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Abstract

Background

Aedes aegypti transmits various arthropod-borne diseases such as dengue, posing a signifi-

cant burden to public health in tropical and subtropical regions. Pyrethroid-based control

strategies are effective in managing this vector; however, the development of insecticide

resistance has hindered these efforts. Hence, long-term monitoring of insecticide resistance

in mosquito populations is crucial for effective vector and disease control.

Methodology/principal findings

In this study, we identified insecticide resistance due to a voltage-gated sodium channel

(vgsc) mutation in Ae. aegypti in Taiwan between 2016 and 2023. In total, 1,761 field-caught

Ae. aegypti samples from Tainan, Kaohsiung, and Pingtung were genotyped. The frequen-

cies of S989P, V1016G, T1520I, F1534C, and D1763Y amino acid variants increased over

the surveillance period. A T1520I mutation was detected for the first time and has since rap-

idly spread throughout Taiwan. The triple-mutant haplotype PGTFY was first documented in

Ae. aegypti. Moreover, the unmutated haplotype vanished in Taiwan, suggesting that the

vgsc mutations were fixed in local populations of Ae. aegypti. Five resistance-associated

genotypes, SVTCD/SVTCD, SGTFY/PGTFD, SVTCD/SGTFY, PGTFD/PGTFD, and

SVTCD/PGTFD, exhibited an increased frequency and accounted for 76% of the total field

population. We also detected the resistant genotype SVICD/PGTFD, and its frequency

increased 13-fold in the field between 2016 and 2023. Moreover, we also observed that

mutations differed geographically, with S989P mainly found in Kaohsiung and V1016G in

Kaohsiung and Pingtung. The frequency of T1520I was noticeably higher in Kaohsiung, and

D1763Y occurred mainly in Tainan.
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Conclusions/significance

The emergence and expansion of mutations along with the disappearance of wild-type mos-

quitoes in Taiwan underscores the threat of resistance and difficulty of mosquito control in

Taiwan as well as globally. This study determined the insecticide resistance status of Ae.

aegypti in Taiwan, and the findings will be helpful for resistance monitoring in areas where

pyrethroids are used to control Ae. aegypti.

Author summary

We conducted an eight-year insecticide resistance surveillance study on vgsc mutations to

monitor resistance trends and understand the role of vgsc mutations in Aedes aegypti in

Taiwan. Mutations S989P, V1016G, T1520I (first documented in Taiwan), F1534C, and

D1763Y were detected, and their frequencies increased over time. We observed that Ae.
aegypti with resistance-associated vgsc genotypes comprised the majority of the field pop-

ulation in later years of surveillance, and the unmutated haplotype disappeared; all sur-

veyed field Ae. aegypti harbored at least one vgsc mutation. Three haplotypes were first

detected in Taiwan: PGTFY, PGTCD, and SVICD. This study presents the first report of

PGTFY in Ae. aegypti, and determining its role in resistance and physiological effects will

require further investigation. The observations in this study highlight the emergence and

expansion of vgsc mutations and suggest the difficulty of vector control in Taiwan and

worldwide. In addition, we found that mutations in Taiwan showed geographical

differences.

Introduction

Aedes aegypti is the primary vector of various arboviruses, including dengue, chikungunya,

Zika, and yellow fever viruses. Of these, dengue virus causes a spectrum of diseases from

asymptomatic dengue fever to severe dengue, including hemorrhagic fever and shock syn-

drome with high mortality [1]. Approximately 390 million people are estimated to be infected

with dengue annually, causing health and economic burdens worldwide [2]. However, global

transit and climate change have promoted the geographical expansion of both dengue vectors

and dengue virus, increasing the global risk of arboviral disease [3,4]. In Taiwan, Ae. aegypti is

limited to southern Taiwan, which is a hotspot of the dengue transmission [5]. According to

surveillance by the Taiwan Centers for Disease Control (Taiwan CDC; https://www.cdc.gov.

tw/), dengue has been detected annually over the past two decades. Record levels were reached

in 2015, with 43,419 confirmed indigenous cases and more than 98.5% of cases occurring in

Ae. aegypti-endemic areas, including Tainan, Kaohsiung, and Pingtung. However, dengue is

considered a travel disease in Taiwan because most dengue outbreaks have emerged from

cases imported in early summer, with subsequent virus spread by local vector populations [6].

Outbreaks usually end in winter when the weather becomes cold and unsuitable for mosquito

activity [7]. Taiwan closed its borders during the COVID-19 pandemic, and no indigenous

dengue cases were identified in 2021. However, after the lockdown was lifted, an outbreak of

re-emergent dengue resulted in 26,423 indigenous cases, with the majority of these cases in

Taiwan in 2023 comprising DEN-1 infections.

Because specific medications and cost-effective vaccines are unavailable for dengue [8],

mosquito control remains a primary strategy to combat dengue virus infection. New
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approaches such as sterile insect technology and Wolbachia-based and gene-modification

strategies have been assessed in various projects [9–11]. Although a reduction in both mos-

quito populations and dengue incidence has been demonstrated in several areas, large-scale

implementation is needed to fully assess the advantages and disadvantages of these innovative

strategies. In Taiwan, a Wolbachia (wAlbB)-transinfected Ae. aegypti strain, wAlbB-Tw, was

established for lab-scale characterization and semi-field assessment [12]. However, further

assessments of wAlbB-Tw and detailed information on the local population are needed for a

comprehensive evaluation before large-scale release. Therefore, insecticide spraying is still

needed to interrupt viral transmission when a suspected case of dengue is reported [13]. Pyre-

throids, categorized as type I or type II based on the presence of cyan groups, are the most

commonly used insecticides because of their high toxicity in pests and minimal harm to mam-

mals [14]. However, prolonged use of insecticides with the same mode of action results in

resistance and hampers the efforts of vector control programs [15]. Similar to other Asian

countries, in Taiwan, mosquitoes with low sensitivity to broad-acting insecticides have been

observed among adult and larval Ae. aegypti [16–19].

Point mutations leading to non-synonymous amino acid substitutions in the voltage-gated

sodium channel (vgsc), the pyrethroid receptor, result in knockdown resistance and have been

discovered in various insects with public health and agricultural importance [20,21]. In Ae.
aegypti, several vgsc mutations with distinct geographical distributions have been observed

[22]. In Asia, associations between resistance and vgsc substitutions, including L982W, S989P,

A1007G, T1520I, V1016G, F1534C, and D1763Y (positions are numbered based on housefly

vgsc; GenBank accession number: AAB47604), have been reported in Ae. aegypti. These muta-

tions confer resistance either alone or in combination with other mutations [23–27]. Co-

occurrence of multiple vgsc mutations, which usually results in greater resistance, has been

reported in many Asian countries. Kasai et al. reported super-insecticide-resistant Ae. aegypti
carrying substitutions L982W+F1534C that showed 300-fold resistance to permethrin. In

addition, S989P+V1016G+F1534C was associated with approximately 170-fold greater resis-

tance to permethrin and deltamethrin [27]. The Taiwan CDC launched a long-term surveil-

lance program to monitor the resistance of field populations of Ae. aegypti in 2016, and four

vgsc mutations (S989P, V1016G, F1534C, and D1763Y) and two intron polymorphisms (250

or 234 bp of intron inserts between exon 20 and 21 of vgsc domain II region) were detected

[25,28]. By these four mutations and two intron polymorphisms, six haplotypes were proposed

in Ae. aegypti in Taiwan. Among these, S989P+V1016G is associated with resistance to several

type II pyrethroids [18,28]. In 2022, Chung et al. described six resistance-associated and several

resistance-unrelated genotypes in Ae. aegypti in Taiwan [29]. Several mutations associated

with resistance, including L982W, A1007G, and T1520I, have been reported in other countries

in recent years; however, these mutations have yet to be investigated in Taiwan [24,26,27].

Therefore, this study aimed to monitor the current resistance status of Ae. aegypti in Taiwan.

Long-term surveillance data were used to understand how vgsc mutations varied temporally

and geographically under a sustained vector control program.

Materials and methods

Mosquito collection and maintenance

Immature Aedes mosquitoes were collected from standing water containers or ovitraps set by

the National Health Research Institute in March (2nd season) and October (4th season)

between 2016 and 2023. However, the survey was not conducted in October 2019 due to a pol-

icy adjustment. These collections were conducted in 10 districts at high risk for dengue in

southern Taiwan, including five districts of Tainan City (West Central District, South District,
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North District, East District, and Yongkang District), four districts of Kaohsiung City (Sanmin

District, Xiaogang District, Qianzhen District, and Fengshan District), and Pingtung City in

Pingtung County. Because of the disappearance of wild-type genotype in 2018, in 2019, we

expanded sampling to 21 sites in Tainan (n = 8), Kaohsiung (n = 11), and Pingtung (n = 2) to

confirm vgsc fixation (Fig 1). Mosquito species were identified under a dissecting microscope

as described previously [30]. The mosquitoes were then reared to adulthood in an insectary

following a previously reported procedure [28]. Briefly, larvae were reared in a plastic pan con-

taining a 3:1 mixture of pig liver powder and yeast extract. Adult mosquitoes were kept in a

BugDorm screen cage (30 × 30 × 30 cm; MegaView Science, Taichung, Taiwan) under condi-

tions of a 10:14 light:dark cycle, 20–30˚C, and 70 ± 10% relative humidity. A 10% sucrose solu-

tion was used as an energy source for adult mosquitoes. G0 males were selected, preserved in

absolute ethanol, and stored at –80˚C until vgsc genotyping.

vgsc genotyping

To prevent sperm contamination in female spermatheca, genomic DNA was extracted from

field G0 males using a Qiagen QIAamp DNA purification kit (cat. no. 51306, Qiagen, Ger-

many). Because of the difference in the location of the sex determination factor (chromosome

1) and the vgsc gene (chromosome 3), theoretically, there should be no gender bias based on

Fig 1. Map of Aedes aegypti sampling sites. Routine surveillance in 10 districts of Tainan City, Kaohsiung City, and Pingtung County in southern Taiwan that

are labeled in blue. The expanded districts (those added in 2019) are shown in green. Sanmin (1), Fengshan (2), Qianzhen (3), Xiaogang (4), South (5), North

(6), West Central (7), East (8), Yongkang (9), Pingtung (10), Zuoying (11), Lingya (12), Gushan (13), Nanzih (14), Hsingsin (15), Chiengin (16), Yancheng (17),

Donggang (18), Anping (19), Annan (20), and Rende (21). The map was created in QGIS 3.32.2 (https://qgis.org). The base layer of the map with CC BY 4.0

license (https://data.gov.tw/licenses) was downloaded from Government Open Data established by National Development Council, Taiwan (https://data.gov.

tw/dataset/7442).

https://doi.org/10.1371/journal.pntd.0012768.g001
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results from male mosquitoes [31]. Briefly, each mosquito was individually homogenized with

a 3-mm glass bead in a 1.5-mL microcentrifuge tube for 3 min at a frequency of 30/s using a

TissueLyser (Qiagen, Germany). The homogenized sample was then processed according to

the manufacturer’s instructions, and genomic DNA was eluted with 80 μL Tris-EDTA buffer.

The vgsc gene was genotyped as described previously [28,32]. At the beginning of 2016, partial

DNA fragments of vgsc containing S989, V1016 (domain II), F1534 (domain III), and D1763Y

(domain IV) were amplified using three sets of PCR primers (S1 Table) [32] and a thermocy-

cler (Biometra T3000, Germany). PCR was conducted with 12.5 μL 2× PCR Master mix solu-

tion (i-pfu) (cat. no. 25186, iNtRON Biotechnology, Korea), 1 μL each forward and reverse

primers (10 μM), 1 μL genomic DNA, and 9.5 μL ddH2O in a final volume of 25.0 μL. PCR

conditions were as follows: 94˚C for 5 min, followed by 39 cycles of denaturation at 94˚C for

30 s, annealing at 55˚C for 30 s, extension at 72˚C for 1 min, and a final extension step at 72˚C

for 10 min. Specific PCR amplification products were separated using electrophoresis on a

1.5% agarose gel and visualized on an ultra-violet light box following ethidium bromide stain-

ing. Amplicons were sent for direct sequencing (Genomics, Taiwan) using the designated

sequencing primers (S1 Table) [32]. The vgsc genotypes of the four alleles were aligned and

analyzed using GeneStudio software (http://genestudio.com/). Haplotypes and genotypes were

determined as described in previous reports [28,29]. Following the reported resistance roles of

T1520I (2019), A1007G (2021), and L982W (2022), we searched for these mutations in previ-

ous results for domain II and III sequencing, and these mutations were included in subsequent

testing. We genotyped 833, 749, and 179 male mosquitoes collected in Tainan, Kaohsiung, and

Pingtung, respectively.

Statistical analysis

All statistical analyses were performed using Prism version 6.01 (GraphPad Software Inc.).

The differences in allele (S989P, V1016G, T1520I, F1534C, and D1763Y), haplotype, and geno-

type distributions in Ae. aegypti were compared between Tainan, Kaohsiung, and Pingtung.

Analysis of variance (ANOVA) was employed, and post-hoc Tukey testing was used for multi-

ple comparisons if significant differences were observed.

Results

vgsc mutations

Between 2016 and 2023, eight vgsc mutations (L982W, S989P, A1007G, I1011M, V1016G,

T1520I, F1534C, and D1763Y) were monitored by genotyping of 1,761 field-caught male Ae.
aegypti from southern Taiwan. Five of these eight mutations were detected: S989P, V1016G,

T1520I, F1534C, and D1763Y. Of these mutations, V1016G exhibited the highest mutation fre-

quency (average: 0.44, range: 0.16–0.59), followed by F1534C (0.42, 0.15–0.61), S989P (0.31,

0.06–0.51), D1763Y (0.14, 0.04–0.19), and T1520I (0.04, 0–0.13) (S2 Table). However, muta-

tions in L982, A1007, and I1011 were not detected in Ae. aegypti from southern Taiwan.

T1520I was initially detected at a low frequency (0.004 in October 2016); however, its fre-

quency gradually increased thereafter (Fig 2C). The frequency of V1016G increased steadily

since March 2017, and it has become the predominant mutation in recent years (Fig 2B). The

frequency of S989P varied concurrently with that of V1016G but at a relatively lower frequency

(Fig 2A). The frequency of F1534C peaked in October 2018, and the three-year trend of

increase was reversed in subsequent years (Fig 2D). The frequency of D1763Y remained stable

at approximately 0.15 throughout the period of surveillance (Fig 2E).

Regarding the geographical distribution of these mutations, the frequency of S989P was

generally higher in Kaohsiung than in Tainan or Pingtung, especially at particular time points
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where these differences were statistically significant (Fig 3A). The frequency of V1016G in Tai-

nan was lower than that in Kaohsiung and Pingtung before 2018, with significant differences

observed in October 2016 and 2018. However, there were no significant differences in V1016G

frequencies among the three cities over the last two years of the study (Fig 3B). Notably, both

S989P and V1016G were detected more frequently in Pingtung in October 2021 than in

Fig 2. Temporal analysis of the frequencies of mutations in Aedes aegypti. The histogram displays the frequencies of S989P (A), V1016G (B), T1520I (C),

F1534C (D), and D1763Y (E) mutations in Ae. aegypti. The means with standard errors of the mean are depicted for Ae. aegypti mutation frequencies in each

district. The average allele frequencies of S989P, V1016G, T1520I, F1534C, and D1763Y in 2019 with the expanded areas used to plot this figure (0.26, 0.39,

0.05, 0.61, and 0.13) were similar to those without expanded areas (0.27, 0.40, 0.07, 0.61, and 0.14).

https://doi.org/10.1371/journal.pntd.0012768.g002
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Fig 3. Temporal analysis of the mutation frequencies of S989P (A), V1016G (B), T1520I (C), F1534C (D), and

D1763Y (E) in Aedes aegypti collected in Tainan, Kaohsiung, and Pingtung. The means with standard errors of the

means were plotted in the histogram according to the frequencies of Ae. aegypti mutations in each district (* p< 0.05;

** p< 0.01; *** p< 0.005; **** p< 0.001).

https://doi.org/10.1371/journal.pntd.0012768.g003
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Tainan and Kaohsiung (Fig 3A and 3B). The frequency of T1520I was significantly higher in

Kaohsiung than in Tainan and Pingtung, especially after October 2021 (Fig 3C). The frequen-

cies of F1534C in the three cities were relatively similar, except in October 2018 and 2021 (Fig

3D). In contrast to the frequency of S989P and V1016G, the frequency of D1763Y was higher

in Tainan than in Kaohsiung, especially in March 2023, and the difference was statistically sig-

nificant (Fig 3E).

T1520I was first detected in Ae. aegypti in Taiwan in this study, and analyses of the spatial

and temporal distribution of this mutation were conducted. This mutation was first detected

in a district of Kaohsiung City (Sanmin) in 2016 at a low frequency of 0.002. The following

year, T1520I spread to Tainan and Pingtung, and mosquitoes with T1520I were found in three

districts. The average frequency increased by 8.3-fold to 0.017. Subsequently, this mutation

rapidly spread to seven of the districts sampled in southern Taiwan in 2018. In the past two

years, T1520I was detected in most of the districts monitored in this study, with average fre-

quencies ranging from 0.07 to 0.08, representing a 35- to 40-fold increase after its emergence

(Figs 2C and 4).

vgsc genotypes

The composition of vgsc genotypes reflects the ecological balance between fitness and resis-

tance in mosquitoes exposed to insecticides. During this survey, 25 vgsc genotypes (unmutated

wild-type mosquitoes with intron A or B polymorphisms were classified as the same genotype

in this study), comprising S989P, V1016G, T1520I, F1534C, and D1763Y, were observed in

natural populations of Ae. aegypti (Fig 5). Among these, 14 genotypes had been previously

Fig 4. Temporal and spatial analysis of T1520I in Aedes aegypti in Taiwan. The expanded districts in 2019 were not included in this analysis. The map was

created in QGIS 3.32.2 (https://qgis.org). The base layer of the map with CC BY 4.0 license (https://data.gov.tw/licenses) was downloaded from Government

Open Data established by National Development Council, Taiwan (https://data.gov.tw/dataset/7442).

https://doi.org/10.1371/journal.pntd.0012768.g004
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reported in Taiwan; the presence of the remaining genotypes was documented for the first

time in Taiwan in this study. Notably, at the beginning of this surveillance study, the most fre-

quent genotype was the unmutated wild type (SVTFD/SVTFD), which was detected in 54% of

the field mosquitoes. However, this genotype disappeared in 2018, despite our increase in sam-

pling that year and the inclusion of additional districts in 2019 for confirmation of this disap-

pearance (with only 1.1% wild-type field-collected mosquitoes observed in March 2020).

Simultaneously, the population with previously reported [29] resistance-unrelated genotypes

(SVTFD/SVTCD, SVTFD/PGTFD, SVTFD/SGTFY, SVTCD/SGTFD, and SVTFD/SGTFD)

decreased to undetectable levels over time. In contrast, the number of Ae. aegypti with one of

the five resistance-related vgsc genotypes (SVTCD/SVTCD, SGTFY/PGTFD, SVTCD/SGTFY,

PGTFD/PGTFD, and SVTCD/PGTFD) described previously [29] increased to 76% of the field

population in Taiwan. The SVTCD/PGTFD triple heterozygote population increased from

3.4% in March 2016 to 30% in October 2023, representing an 8.8-fold increase, to become the

predominant genotype in the field. Similarly, the frequency of PGTFD/PGTFD homozygote

increased by ten-fold (2.3% to 23%). The SVTCD/SVTCD homozygote was first detected at a

frequency of 3.4%, and the population rapidly increased to a peak of 31.2% in March 2018.

The prevalence of this genotype gradually decreased to 13% by 2023. With trend similar to

SVTCD/SVTCD but at a relatively low frequency, the SGTFY/PGTFD population peaked in

October 2021 and then decreased over time. The frequency of SVTCD/SGTFY ranged from

7% to 20.1%, with peaks observed in March 2018 and March 2021. In addition, the SVICD/

PGTFD population rapidly expanded (13-fold) after its first detection in 2016, suggesting its

Fig 5. Heatmap of the distribution of vgsc genotypes in Aedes aegypti collected in Taiwan between 2016 and 2023. The proportion from low to high is

presented by colors in the order of green< orange< red. Underlined letters represent the mutant alleles in each position.

https://doi.org/10.1371/journal.pntd.0012768.g005
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role in resistance and conferring a survival advantage. We also detected a slight increase in the

SVTCD/SVICD population (approximately 5-fold). In contrast, three genotypes, PGTFY/

PGTFD, SGTFY/SGTFY, and SVICD/SVICD, which were absent at the beginning of our sur-

veillance, emerged later and were maintained at a low frequency. Other genotypes were

detected occasionally, including the PGTFY/PGTFY triple-homozygous mutation, which was

first reported in Ae. aegypti in this study.

vgsc haplotypes

Based on genotyping, we identified nine Ae. aegypti haplotypes with five mutations: S989P,

V1016G, T1520I, F1534C, and D1763Y (Fig 6A). In the time-course analysis (Fig 6B), the

unmutated haplotype (SVTFD) accounted for the vast majority (70%) of the field population

at the beginning of the surveillance. However, this haplotype had completely disappeared by

2020. The SGTFD haplotype was first detected at a frequency of 5.7% in March 2016; however,

it was rarely detected (<1%) during subsequent surveillance. In contrast, the frequency of

PGTFD increased by 10.5-fold, accounting for 48% of the Ae. aegypti collected. SVTCD fre-

quency peaked at 53% in 2018 and then gradually decreased to 34.5% by 2023. These two hap-

lotypes constituted 82.5% of the field population in 2023. SGTFY was continuously observed

in the field and was particularly prevalent between October 2016 and March 2023, with fre-

quencies ranging from 10.4% to 16.9%. In addition, three haplotypes, PGTFY, SVICD, and

PGTCD, were detected for the first time in Taiwan. PGTFY was first detected in October 2016,

and its frequency peaked at 5.2% in October 2020. This haplotype was then maintained at a

low frequency (1–3%) in the following years. SVICD was first detected in October 2016 at a

low frequency of 0.5%. However, this haplotype continually expanded, reaching 9.5%

(18.6-fold) as the SVTCD frequency began to decline. We only detected PGTCD in a single

individual in 2022. Additionally, we analyzed the distribution of the nine observed haplotypes

among the three cities (Fig 7). SGTFD mainly existed in Pingtung. The frequency of SGTFY in

Tainan was significantly higher than that in Kaohsiung, while the frequency of PGTFD in

Kaohsiung was considerably higher than that in Tainan. The newly emerging haplotype

SVICD was predominant in Kaohsiung. Differences in the other haplotypes were not signifi-

cantly different among the three cities.

vgsc genotype distribution

When we analyzed the distribution of genotypes among the three cities, it was not surprising

that genotypes comprising the haplotypes SVICD, PGTFD, and SVTCD were significantly

more frequent in Kaohsiung than in Tainan and/or Pingtung. Frequencies of SGTFY/SGTFY

in Tainan and SVTCD/SGTFY in Tainan and Pingtung were significantly higher than those in

Kaohsiung. The SGTFD/SVTCD frequency was significantly higher in Pingtung than in Tai-

nan and Kaohsiung (Fig 8).

Discussion

In this study, surveillance of insecticide resistance was conducted based on the detection of

vgsc mutations in Ae. aegypti in Taiwan from 2016 to 2023. The substitutions S989P, V1016G,

T1520I, F1534C, and D1763Y were detected in the field population. Among these, T1520I was

identified for the first time in Ae. aegypti, and its frequency and distribution expanded across

southern Taiwan over the course of surveillance. The frequencies of the other four mutations

also increased over time. The most prevalent mutation was V1016G, followed by F1534C. Five

resistance-associated genotypes, SVTCD/SVTCD, SGTFY/PGTFD, SVTCD/SGTFY, PGTFD/

PGTFD, and SVTCD/PGTFD, were found to represent the vast majority of Ae. aegypti in the
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Fig 6. Proposed haplotypes (A) and heatmap of the distribution of haplotypes (B) in Aedes aegypti collected in Taiwan between 2016

and 2023. Wild-type and mutation sites are presented in white and gray circles, respectively. Blue and red boxes represent group A and B

introns, respectively. a and b denote two types of intron polymorphisms. The underlined letter represents the mutant alleles in each position.

https://doi.org/10.1371/journal.pntd.0012768.g006
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field. Additionally, we observed an emerging genotype, SVICD/PGTFD, and its frequency

increased 13-fold over the surveillance period. Conversely, the unmutated haplotype disap-

peared completely after 2020. This suggests that vgsc mutations, at least one in each individual,

became fixed in Ae. aegypti in Taiwan. The dominant haplotypes were PGTFD (48%), followed

by SVTCD (34.5%), and SVICD (9.5%), with these three haplotypes accounting for 92% of the

population. These trends indicated decreasing haplotype diversity in the field population. In

this study, we detected PGTFY for the first time in Ae. aegypti. Moreover, we noted geographi-

cal differences in mutations, suggesting the need to adjust vector control strategies based on

local resistance data.

Mutations in vgsc associated with pyrethroid resistance have been widely reported in Ae.
aegypti. Previous studies have reported that these mutations confer pyrethroid resistance,

either independently or in combination with other mutations [23,26,27,33,34]. In Taiwan,

four mutations (S989P, V1016G, F1534C, and D1763Y) have been documented in field popu-

lations of Ae. aegypti [28]. During our surveillance, we observed an increase in the frequency

of these four mutations over time, indicating a shift toward higher levels of resistance in the

Fig 7. Distribution of Aedes aegypti haplotypes in Tainan, Kaohsiung, and Pingtung. The means and standard errors of the means were

plotted according to the frequencies of Ae. aegypti haplotypes in each district. (** p< 0.01; *** p< 0.005; **** p< 0.001). The underlined

letter represents the mutant allele in each position. a and b denote two types of intron polymorphisms.

https://doi.org/10.1371/journal.pntd.0012768.g007
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Fig 8. Distribution of Aedes aegypti genotypes among Tainan, Kaohsiung, and Pingtung. The means and standard errors of the

means were plotted according to the frequencies of Ae. aegypti genotypes in each district. (* p< 0.05; ** p< 0.01; *** p< 0.005;

**** p< 0.001). Underlined letters represent the mutant alleles in each position.

https://doi.org/10.1371/journal.pntd.0012768.g008
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field population. Furthermore, we identified another mutation, T1520I, for the first time in Ae.
aegypti in Taiwan. This mutation was initially detected in Ae. aegypti in India in 2015 [35] and

later spread to neighboring countries, including Laos, Myanmar, and Pakistan. According to

previous studies, T1520I typically occurs in combination with F1534C [36–39]. Functional

bioassay indicated that T1520I enhances F1534C-mediated insensitivity [26]. Consistent with

these findings, T1520I always occurred in the presence of F1534C in our study. In addition,

T1520I increased in frequency (13-fold) over the study period, expanding its distribution in

Taiwan. These observations suggest that the resistance-associated mutation T1520I emerged

and was amplified within Ae. aegypti populations on isolated islands of Taiwan. This finding

should be considered when assessing the resistance status of Ae. aegypti. However, further

investigation is needed to determine whether this mutation was imported with foreign mos-

quitoes or originated as a de novo mutation in local populations and whether T1520I can

enhance the fitness of mosquitoes with F1534C. On the other hand, a previous study reported

that D1763Y co-occurs with V1016G to confer resistance [40]. However, our surveillance

showed that D1763Y retained a relatively low frequency compared to S989P, V1016G, and

F1534C.Therefore, the detailed impact of D1763Y on the physiological effects and resistance

needs further elucidation.

In a previous study, six haplotypes, consisting of four mutations and two intron polymor-

phisms, were identified in Ae. aegypti in Taiwan. Other studies have demonstrated the associa-

tion between the PGTFD haplotype and pyrethroid resistance [18,28]. In this study, we

propose three new haplotypes that are present in Taiwan. The first is a haplotype harboring

T1520I and F1534C, which exhibited a 19-fold increase after its first detection in 2016. This

haplotype co-circulated with the resistance-associated haplotype PGFTD in field mosquitoes,

suggesting a resistance role for T1520I+F1534C, which is consistent with previous findings

[26]. The second newly proposed haplotype is PGTFY, which was observed in Ae. aegypti for

the first time in this study. In previous studies, both PG and GY haplotypes were found to be

associated with resistance to Ae. aegypti in Taiwan and in other countries [25,28,41]. Existing

evidence indicates that the co-occurrence of multiple mutations enhances resistance. For

example, PGC triple mutation shows 11- and 44-fold greater resistance to permethrin than

those with PG or C mutations in Xenopus oocytes expression system [41]. However, previous

studies have suggested that multiple mutations may confer a fitness cost in Ae. aegypti, which

can limit the expansion of unfavorable mutations [42]. In this study, the PGTFY haplotype

was maintained at low frequencies, ranging from 0.25% to 5.21%, over the five years of surveil-

lance. Although PGTFY co-circulated with other resistance-associated haplotypes, its low fre-

quency implied that Ae. aegypti with this haplotype may not be highly suitable for

environmental expansion. To our knowledge, this is the first report documenting this haplo-

type in Ae. aegypti. Further investigations are needed to assess the physiological and resistance

effects of PGTFY. In addition, the PGTCD haplotype was first detected in Ae. aegypti in Tai-

wan in combination with SVTCD. Fortunately, this haplotype was not detected in subsequent

years, suggesting that mosquitoes harboring PGTCD did not expand in the field. This result

aligns with those of previous studies, which indicated that PGC leads to a fitness cost in Ae.
aegypti and is not advantageous for survival in the field. However, a single crossing-over event

between the haplotypes harboring PG and C can lead to the formation of the PGC haplotype

[41]. We observed that PGTFD, SVICD, and SVTCD accounted for 92% of the field popula-

tion in 2023, compared with 20.7% at the beginning of surveillance. This observation indicates

the increasing likelihood of the re-emergence of this super-resistant haplotype. In addition,

PGTFD, SVTCD, and SGTFY have been reported to be associated with resistance [25,28,43].

In our surveillance, the haplotype SGTFY and its associated genotype constantly exhibited rel-

atively low frequencies or showed a slight decline. We speculate that SGTFY would confer less
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resistance (or less fitness) than the PGTFD and SVTCD. However, the detailed role of SGTFY

needs further investigation.

In this study, the frequencies of S989P, V1016G, and T1520I, as well as of the two haplo-

types PGTFD and SVICD were significantly higher in Kaohsiung than in the other cities. The

associations of these mutations with pyrethroid resistance have been demonstrated in previous

studies [23,26,28]. Our results are consistent with those of a recent study, in which Ae. aegypti
in Kaohsiung exhibited a notably higher insensitivity to pyrethroids than Ae. aegypti in Tainan

[18]. Conversely, the D1763Y and SGTFY haplotype were predominant in the Tainan popula-

tion. These observations were consistent with those of Lin et al., who reported that SGTFY-

carrying Ae. aegypti mosquitoes were detected only in Tainan among the populations surveyed

in southern Taiwan [18]. In October 2021, in Pingtung, significantly high frequencies of S989P

and V1016G were accompanied by a decreased frequency of F1534C. It is reasonable to believe

that F1534C and the former two mutations exist as different haplotypes, implying that selec-

tion pressure at that time shifted the population toward potently resistant P/G mutations. The

opposite was also observed in Tainan in October 2018, implying that the population had

shifted toward lower resistance [28]. In Taiwan, each city or county has its own local govern-

ment, which formulates strategies for vector control according to local conditions. Factors

influencing the geographical variation of vgsc mutations may include the historical pattern of

insecticide usage, the temporal and spatial distribution of Aedes-borne disease, and the scale of

the outbreak [18]. The distinct vgsc mutation pattern between cities is also consistent with pre-

vious studies [44]. Taken together, these results indicate that vgsc mutations in Taiwan are

dynamic temporally and geographically. Therefore, it is essential to adjust the vector control

strategy according to recent resistance information for local Ae. aegypti. However, the frequen-

cies of F1534C and SVTCD were similar across Tainan, Kaohsiung, and Pingtung. This result

is consistent with the understanding that F1534C is the most widespread resistance mutation

in Ae. aegypti globally, and no obvious fitness cost for this mutation has been observed in pre-

vious studies [45,46].

The fact that unmutated wild-type Ae. aegypti disappeared in 2018 is intriguing, especially

considering that there were only 13 indigenous dengue cases in that year compared to 43,419

and 15,492 cases in 2015 and 2014, respectively. We speculated that the absence of the unmu-

tated genotype is partially attributable to the prophylactic chemical-based vector control that

was conducted. To monitor the mosquito density effectively and prevent the occurrence of

dengue outbreak, new vector control campaigns, including active mosquito surveillance using

ovitraps, were introduced by local government authorities after 2016. Ovitraps were strategi-

cally set in a village, and the positive rate (ovitraps containing eggs of Aedes mosquito/total

number of ovitraps) and the total number of Aedes eggs in each village were calculated weekly

to guide environmental management decisions. If the positive rate exceeded 60% or the total

number of Aedes eggs surpassed 500 in two consecutive weeks, a prophylactic chemical-based

vector control strategy was considered to suppress the field population. Strategies aimed at

maintaining mosquito populations at lower densities are beneficial for disease control. The

numbers of indigenous dengue cases in southern Taiwan in 2016 (excluding the overwintering

cases of the 2015 outbreak) and 2017 were 9 and 3, respectively. However, prophylactic insecti-

cide spraying imposes selection pressures, accelerating the decline of unmutated wild-type

mosquitoes in the field.

We have not been able to collect the unmutated wild-type Ae. aegypti since 2021. We also

observed a shift toward higher frequencies of resistance-associated vgsc mutations. Previous

studies have observed elevated fitness cost in vgsc mutant Ae. aegypti [47–49]. Studies also dis-

played the regain of the susceptibility and a decline of vgsc mutant frequency in the absence of

insecticide exposure under laboratory conditions [47,50]. Whether the reversibility of
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resistance occurred in field Ae. aegypti in Taiwan needs long-term monitoring for clarification

in the future. However, the expansion of resistance-associated mutations is an obstacle to the

vector control program. Continued monitoring of the trend of vgsc mutations and evaluation

of the insecticide efficacy during chemical-based intervention would be beneficial for effective

vector control. We also suggest the authorities implement integrated pest management and

insecticide resistance management to decelerate the evolution of resistance [51].

The relationship between insecticide resistance and vector competence of mosquitoes has

also been investigated. Aedes aegypti with high frequencies of vgsc mutations V1016I and

F1534C exhibited a longer survival time and an increased rate of dengue virus 1 dissemination

[52]. Additionally, altered infection and dissemination rates were observed in Zika virus-

infected Ae. aegypti carrying V1016I and F1534C mutations [53]. Increased transmission effi-

ciency of the West Nile virus in Culex quinquefasciatus with either ace-1 mutations or overpro-

duction of carboxylesterase has been observed [54]. In the present study, there was a

significant shift in the major genotype of field Ae. Aegypti from a specific unmutated wild-type

to vgsc-mutated genotype. The PGTFD/SVTCD (30%) and PGTFD/PGTFD (23%) genotypes

now constitute more than half the field population. Because of the unclear impact of these

vgsc-mutated genotypes on Ae. aegypti, it is imperative to evaluate the association between

these genotypes and vector competence to develop more effective disease prevention and con-

trol measures.

Studies have shown that Wolbachia introductions can benefit both vector control and dis-

ease prevention through both suppression and replacement of Ae. aegypti populations [55–

57]. Berticat et al. reported that the Wolbachia density is higher in mosquitoes with certain

resistance genomes, possibly because of the fitness cost of resistance mutations [58]. Further-

more, assessing the resistance status of local Aedes populations is a crucial prerequisite for

releasing Wolbachia-carrying mosquitoes into the field [59,60]. In Taiwan, a Wolbachia-based

biocontrol method was evaluated, and a wAlbB-transinfected Ae. aegypti strain, wAlbB-Tw,

was established for lab-scale characterization and semi-field assessment [12]. In this study, we

provide current resistance information on natural populations of Ae. aegypti in Taiwan, which

is valuable for comprehensive evaluations in preparation for potential large-scale releases of

Wolbachia-carrying Ae. aegypti to prevent arboviral diseases.

In conclusion, insecticide resistance remains a significant hurdle in chemical-based mos-

quito control programs. In this long-term surveillance study, a point mutation (T1520I) and

three haplotypes, PGTFY (novel haplotype), SVICD, and PGTCD, associated with resistance

were identified in Ae. aegypti in Taiwan. Over the study period, mosquitoes carrying resistance

mutations expanded their territory and became fixed in Ae. aegypti in Taiwan. These findings

indicate the widespread dissemination of resistance, highlighting the challenges to mosquito

control in Taiwan and globally. In addition, our study revealed the dynamic evolution of vgsc
resistance mutations, providing valuable information for monitoring resistance in areas where

pyrethroids are used to control Ae. aegypti.
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