MYC was also overexpressed in LCE-multiple myeloma more than 
its expression in IGH-multiple myeloma, potentially related to the subclonal 
t(8;14) observed upon diagnosis by clinical FISH (Fig. 2C). Another notable 
transcript was FABP5, a prominent gene in the gene expression profile 
(GEP) 70 and GEP5 scores for high-risk gene expression (Supplementary 
Table S2; refs. 19, 20). Immunoglobulin heavy chain genes comprised the top 
overexpressed genes in IGH-multiple myeloma (Supplementary Fig. S3). 
Gene-set enrichment analysis identified the oxidative phosphorylation 
pathway and hypoxia-inducible factor-1 (HIF-1) signaling pathway as the 
most overrepresented from the genes upregulated in LCE-multiple myeloma 
and IGH-multiple myeloma, respectively (Fig. 2D and E). Twenty-four genes 
from the oxidative phosphorylation pathway were significantly higher in 
LCE-multiple myeloma compared with IGH-multiple myeloma, and 23/ 
24 were also significantly higher compared with normal cells (Supplementary 
Fig. S4). Five genes from the HIF-1 signaling pathway were significantly 
higher in IGH-multiple myeloma compared with LCE-multiple myeloma, 
with 3/5 of the transcripts also being significantly higher compared with 
normal cells (Supplementary Fig. S5). Based on these analyses, LCE-multiple 
myeloma and IGH-multiple myeloma showed different gene expression and 
active biologic pathways, suggesting that transcriptomic changes contributed 
to their distinct clustering and behavior. 

Distinct drug sensitivity profiles in multiple myeloma 
subpopulations 
To more deeply understand the poor prognosis of this patient and evaluate 
the connection between phenotype and gene expression, we performed flow 
cytometry and drug sensitivity testing. Previously, we developed a platform 
termed My-DST, which measures loss of viability specifically in multiple 
myeloma cells to clinically used drug treatments in short-term 48-hour 
cultures (10). This approach utilizes flow cytometry with markers variably 
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expressed in the patient’s subpopulations, enabling the comparison of drug 
sensitivity between IGH-multiple myeloma and LCE-multiple myeloma. 
Unselected mononuclear cells from the diagnosis sample were screened at 
drug concentrations established to be efficacious in My-DST: 10 μmol/L 
lenalidomide, 10 μmol/L pomalidomide, 2.5 nmol/L bortezomib, 2.5 nmol/L 

carfilzomib, and 10 nmol/L daratumumab, with each condition performed in 
triplicate. Multiple myeloma cells were identified by CD38 and 
CD138 expression (Fig. 3A). CD46 was identified as the most differentially 
expressed marker in our flow cytometry panel, as it had higher expression in 
IGH-multiple myeloma (l2FC ¼ 0.44, P ¼ 5.76 � 10�7; Fig. 3B). By flow 
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cytometry, CD45-negative multiple myeloma cells had bimodal CD46 ex-
pression, which was used to stratify all multiple myeloma cells into high or 
low CD46 (Fig. 3C). The change in the number of multiple myeloma cells 
with high or low CD46 were measured in each drug treatment well relative to 
matched populations in untreated wells. Considering our previous experi-
ence with the My-DST protocol, we have established a working cutoff of 80% 
multiple myeloma cell viability compared with untreated controls to dis-
tinguish clinically predictive sensitivity or resistance (10). The CD46 low 
cells, roughly equated to the LCE-multiple myeloma subpopulations, showed 
intrinsic resistance to the IMiDs, but remained sensitive to proteosome in-
hibitors and daratumumab (Fig. 3D). The expression of CD38 in LCE- 
multiple myeloma was present but slightly lower than in IGH-multiple 
myeloma (see Fig. 1B), corresponding with the slightly less (but statistically 
significant) response to daratumumab ex vivo. Thus, we concluded that the 

LCE-multiple myeloma cells harbored more inherent drug resistance at di-
agnosis relative to the IGH-multiple myeloma subpopulation. 

LCE-specific gene expression linked to osteolytic bone 
disease and poor prognosis 
Whereas the IGH-multiple myeloma gene signature was most notable for 
elevated IGH, the LCE-multiple myeloma signature contained biologically 
intriguing transcript elevations including LAMP5 and MYC. MYC has long 
been appreciated as an important oncogene in multiple myeloma, whereas 
scRNA-seq studies have implicated LAMP5 to be a novel overexpressed 
gene in multiple myeloma (8, 9, 21). Interestingly, localized LAMP5 
overexpression has been reported in osteolytic lesions, one of the most 
debilitating complications of multiple myeloma (22). As LAMP5 was 
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overexpressed in LCE-multiple myeloma, we hypothesized that this cell 
subpopulation may have been prone to cause lytic bone disease in our pa-
tient. LCE-multiple myeloma was the predominant multiple myeloma 

subtype at diagnosis and first relapse. Clinical calcium measurements spiked 
at exactly when the LCE-multiple myeloma was predominant at timepoints 
1 and 2 as detected by scRNA-seq, and when light chain was highest as 
measured clinically (Fig. 4A). Thus, the times in which the LAMP5-high 
subpopulation was prevalent corresponded to calcium spikes, implying a 
direct link between the features of LCE-multiple myeloma and osteolysis. 
Previous gene expression signature scores have been associated with high- 
risk disease in patients with multiple myeloma, such as the GEP70 (19). We 
applied this to the subpopulations in our patient and found the GEP70 score 
to be significantly elevated (Fig. 4B). A subset of five key genes from the 
GEP70 score (ENO1, FABP5, TRIP13, TAGLN2, and RFC4; ref. 20) was even 
more enriched (Fig. 4C). Therefore, the gene expression in the LCE-multiple 
myeloma subpopulation also seemed to confer a poor prognosis. 

To evaluate the generalizability of the link between LAMP5 and osteolysis in 
patients with multiple myeloma, we compared the LCE-multiple myeloma 
gene signature in larger cohorts of patients. We identified samples with 
similar transcriptome signatures in the MMRF bulk RNA-seq and the 
GSE24080 microarray datasets. The gene-set for LCE-multiple myeloma 
comprised genes with l2FC > 1.0 and P < 0.05 over IGH-multiple myeloma 
in the scRNA-seq data (labeled LCE-multiple myeloma high genes in 
Fig. 2A). These LCE-multiple myeloma high genes were specific to multiple 
myeloma cells with low or no detectable expression in normal cells (Sup-
plementary Fig. S6A). In the MMRF database, gene-set enrichment identified 
82 (25%, 82/325) of new diagnosis samples to have high LCE-multiple 
myeloma gene-set scores and 24% (79/325) to have low LCE-multiple my-
eloma gene-set scores (Fig. 4D). In the GSE24080 dataset, 22% (57/254) had 
high LCE-multiple myeloma gene-set enrichment scores and 24% (62/254) 
had low scores (Fig. 4E). The MMRF database codified osteolytic lesions as 0, 
1, 2, and ≥3 as well as the number of days to development of “diffuse 
osteolytic lesions.” Of samples enriched for the LCE-multiple myeloma 
transcriptome, 64% had ≥3 osteolytic lesions compared with 37% in LCE- 
multiple myeloma low samples (P ¼ 3 � 10�3, Fig. 4F). In addition, LCE- 
multiple myeloma gene-set–enriched samples were labeled in the MMRF 
database at their time to develop diffuse osteolytic lesions with a HR of 
2.99 [confidence interval (CI), 6.4–1.4; P ¼ 4.9 � 10�3, Fig. 4G]. Similarly, 
samples in GSE24080 enriched for the LCE-multiple myeloma gene-set had a 
1.5-fold increase (P ¼ 3.74 � 10�2) of osteolytic lesions relative to samples 
with a low LCE-multiple myeloma gene-set score (Fig. 4H). LAMP5 alone 
had a statistically significant adverse effect on survival in the MMRF database 
(HR ¼ 1.96; P ¼ 0.0047), but a nonsignificant impact on the development of 
diffuse osteolytic lesions (HR ¼ 1.3; P ¼ 0.45; Supplementary Fig. S6B and 
S6C). Interestingly, we found that LAMP5 knockdown did not affect mye-
loma cell viability or induce apoptosis in cell lines (Supplementary Fig. S6D 
and S6E). Thus, approximately one fourth of patients diagnosed with mul-
tiple myeloma have gene expression profiles similar to the LCE-multiple 
myeloma subpopulation and display a predilection for lytic bone disease as a 
disease-related complication. 

Next, we evaluated whether LAMP5 and the other most overexpressed genes 
in the subclonal LCE-multiple myeloma subpopulation affected prognosis on 
their own. The gene signature of LCE-multiple myeloma seemed high risk in 
both the MMRF and GSE24080 datasets. Patients with high enrichment 
scores for the LCE-multiple myeloma gene-set in MMRF had median OS of 
4.07 versus 5.52 years with a hazard ratio of 2.73 (CI, 5.5–1.4; 
P ¼ 4.72 � 10�3; Fig. 4I). In GSE24080 the median OS was 3.57 years in the 
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LCE-multiple myeloma high group, LCE-multiple myeloma low had 68.1% 
of patients surviving at 6.7 years (max follow up in this cohort) with a hazard 
ratio of 3.12 (CI, 6.7–1.4; P ¼ 3.65 � 10�3; Fig. 4J). The gene signature in 
IGH-multiple myeloma was dominated by high expression Ig heavy chain 
genes (Supplementary Fig. S7A and S7B). The IGH-multiple myeloma gene 
signature showed no difference in the MMRF dataset and a better outcome 
in the GSE24080 dataset (Supplementary Fig. S7C and S7D). The reason for 
this difference between datasets is not clear. Overall, expansion of the LCE- 
multiple myeloma subpopulation in our patient led to their shortened sur-
vival, which is mirrored in larger cohorts in which transcriptionally similar 
patients who also had inferior survival. 

Although the LCE subpopulation gene expression profile corresponded to 
risk of osteolysis and adverse prognosis, additional validation was necessary 
to establish how generalizable these were to other patients with LCE. 
Therefore, we sought additional patients with LCE in CoMMpass by filtering 
based on clinical light chain and M-spike data. Three criteria were used: (i) 
Affected light chain minus the unaffected light chain was >10 mg/dL and the 
M-spike was <1 g/dL at one or more visits, (ii) M-spike at diagnosis that 
was >1 gm/dL, and (iii) cases were excluded when the light chain increases 
corresponded to M-spike increases. LCE was identified in 15 of 387 (3.9%) 
patients with kappa/lambda/M-spike values from CoMMpass (Supplemen-
tary Fig. S8). These patients showed significantly shorter progression free 
survival (PFS) and OS than those without LCE (Fig. 5A and B). Despite a 
small sample size of 11 of 15 patients with LCE with both RNA-seq and 
clinical outcomes data, those with LCE and high LAMP5 expression had a 
trend toward shorter PFS and OS compared with those with low LAMP5 
(Fig. 5C and D). Of the patients analyzed for LCE in CoMMpass, 187 had 
osteolytic information. The time to diffuse osteolytic lesions was nonsig-
nificantly shorter in the patients with LCE compared with those without 
(Fig. 5E). However, patients with LCE and high LAMP5 had uniform early 
presence of diffuse lytic lesions (Fig. 5F). Further showing that patients with 
both LCE and LAMP5 were especially high risk, the GEP70 and GEP5 scores 
were relatively higher in patients with LCE with high LAMP5 compared with 
those with LCE and low LAMP5 (Fig. 5G and H). These data further support 
the findings from our index patient studied by scRNA-seq as being gener-
alizable to patients with multiple myeloma that have LCE. 

Transcriptomic subpopulations are related to genetic 
subclones that evolve over time 
We next sought to understand the origins of multiple myeloma subpopu-
lations and how they may have affected the poor outcome for our patient. At 
diagnosis, clinical cytogenetics reported that t(4;14), gain of chromosome 1q 
and loss of chromosome 13 were present in all cells, and a subclonal t(8;14) 
was present in approximately half the cells. Consistent with t(4;14) being the 
initiating genetic event in this patient’s multiple myeloma, FGFR3 was evenly 
overexpressed in multiple myeloma cells from both subpopulations and at 
each timepoint (Fig. 6A). Although no patient material was left over for 
genomic sequencing, we did execute infer copy number variant (inferCNV) 
analysis of the scRNA-seq data to further evaluate clonal versus subclonal 
changes (Supplementary Fig. S9A–S9C). By inferCNV, chromosome 1q gain 
and 13q loss were confirmed to be present in most multiple myeloma cells 
and in both subpopulations (Fig. 6B and C). InferCNV was evaluated across 
timepoints, showing that among seven distinct subclones present at diag-
nosis, one corresponding to LCE-multiple myeloma survived and became 

dominant at first relapse, and a second persisted and increased at the R/R 
timepoint (Fig. 6D). Similar to the MYC overexpression from t(8;14) de-
tected by cytogenetics, there was a subclonal duplication of chromosome 
19 that was frequent in the LCE-multiple myeloma and mostly absent in 
IGH-multiple myeloma (Fig. 6E). Gain of chromosome 19 was also observed 
by clinical chromosome analysis (Supplementary Table S1). Of note, this 
finding from inferred CNV correlated with the expression of the ATF5 gene 
(chr 19q13.33), which was the third most upregulated gene in LCE-multiple 
myeloma versus IGH-multiple myeloma. No duplications or deletions were 
uniquely detected in IGH-multiple myeloma. These findings suggest sub-
clonal t(4;14) and gain of chromosome 19 changes were associated with 
LCE-multiple myeloma subpopulation clustering. 

We next sought to further validate the subclonal evolution that occurred 
over time in this patient. The subclonal duplication of chromosome 19 that 
occurred in LCE-multiple myeloma increased at timepoints 2 and 3 
(Fig. 6E). We also identified a chromosome 22 duplication present in less 
than half of LCE-multiple myeloma cells at diagnosis, almost completely 
absent in IGH-multiple myeloma, then present in >90% multiple myeloma 
cells at first relapse and distributed in both subpopulations at the R/R 
timepoint (Fig. 6F). Subclone #5 was a mix of LCE-multiple myeloma and 
IGH-multiple myeloma, with chromosome 13 loss and chromosome 1 gain 
like the other subclones, but without chromosome 22 gain. Subclone #6 was 
all LCE-multiple myeloma and harbored the chromosome 22 gain that in-
creased with disease recurrence. Thus, the LCE-multiple myeloma subpop-
ulation was linked to clonal evolution through the disease course. Along with 
clonal evolution, phenotypic changes were also found in clinical evaluations. 
Hematoxylin and eosin with ki-67 stain found that bone marrow cells from 
diagnosis contained few plasmablasts and were 10% positive for ki-67, a 
higher-than-expected number for multiple myeloma (Fig. 6G and H). Then, 
at first relapse bone marrow cells were predominantly plasmablasts and 50% 
to 60% were positive for ki-67 (Fig. 6G and H). Therefore, with disease 
progression an increasingly prevalent plasmablastic population emerged. 

Disease progression marked by emergence of drug- 
resistant subpopulation 
To understand differential gene expression with disease progression, we 
compared the LCE-multiple myeloma cells at diagnosis and the LCE- 
multiple myeloma cells at first relapse. The refractory timepoint was not 
included in the differential expression analysis due to the low numbers of 
cells captured. Transcriptomically, 1,042 genes were higher in LCE-multiple 
myeloma at diagnosis (l2FC > 0.25, P < 0.05) and 281 genes were higher at 
first relapse (Fig. 7A; Supplementary Tables S4 and S5). Proteasome inhibitor 
(PI) resistance genes S100A8 (l2FC ¼ 1.07, P ¼ 5.31 � 10�18) and S100A9 
(l2FC ¼ 1.38, P ¼ 1.17 � 10�31) were upregulated at first relapse (Fig. 7B; ref. 
23). MYC (l2FC ¼ 0.98, P ¼ 3.38 � 10�28) was downregulated (Fig. 7C). 
Levels of these genes from R/R disease are shown for comparison, although 
the low number of multiple myeloma cells sequenced at the third timepoint 
limits their interpretation. KEGG enrichment analysis of differentially 
expressed genes identified several pathways upregulated upon relapse in-
cluding protein processing, apoptosis and cell cycle (Fig. 7D). Within the 
apoptotic pathway, the proapoptotic genes, caspases 3, 8, and 10, were 
downregulated (l2FC ¼ 0.52–0.59; P < 1 � 10�20) and antiapoptotic genes 
including NFKBIA were upregulated (l2FC ¼ 0.57; P ¼ 8.32 � 10�17; Sup-
plementary Fig. S10). Thus, at first relapse, the LCE-multiple myeloma 
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subpopulation showed evolution toward dysregulated apoptosis and drug 
resistance against proteasome inhibitors. 

Eighteen months from diagnosis, and nine months after first relapse, our 
study patient developed multi-relapsed disease (timepoint 3, R/R) and fur-
ther lines of treatment were ineffective. Unfortunately, there were much 
lower number of cells captured successfully by scRNA-seq from this 

timepoint, limiting interpretation. The detected R/R multiple myeloma cells 
were clustered across both subpopulations, and renewed expression of the 
IGH genes was observed (Fig. 7E). This change corresponded with a switch 
from light chain predominant to M-spike predominant disease (see Fig. 1C). 
Phenotypically, the multiple myeloma cells from the third, R/R timepoint 
showed significant losses of sensitivity to lenalidomide, pomalidomide, 
bortezomib, and carfilzomib by My-DST (Fig. 7F), consistent with that 
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FIGURE 5 Patients from the CoMMpass database with LCE have a poor prognosis. A, Fifteen patients identified from CoMMpass with LCE showed 
significantly shorter PFS from diagnosis than those without LCE. B, Patients identified from CoMMpass with LCE showed significantly shorter OS from 
diagnosis than those without LCE. C, Patients from CoMMpass with LCE with high LAMP5 expression had a trend toward significantly shorter PFS 
compared with those with LCE and low LAMP5. D, Patients from CoMMpass with LCE with high LAMP5 expression had nonsignificantly shorter OS 
compared with those with LCE and low LAMP5. E, Patients from CoMMpass with LCE had nonsignificantly shorter time to diffuse lytic lesions 
compared with those without LCE. F, In particular, all patients identified with both LCE and high LAMP5 expression had diffuse lytic lesions at 
diagnosis, or soon after. G, The GEP70 score was nonsignificantly higher in patients with LCE and high LAMP5 compared with those with low LAMP5. 
H, The GEP5 score was significantly higher in patients with LCE and high LAMP5 compared with those with low LAMP5. *, P < 0.05 
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timepoint being obtained after relapsing on daratumumab, pomalidomide, 
and dexamethasone and progressing though carfilzomib, pomalidomide, and 
dexamethasone. Overall, a switch from light chain to M-spike secretion 
occurred, which we suspect resulted from outgrowth of a multidrug-resistant 
subclone, leading to the treatment-refractory disease at this timepoint. 

Discussion 
Multiple myeloma is an incurable blood cancer due to enduring populations 
of residual cells that persist through treatment and inevitably develop drug 

resistance. One limitation on studies of patients with multiple myeloma is 
that most have not accounted for disease heterogeneity, instead distilling 
results to single average values for bulk multiple myeloma populations. Thus, 
an important next step is to understand how intrapatient heterogeneity af-
fects drug resistance development, especially considering that multiple ge-
netic subclones evolve as the disease progresses (6, 7). The advent of single- 
cell technologies enables increasingly granular evaluation of multiple mye-
loma, with studies so far focusing on between-patient comparison, it has 
been shown that transcriptomic subpopulations are common (8). Here, we 
saw an opportunity to interrogate intrapatient disease heterogeneity in a 
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patient who had LCE at first relapse, making their clinical SPEP and serum 
free light chain values representative of divergent subclones. This proved 
useful for the temporal tracking of transcriptomic subpopulations of mul-
tiple myeloma cells through diagnosis, first relapse and upon development of 
relapsed/refractory disease to IMiDs, proteasome inhibitors and dar-
atumumab. By this approach, we investigated the relationship between risk, 
osteolysis, subclonal evolution, and the development of multidrug resistance. 
To generalize findings from this patient, we found validating data from the 
MMRF CoMMpass database showing that patients with LCE and LAMP5 
gene overexpression had a high-risk gene expression, propensity to develop 
osteolytic bone disease and shorted survival outcomes. 

scRNA-seq detected two subpopulations of multiple myeloma in our patient 
with LCE. The isolated expression of kappa light chain gene in LCE-multiple 
myeloma at diagnosis enabled tracking of this subpopulation from diagnosis 
using contrasting clinical measurements of kappa light chain and M-spike 
values. Both subpopulations were detected when M-spike and kappa light 

chains were high at diagnosis, but at first relapse only LCE-multiple mye-
loma was detected by scRNA-seq when only kappa light chain was elevated. 
Thus, there is compelling evidence that there were transcriptomically and 
functionally disparate populations of multiple myeloma, with a subpopula-
tion present at diagnosis without LCE acting as the precursor leading to the 
LCE at relapse. This presents an interesting case that extends previous 
multiple myeloma studies finding intra-tumor mutational heterogeneity, 
CNA heterogeneity, and intrapatient regional tumor heterogeneity (8, 
24–26). Transcriptomic subpopulations seem to be related, in part, to sub-
clonal genetic events, as in our patient gain of chromosome 19 and 22 were 
inferred mostly in the LCE-multiple myeloma subpopulation. Copy number 
alternations can occur as drivers of progression to increasingly aggressive 
and treatment resistant phenotype (27, 28). This subclonal evolution seems 
to have led to high-risk gene expression profile, with enrichment of the 
GEP70 and GEP5 signatures, with notable overexpression of the potentially 
targetable FABP5 (19, 20, 29). The implications of transcriptomic subpop-
ulations are substantial for precision medicine, high-risk disease, 
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characterization of minimal residual disease, and informing treatment de-
cisions to deepen response. In the CoMMpass database, we found the rate of 
LCE to be 3.9% (n ¼ 387), implicating a low but consistent rate of this 
phenomenon in multiple myeloma as has been reported previously (4). 

Differential gene expression LCE subpopulations corresponded closely with 
osteolytic gene-set expression. LCE-multiple myeloma highly expressed 
LAMP5, a novel gene that has emerged from scRNA-seq data to be osteolysis 
promoting (Fig 2A and B; ref. 9). Increases in serum calcium of the patient in 
our study directly mirrored the serum light chain quantities, suggesting that 
osteolysis occurred to a greater extent when LCE-multiple myeloma was 
active (Fig. 4A). Interestingly, LAMP5 has also been found to be upregulated 
in active multiple myeloma compared with smoldering multiple myeloma 
and thus may contribute directly to symptomatic myeloma diagnosis 
through development of bone lesions (30). We found the importance of the 
osteolytic gene expression profile generalized well in large bulk RNA-seq 
datasets from the MMRF and GSE24080, and in particular those patients 
from CoMMpass that also had LCE. Patients had a greater number of 
osteolytic lesions at diagnosis, as well as a greater propensity for develop-
ment of diffuse lesions over time (Figs. 4F, G, 5E, and F). Interestingly, Merz 
and colleagues (22) also found lower expression of light chain and immu-
noglobulin in lytic lesions compared with bone marrow in some patients, 
similar to our finding that an osteolytic subpopulation in the bone marrow 
had lost the ability to make fully intact immunoglobulin. Together, these 
findings suggest a relationship between decreased immunoglobulin secretion 
and osteolytic activity that warrants further study. 

The delineation of subpopulations of multiple myeloma within this patient 
allowed interrogation of their respective sensitivity or resistance to che-
motherapy. Clinical treatment with bortezomib, lenalidomide, and dexa-
methasone reduced the burden of both multiple myeloma subpopulations, 
but LCE-multiple myeloma became rapidly resistant and caused early re-
lapse before transplant. Consistent with the clinical course, ex vivo My- 
DST found multiple myeloma cells with expression pattern of LCE- 
multiple myeloma were already relatively resistant to IMiDs and borte-
zomib at diagnosis. Interestingly, KEGG gene enrichment analysis un-
covered the interrelated pathways of oxidative phosphorylation and HIF-1 
signaling as overrepresented in LCE-multiple myeloma and IGH-multiple 
myeloma, respectively. Previously, increased oxidative phosphorylation 
has been shown to confer resistance to proteasome inhibitor therapy (9). 
Within this pathway, the cyclooxygenase and NADH dehydrogenase 
(NDUF) gene families comprised many of the genes expressed at a higher 
level in LCE-multiple myeloma, also factors associated with worse survival 
(31–33). LCE-multiple myeloma’s high risk was corroborated by the worse 
prognosis of patients with similar transcriptomes in the MMRF and 
GSE24080 datasets. 

This patient’s disease progressed from rare plasmablasts and 10% ki-67 
staining to predominantly plasmablasts and >50% ki-67 staining only 
9 months from diagnosis. This corresponded with the emergence of LCE- 
multiple myeloma as the dominant subpopulation at first relapse timepoint, 
when it showed dysregulation of many resistance-related genes that may 
have supported its survival. Interestingly, S100 genes have been found to 
confer resistance to proteasome inhibitors, of which the members 
S100A8 and A9 were among the genes with the greatest increase in ex-
pression in relapse versus diagnosis LCE-multiple myeloma (23). Late in the 

disease course, the disease switched from production of light chain to 
M-spike. The subclonal gain of chromosomes 19 and 22 in LCE-M increased 
over time to the R/R timepoint, while simultaneously heavy chain expression 
re-emerged. Thus, it seems that subclonal evolution was responsible for the 
switch back to monoclonal protein at the relapsed/refractory timepoint. 

In multiple myeloma, disease heterogeneity has important ramifications for 
the depth of response and optimal drug combinations for patients. One 
implication of disease heterogeneity is that subpopulations resistant to the 
next line of therapy will result in a partial (incomplete) response. Confir-
mation of this finding would provide understanding of why short remission 
times and early relapses occur in some patients. A second implication is that 
accounting for divergent subpopulation drug sensitivity profiles may facili-
tate the design of better treatments and synergistic drug combinations. 
Proving this would unlock treatment regimens that retain better efficacy in 
relapsed patients. Concurrent transcriptomic and phenotypic profiling of 
single cells supports this effort by showing how unique multiple myeloma 
subpopulations within a single patient can have effects on incomplete re-
sponse and improve drug combinations. Future refined study of the drug 
sensitivity differences of transcriptomic subpopulations may shed light 
on this. 

Authors’ Disclosures 
T.M. Mark reports other support from Karyopharm outside the submitted 
work. A.E. Gillen reports grants from the Leukemia and Lymphoma So-
ciety during the conduct of the study, as well as grants from the 
United States Department of Veterans Affairs, the Leukemia and Lym-
phoma Society, and RefinedScience outside the submitted work. D.W. 
Sherbenou reports grants from the RNA Biosciences Initiative, NCI, and 
American Cancer Society during the conduct of the study. No other dis-
closures were reported. 

Authors’ Contributions 
D. Ohlstrom: Conceptualization, data curation, software, formal analysis, 
validation, investigation, visualization, methodology, writing–original draft, 
writing–review and editing. Z.J. Walker: Resources, investigation, method-
ology, writing–review and editing. A. Pandey: Bioinformatic analysis. L.N. 
Davis: Investigation, visualization, writing–review and editing. K.L. Engel: 
Conceptualization, resources, writing–review and editing. Z. Pan: Data 
curation. P.A. Forsberg: Resources, writing–review and editing. T.M. Mark: 
Resources, writing–review and editing. A.E. Gillen: Conceptualization, re-
sources, data curation, software, formal analysis, supervision, validation, 
investigation, visualization, methodology, writing–review and editing. D.W. 
Sherbenou: Conceptualization, resources, formal analysis, supervision, vi-
sualization, methodology, writing–original draft, project administration, 
writing–review and editing. 

Acknowledgments 
This work was supported by a grant from the National Cancer Institute 
(K08CA222704 to D.W. Sherbenou), a Research Scholar Grant from the 
American Cancer Society (RSG-23-1039126-01-ET to D.W. Sherbenou), and 
a pilot grant from the RNA Biosciences Initiative (D.W. Sherbenou) at the 

AACRJournals.org Cancer Res Commun; 5(1) January 2025 117 

Transcriptomic Subpopulations in Multiple Myeloma 

https://aacrjournals.org/


University of Colorado. The authors thank Beau Idler for providing technical 
assistance on this project. The authors would also like to thank the Hema-
tology Clinical Trials Unit at the University of Colorado for tissue bank and 
regulatory support. The authors appreciate the mentorship and project 
feedback provided by Craig Jordan and Clay Smith. We are also grateful for 
helpful discussions from Leif Bergsagel, Thomas O’Hare, Brett Stevens and 
Monica Ransom. 

Note 
Supplementary data for this article are available at Cancer Research Com-
munications Online (https://aacrjournals.org/cancerrescommun/). 

Received March 20, 2024; revised August 09, 2024; accepted December 12, 
2024; published first December 19, 2024. 

References 

1. Holstein SA, Suman VJ, McCarthy PL. Update on the role of lenalidomide in 
patients with multiple myeloma. Ther Adv Hematol 2018;9:175–90. 

2. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol 
L, et al. Revised international staging system for multiple myeloma: 
a report from international myeloma working group. J Clin Oncol 2015;33: 
2863–9. 

3. D’Agostino M, Cairns DA, Lahuerta JJ, Wester R, Bertsch U, Waage A, et al. 
Second revision of the international staging system (R2-ISS) for overall sur-
vival in multiple myeloma: a European myeloma network (EMN) report within 
the HARMONY project. J Clin Oncol 2022;40:3406–18. 

4. Brioli A, Giles H, Pawlyn C, Campbell JP, Kaiser MF, Melchor L, et al. Serum free 
immunoglobulin light chain evaluation as a marker of impact from intraclonal 
heterogeneity on myeloma outcome. Blood 2014;123:3414–9. 

5. Ayliffe MJ, Davies FE, de Castro D, Morgan GJ. Demonstration of changes in 
plasma cell subsets in multiple myeloma. Haematologica 2007;92:1135–8. 

6. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, et al. Clonal 
competition with alternating dominance in multiple myeloma. Blood 2012;120: 
1067–76. 

7. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, 
et al. Heterogeneity of genomic evolution and mutational profiles in multiple 
myeloma. Nat Commun 2014;5:2997. 

8. Ledergor G, Weiner A, Zada M, Wang S-Y, Cohen YC, Gatt ME, et al. Single cell 
dissection of plasma cell heterogeneity in symptomatic and asymptomatic 
myeloma. Nat Med 2018;24:1867–76. 

9. Merz M, Merz AMA, Wang J, Wei L, Hu Q, Hutson N, et al. Deciphering spatial 
genomic heterogeneity at a single cell resolution in multiple myeloma. Nat 
Commun 2022;13:807. 

10. Walker ZJ, VanWyngarden MJ, Stevens BM, Abbott D, Hammes A, Langouët- 
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