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Abstract: Primary chemoresistance to platinum-based treat-
ment is observed in approximately 33% of individuals diag-
nosed with ovarian cancer; however, conventional clinical
markers exhibit limited predictive value for chemoresistance.
This study aimed to discover new genetic markers that can
predict primary resistance to platinum-based chemotherapy.
Through the analysis of three GEO datasets (GSE114206,
GSE51373, and GSE63885) utilizing bioinformatics methodolo-
gies, we identified two specific genes, MFAP4 and EFEMP1.
The findings revealed that the areas under the receiver oper-
ating characteristic curves for MFAP4 and EFEMP1 were 0.716
and 0.657 in the training cohort, and 0.629 and 0.746 in the
testing cohort, respectively. In all cases or in cases treated
with platin, high expression of MFAP4 and EFEMP1 was
linked to shortened overall survival and progression-free sur-
vival. MFAP4 and EFEMP1 were positively correlated with
epithelial–mesenchymal transition, TGF-β signaling, KRAS
signaling, and so on. The high expression groups of MFAP4
and EFEMP1 exhibited elevated stromal, immune, and ESTI-
MATE scores. Finally, we constructed a regulatory network
involving lncRNA–miRNA–mRNA interactions. In summary,
MFAP4 and EFEMP1 have the potential to serve as predictive
indicators for both response to platinum-based chemotherapy
and survival rates, andmight be regarded as innovative biomar-
kers and therapeutic targets for OC patients.
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1 Introduction

Ovarian cancer (OC) is the most fatal form of gynecological
cancer. According to the American Cancer Society, there
will be 19,680 new cases and 12,740 deaths due to ovarian
malignancy in the United States by 2024 [1]. The primary
approach for managing OC involves tumor reduction sur-
gery and initial chemotherapy, with carboplatin and pacli-
taxel being the preferred first-line treatments [2,3]. However,
the development of chemotherapy resistance, particularly
platinum resistance, significantly affects the prognosis of
OC patients [4]. The initial response rates to first-line che-
motherapy in individuals diagnosed with OC are limited to
a range of 60–80%, and a portion of these individuals even-
tually acquire resistance to the drugs, resulting in an approx-
imate 30% survival rate after 5 years [4,5]. Therefore, it is
imperative to investigate the molecular mechanisms under-
lying the development of innovative strategies to overcome
resistance.

Platinum-based medications belong to a category of
broad-spectrum anticancer drugs that disrupt the struc-
ture and functionality of DNA within tumor cells, thereby
exhibiting anticancer properties [6]. Platinum resistance
refers to the recurrence of patients within 6 months of treat-
ment with platinum drugs [4]. Drug metabolism, driver
mutations, and tumor cell metabolism are closely associated
with drug resistance in OC [7–9]. In addition, other factors,
such as signal pathway changes and exosomes are also
involved [10]. Activation of the focal adhesion kinase (FAK)
signaling pathway has been shown to be associated with
chemotherapy resistance. However, the combination of a
FAK inhibitor with platinum can overcome chemoresistance
and trigger apoptosis [11]. Heat-shock protein 90 has been
identified by proteomic methods as a drug target for rever-
sing platinum resistance in OC [12]. Repressing FOXM1 using
thiostrepton results in a reduction of FOXM1 mRNA expres-
sion and its downstream effectors, such as CCNB1 and
CDC25B, ultimately inducing cell death in OC [13]. Signifi-
cant advancements have been made in elucidating the
underlying mechanisms of chemoresistance in OC; how-
ever, numerous challenges remain to be addressed.
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In this study, we employed weighted gene co-expression
network analysis (WGCNA) along with various machine-
learning methods to successfully identify and characterize
two pivotal genes, MFAP4 and EFEMP1 that exhibit significant
associations with chemotherapy resistance in OC. Subsequently,
we conducted an extensive analysis using a comprehensive
array of algorithms including gene set variation analysis
(GSVA), survival analysis, and copy number alterations
(CNAs). Furthermore, we investigated the immune correlation
of these genes and constructed an lncRNA–miRNA–mRNA net-
work. The findings presented herein have the potential to sig-
nificantly contribute to the advancement of more efficacious
and precisely targeted therapeutic interventions for OC.

2 Materials and methods

2.1 GEO data download and preprocessing

The GEO (http://www.ncbi.nlm.nih.gov/geo/) is a publicly
available functional genomic data repository. To screen
datasets related to platinum resistance, the gene expres-
sion profiles of GSE114206, GSE51373, and GSE63885 were
downloaded from the GEO database. The three GEO series
were merged and normalized using the R packages sva and
limma, followed by visualization through principal compo-
nent analysis (PCA). The limma package was employed to
conduct variance analysis, with the filter condition set as
|logFC| > 1.5 and p < 0.05.

2.2 WGCNA

WGCNA identifies modules of genes with similar expres-
sion patterns to explore potential correlations between
genomes and clinical characteristics [14]. To conduct an
unsigned WGCNA analysis, we used the WGCNA package
(with parameters set as Soft-power 3, mergeCutheight 0.25,
and minModuleSize 30). Genes were categorized based on their
expression patterns, using the weighted correlation coefficients.
Module membership (MM) refers to the correlation between
module eigengenes and gene expression profiles. Finally, eight
nongray modules were identified using WGCNA, and further
investigation focused on 554 genes within the blue module.

2.3 Machine learning

To accurately predict the key genes involved in chemotherapy
resistance, we utilized various methods including LASSO

regression, support vector machine recursive feature elim-
ination (SVM-RFE), and random forest (RF). These techni-
ques allowed us to rank the importance of features using
R packages such as “glmnet,” “e1071,” “kernlab,” “caret,” and
“randomForest” [15–17]. The most relevant and feasible
characteristics of the resistant subtype were confirmed as
genes that converged using these three machine learning
methods for feature selection.

2.4 Receiver operating characteristic (ROC)
curves analysis

Each candidate hub genewas subjected to ROC curve analysis
using the “pROC” package to verify its accuracy [18]. The
results indicated that genes with an area under the curve
exceeding 0.60 could potentially offer diagnostic advantages
for illnesses in both the training and testing groups.

2.5 cBioPortal database analysis

The cBioPortal database (https://www.cbioportal.org) is an
online platform that facilitates the exploration of DNA copy
numbers, DNA methylation patterns, mRNA and microRNA
expression levels, and non-synonymous mutations [19]. By
leveraging this comprehensive resource, investigation into
CNAs in OC can be conducted, specifically targeting the
MFAP4 and EFEMP1 genes.

2.6 GSVA

GSVA is a statistical method employed to identify differen-
tially expressed genes (DEGs) and gene sets within a given
sample set, thereby offering valuable insights into the
underlying biological processes and pathways associated
with observed variation [20]. Subgroups were stratified
based on the median gene expression values. The gene set
“h.all.v7.5.1.symbols.gmt” was obtained from the MSigDB
database. Differential analysis of the HALLMARK pathways
was conducted using the R package “limma.” Enriched path-
ways were considered significant if they exhibited a t-value
greater than 2 and p-value less than 0.05.

2.7 GeneMANIA analysis

The Genemania database (http://www.genemania.org) serves
as a versatile resource for constructing protein–protein

2  Caixia Wang et al.

http://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org
http://www.genemania.org


interaction networks, facilitating the visualization of func-
tional connections between genes, and enabling comprehen-
sive analysis of gene interactions and functions [21]. In this
study, GeneMANIA was utilized to generate a core gene net-
work to elucidate the underlying mechanism of action in
patients with OC.

2.8 Immunocyte infiltration

The ESTIMATE algorithm was used with the assistance of
the “estimate” package to calculate the stromal, immune,
and ESTIMATE scores for each sample [22]. The relative
abundance of 22 immune-related cell types within a diverse
cell population was assessed using CIBERSORT, an analytical
tool [23]. In this study, we investigated the correlation
between gene expression levels and infiltrating immune
cells, and the results are presented as lollipop plots.

IMPACT (http://www.brimpact.cn/) is an online plat-
form that facilitates the investigation of predictive biomar-
kers for immunotherapy and cancer prognosis by utilizing
genomic, transcriptomic, and proteomic data [24]. In this
study, we explored the relationship between key genes asso-
ciated with tumor purity and immune-related pathways.

2.9 Single cell analysis

TISCH (http://tisch.comp-genomics.org/) is an innovative
database that offers comprehensive cell-type annotation
at the single-cell level, enabling researchers to explore
the complex tumor microenvironment (TME) across a
wide range of cancer categories [25]. In this in-depth study,
we focused on analyzing the expression of key genes in
various cell types within the OV_GSE151214 dataset.

2.10 Competing endogenous RNA (ceRNA)
network

miRNA target geneswere predicted using TargetScan,miRanda,
miRWalk, and miRDB. SpongeScan (http://spongescan.rc.ufl.
edu/) was used to retrieve lncRNAs targeted by miRNAs.
Cytoscape is a highly effective software tool for visualizing
and analyzing network data, enabling the construction of
intricate biological networks [26]. In the network diagram
created by Cytoscape, nodes and edges are fundamental
components. To construct a ceRNA network (lncRNA–miR-
NA–mRNA), we employed Cytoscape 3.7.1 as well.

2.11 Statistical analysis

Statistical analyses were performed using the R software
version 4.2.1. Adobe Illustrator 2024 was used to generate the
figures. Clinical survival analyses were conducted using the
KMplotter (https://kmplot.com/analysis/). Statistical signifi-
cance was determined based on a p-value <0.05.

3 Results

3.1 Identification of platinum-based
chemoresistance related geneset

The program flowchart for this study is presented in Figure
A1a. To acquire a geneset associated with chemoresistance
to platinum-based agents, we extracted RNA level profiles
from three datasets: GSE114206 (6 samples of platinum-sen-
sitive and 6 samples of resistant), GSE51373 (16 samples of
platinum-sensitive and 12 samples of resistant), and GSE63885
(41 samples of platinum-sensitive and 34 samples of resistant).
These datasets were merged and normalized for subsequent
analyses (Figure 1a and b). Next, we employed WGCNA to
construct a gene co-expression network and used β = 3 to
establish a scale-free network (Figure 1c). Subsequently, a hier-
archical clustering tree was constructed using dynamic hybrid
cutting to identify gene modules. The branches of the
tree revealed genes with comparable expression pat-
terns (Figure 1d). Furthermore, eight non-gray modules
were constructed and the blue module was identified as the
candidate hub module (MM = 0.47, gene significance = 8.6 ×
10−32) (Figure 1e and f).

3.2 Identification of key genes and
enrichment analysis

We screened 45 DEGs between the sensitive and resistant
groups (|logFC| > 1.5, p < 0.05) (Figure 2a). Through the
intersection of the DEG and WGCNA results, we identified
31 genes that were consistently identified in both analyses
(Figure A1b). GO annotation usingMetascape (https://metascape.
org/) suggested that these genes are associated with epithelial–
mesenchymal transition (EMT). In addition, we used STRING
(https://string-db.org/) to construct a protein interaction network
(Figure A1c and d).

To determine the core genes associated with chemore-
sistance in OC, we employed the LASSO regression, SVM-
RFE, and RF algorithms for feature selection. LASSO
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Figure 1: Identification of the hub module using WGCNA. (a) Three GEO datasets are merged and PCA plot before batch correction. (b) PCA plot after
batch correction. (c) Analysis of the scale-free fit index of different soft threshold powers. (d) Clustering dendrogram of genes. (e) Correlation of these
modules between the resistant group and sensitive group. (f) Scatter plot of the relationship between the blue module and the resistant group.
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Figure 2: Screening for core genes in platinum-resistant group. (a) DEGs are shown on the heatmap. (b) Selection of the best Log (λ) value for LASSO
regression. (c) Influence of the number of decision trees on the error rate. (d) Mean decrease Gini method in random forest classifier. (e) Variation
curve of gene cross-validation error in SVM-RFE algorithm. (f) The Venn diagram shows the platinum-resistant genes shared by LASSO, SVM-RFE, and
RF algorithms.
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regression analysis identified 16 variables, namely ROR2,
MFAP4, GUCY1A3, FIBIN, IGF1, UBE2QL1, MMP13, STX19,
EFEMP1, ZBTB7C, BNIPL CCDC80 ID1 THBS2 GREM1, and
VCAN as crucial indicators associated with resistance to
chemotherapy (Figure 2b). Nine genes, MFAP4, ZBTB7C,
STX19, FIBIN, ROR2, IGF1, TCEAL7, CCDC80, and EFEMP1,
were identified as signature genes with relative impor-
tance scores greater than two (Figure 2c and d). For the
SVM-RFE algorithm, the error was minimized when the
number of features was 16, including BCHE, EPYC, UBE2QL1,
GREM1, SFRP2, MFAP4, MMP13, SCG2, POSTN, VCAN, ROR2,
GUCY1A3, EFEMP1, ZBTB7C, BNIPL, and TIMP3 (Figure 2e).
After this intersection, four common signature genes, ROR2,
MFAP4, EFEMP1, and ZBTB7C, were identified (Figure 2f).

Candidate hub genes were identified using ROC curve
analysis to ensure their accuracy. In the merged group, the
area under the ROC curves (AUCs) for ROR2, MFAP4,
EFEMP1, and ZBTB7C were 0.704, 0.716, 0.657, and 0.659,
respectively (Figure 3a–d). In the external validation set
GSE30161, the AUCs for these markers were 0.598, 0.629,
0.746, and 0.546, respectively (Figure 3e–h). Ultimately,
MFAP4 and EFEMP1 were identified as potential markers
for predicting platinum resistance in OC.

3.3 Survival analysis for key genes

To investigate the association between MFAP4 and EFEMP1
expression and OC prognosis, we conducted a survival ana-
lysis using the Kaplan–Meier plotter database. In all cases or
platinum-based chemotherapy cases, the findings demon-
strated that high expression of MFAP4 and EFEMP1 was asso-
ciated with shorter overall survival (OS) (Figure 4a–f), which
was also observed in the progression-free survival (PFS) group
(Figure 4j–l). These findings suggest a strong correlation
betweenMFAP4 and EFEMP1 expression and platinum resis-
tance and an unfavorable prognosis in OC.

3.4 Multiomics validation of core genes
in OC

We examined the correlation between the expression of core
genes and mutations, as well as CNA, using cBioPortal. As
depicted in Figure 5a–c, critical factors associated with muta-
tions were identified through gain and deep deletion events
involving the MFAP4 gene, while amplification and gain
events affecting the EFEMP1 gene were also found to

Figure 3: Evaluation of the diagnosis of core genes. (a)–(d) ROC curves of ROR2, MFAP4, EFEMP1, and ZBTB7C in the training group. (e)–(h) ROC curves
of ROR2, MFAP4, EFEMP1, and ZBTB7C in the testing group (GSE30161). AUC value is the area under the ROC curve.
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Figure 4: Relevance of core gene expression to the prognosis of patients with OC. (a)–(c) Relationship between MFAP4 and EFEMP1 expression and OS
in patients with OC. (d)–(f) Relationship between MFAP4 and EFEMP1 expression and OS in patients with OC treated with platinum chemotherapy.
(g)–(i) Relationship between MFAP4 and EFEMP1 expression and PFS in patients with OC. (j)–(l) Relationship between MFAP4 and EFEMP1 expression
and PFS in patients with OC treated with platinum chemotherapy.
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Figure 5: Multiomics of core genes. (a) Alteration frequency of MFAP4 and EFEMP1 in OC. (b) and (c) Putative CNAs of MFAP4 and EFEMP1. (d) and (e)
GSVA of MFAP4 and EFEMP1. (f) Networks of MFAP4 and EFEMP1 based on the GeneMANIA database.
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significantly contribute to mutational processes. GSVA ana-
lysis showed that MFAP4 and EFEMP1 were positively corre-
lated with the EMT, TGF-β signaling, KRAS signaling, and so
on (Figure 5d and e). The MFAP4 and EFEMP1 networks were
visualized using GeneMANIA (Figure 5f).

3.5 Relationship between core genes and
immune infiltration in OC

To investigate the association between TME characteristics
and the two genes, our findings indicated that elevated

stromal, immune, and ESTIMATE scores were observed
in cases with high expression of MFAP4 and EFEMP1
(Figure 6a and b). Additionally, a negative correlation
was found between high expression of MFAP4 and EFEMP1
and tumor purity (Figure 6c and d). Furthermore, using the
CIBERSORT method to evaluate the relationship between
these two genes and 22 types of immune cells revealed a
positive correlation between high expression of MFAP4
and T cell CD8 levels (Figure 6e), as well as a positive
correlation between high expression of EFEMP1 and T
cell gamma delta levels along macrophages M2 (Figure
6f). Moreover, an analysis focusing on immune-related

Figure 6: Correlation of core genes and TME. (a) and (b) Differences in the immune score, ESTIMATE score, and stromal score were observed in the
expression of MFAP4 and EFEMP1. (c) and (d) Differential tumor purity in the expression profiles of MFAP4 and EFEMP1. (e) and (f) Correlation analysis
between expression of MFAP4 and EFEMP1 and immune cells. (g) Immune-related pathways of MFAP4 and EFEMP1 using the IMPACT database.
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pathways associated withMFAP4 and EFEMP1 genes demon-
strated increased IL-6 family signaling for MFAP4 and
increased IL-37 signaling for EFEMP1 (Figure 6g).

3.6 Analysis of TME-associated cells and
construction of ceRNA network

The TISCH website was used to analyze the expression
patterns of core genes in different TME-associated cells
using the scRNA-seq dataset GES151214 (Figure 7a). Notably,
fibroblasts showed significant expression levels of MFAP4
and EFEMP1 (Figure 7b–d). We then conducted an exten-
sive search across various databases, including TargetScan,
miRanda, miRWalk, and miRDB, to explore the potential
interactions between mRNAs and miRNAs. This analysis
successfully identified 19 significant pairs of miRNA–mRNA
interactions. Additionally, we utilized the SpongeScan ana-
lysis tool to construct a comprehensive regulatory network
for lncRNA–miRNA interactions and discovered 74 pairs of
such interactions. As illustrated in Figure 7e, the results
demonstrated that MFAP4 was predominantly targeted
by miR-650, miR-762, miR-149-3p, miR-939-5p, miR-769-5p,
miR-214-3p, miR-922, and miR-16-1-3p along with their asso-
ciated lncRNAs. EFEMP1 is regulated bymiR-28-3p andmiR-
9-5p along with their related lncRNAs.

4 Discussion

OC is characterized by its insidious nature, with over 70%
of cases being diagnosed at an advanced stage [27]. Patients
whose OC is confined to the ovaries exhibit a 5-year sur-
vival rate exceeding 90% [28]. In recent years, there has
been a notable interest among young women with early-
stage OC in preserving their fertility. However, platinum-
based chemotherapy, a common treatment for OC, may exert
cytotoxic effects on ovarian follicles, potentially leading to
ovarian failure [29]. Currently, several interventions are rou-
tinely employed in clinical practice to preserve fertility,
including the administration of gonadotropin-releasing hor-
mone agonists and the cryopreservation of oocytes or ovarian
tissue [29,30]. In women who undergo chemotherapy fol-
lowing fertility-sparing surgery (FSS), approximately 65–70%
are expected to regain ovarian function, with no observed
increase in the incidence of congenital malformations post-
pregnancy. It is recommended, however, to delay conception
for 6–12 months to mitigate the potential adverse effects of
chemotherapeutic agents on oocytes [31]. Furthermore, the

implementation of prenatal screening through noninvasive
prenatal testing technology, along with long-term monitoring
of offspring health, is advised [32]. Thus, a multidisciplinary
approach that includes gynecologists, oncologists, and psychol-
ogists is essential for the effective implementation of fertility
preservation strategies in women diagnosed with OC [33,34].

Presently, FSS offers guidance on prognosis and preg-
nancy outcomes for women, contingent upon the stage and
pathological classification of OC [35]. Nonetheless, the pre-
sence of chemotherapy resistance in OC is intricately
linked to both oncological and obstetric outcomes. Pla-
tinum resistance is a complex and multi-faceted process
that involves the interplay of multiple genes and various
factors [36]. Numerous studies have also focused on iden-
tifying the key genes responsible for platinum resistance in
OC [37]. To elucidate the pivotal genes responsible for pla-
tinum resistance, we employed a range of bioinformatics
techniques encompassing WGCNA, DEGs, and multima-
chine learning algorithms such as LASSO, SVM-RFE, and
RF. Through this comprehensive analysis, we successfully
identified MFAP4 and EFEMP1 genes that may contribute to
chemotherapy resistance in OC patients. Furthermore, our
survival analysis revealed a significant association between
the expression levels of MFAP4 and EFEMP1 and unfavor-
able prognosis in OC. Based on the aforementioned findings,
we can inform OC patients about the risks associated with
preserving fertility by assessing the expression levels of
MFAP4 and EFEMP1.

MFAP4 belongs to a family of fibrinogen-related domain
proteins and plays a pivotal role in various pathological
conditions involving tissue remodeling, including fibrosis,
cardiovascular diseases, aging, and cancer [38,39]. MFAP4
exhibits heterogeneous expression levels in various tissues.
Notably, in pancreatic adenocarcinoma, MFAP4 was identi-
fied as a carrier of sialyl-Lewis x with significantly higher
expression compared to control tissues [40]. Conversely,
other studies have reported significantly lower levels
of MFAP4 expression in lung adenocarcinoma and breast
cancer [41,42]. In our investigation of platinum-resistant
OC patients, we observed elevated expression levels of
MFAP4, which correlated with poor prognosis. Consistently,
an analysis focusing on platinum drug resistance in OC also
supports this finding [43]. EFEMP1, also known as fibulin 3,
is a crucial extracellular matrix protein that plays a pivotal
role inmaintaining the structural integrity and stability of the
ECM [44,45]. Specifically, EFEMP1 exhibits diverse expression
patterns across different tissues and exerts a dual function in
cancer progression [46]. In breast cancer, miR-9-mediated
down-regulation of EFEMP1 has been implicated in the trans-
formation of normal fibroblasts into cancer-associated fibro-
blasts [47]. Proteomic profiling analysis has identified EFEMP1
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as a metastatic driver and a potential prognostic biomarker
for lung metastasis in osteosarcoma patients [48]. Moreover,
elevated expression levels of EFEMP1 have been shown to pro-
mote HeLa cell proliferation [49], whereas its overexpression

has been observed in chemoresistant variants of the A2780 OC
cell line [50]. Additionally, upregulation of EFEMP1 has been
associated with enhanced invasiveness andmetastatic potential
in OC through the activation of the AKT signaling pathway [51].

Figure 7: Single cell analysis and ceRNA network construction. (a) UMAP visualization of the GSE151214 dataset, cells are colored by cluster. (b) and (c)
Feature plots depicting the expressions of MFAP4 and EFEMP1 in all cell types. (d) Violin plots show the expression level of MFAP4 and EFEMP1 in
different cell types. (e) Regulatory network of lncRNA–miRNA–mRNA was visualized using Cytoscape.
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These studies show that these two genes are closely related to
cancer progression and drug resistance.

Chemotherapy resistance is a complex process that can
be influenced by a variety of factors, including the EMT,
TME, and so on [52–54]. EMT is a biological process by
which epithelial cells undergo various phenotypic changes
along the epithelial–mesenchymal axis. These cellular states
exhibit distinct characteristics such as stemness, invasive-
ness, drug resistance, and metastatic potential, contributing
to cancer metastasis and relapse [55,56]. SNAIL1 and SNAIL2,
as major inducers of EMT, a study demonstrated that SNAIL1
is implicated in cisplatin resistance of OC cells, no such
association was observed for SNAIL2 [57]. Studies have
investigated the proteomic disparities between carboplatin-
sensitive and carboplatin-resistant OC cells, revealing a heigh-
tened expression of EMTmodulators, including G6PD, AKR1B1,
ITGAV, and TGFβ1, in the resistant cohort [58]. Studies have
shown that estrogen suppresses EFEMP1 and inhibits theWnt/
β-catenin signaling pathway to prevent EMT in endometrial
carcinoma [59]. The interaction between EFEMP1 and STEAP1
facilitates the initiation of Wnt/β-catenin and TGF-β/Smad2/3
axes, leading to the induction of EMT, thereby promoting the
infiltration and migration of osteosarcoma cells [60]. Limited
research has been conducted on the correlation between
MFAP4 expression and EMT. A single study revealed enrich-
ment of extracellular matrix factors CHRDL1 and MFAP4
secreted by adult chondrocytes, along with enhanced net-
works involved in cartilage development pathways and EMT
[61]. In the present study, we found that MFAP4 and EFEMP1
were positively correlated with EMT, indicating that these
genes may contribute to chemoresistance.

The TME is also an important factor in chemotherapy
resistance. The TME is composed of a variety of cells,
including cancer cells, immune cells, and fibroblasts, as
well as extracellular matrix proteins and other molecules,
which are characterized by hypoxia, interstitial high pres-
sure, and inflammatory reactivity and are closely related
to tumor growth, metastasis, and drug resistance [62]. The
high expression of MFAP4 and EFEMP1 exhibited increased
stromal, immune, and ESTIMATE scores; however, they
demonstrated an inverse correlation with tumor purity.
CD8+ T cells have the ability to selectively eliminate tumor
cells; however, the phenomenon of “tumor and T cell coex-
istence” indicates that CD8+ T cells are dysfunctional during
tumorigenesis [63]. MFAP4 was found to be positively corre-
lated with CD8+ T cells in a study of endometriosis [64]. In
this study, we found that MFAP4 positively correlated with
CD8+ T cells. Tumor-associated macrophages are important
regulatory cells involved in tumor-associated inflammation,
and the subtypes that promote tumor growth in the TME

are mainly the polarized type (M2-TAM) [65]. Our results
demonstrate that EFEMP1 is positively correlated with M2-
TAM and MFAP4 is closely correlated with M2-TAM. The
above studies show that these two genes are related to the
remodeling of the TME.

Despite the favorable outcomes derived from the bioin-
formatic investigation of OC, this study has certain limita-
tions. First, the preliminary results appear promising, but it
is imperative to conduct extensive experiments and perform
comprehensive data analysis to ascertain the universality
and reliability of these findings. Second, MFAP4 and
EFEMP1 have been well studied in various cancers, and
the intricate mechanisms underlying the upregulation of
MFAP4 and EFEMP1 in platinum-resistant OC patients
remain unclear, necessitating further exploration in future
research.

5 Conclusion

In conclusion, we identified MFAP4 and EFEMP1 as poten-
tial biomarkers that could be used to predict the response
to platinum-based chemotherapy and determine survival
outcomes in patients with OC. MFAP4 and EFEMP1 are
closely related to EMT and the TME, which is consistent
with the mainstream studies on platinum resistance. Risk
stratification can be achieved through testing these mar-
kers, thereby providing comprehensive information to
patients considering fertility preservation. Understanding
these factors and how they contribute to chemotherapy
resistance is crucial for developing more effective treat-
ment strategies and improving the outcomes of patients
with OC.
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Appendix

Figure A1: The exploration of intersect genes. (a) The flowchart of whole project. (b) The Venn diagram shows the common genes in both WGCNA and
DEGs. (c) Enrichment analysis based on the Metascape database. (d) Construction of protein–protein interaction network using the string database.
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