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Abstract

Innovative and easy-to-implement strategies are needed to improve the pathogenicity

assessment of rare germline missense variants. Somatic cancer driver mutations identified

through large-scale tumor sequencing studies often impact genes that are also associated

with rare Mendelian disorders. The use of cancer mutation data to aid in the interpretation of

germline missense variants, regardless of whether the gene is associated with a hereditary

cancer predisposition syndrome or a non-cancer-related developmental disorder, has not

been systematically assessed. We extracted putative cancer driver missense mutations

from the Cancer Hotspots database and annotated them as germline variants, including

presence/absence and classification in ClinVar. We trained two supervised learning models

(logistic regression and random forest) to predict variant classifications of germline mis-

sense variants in ClinVar using Cancer Hotspot data (training dataset). The performance of

each model was evaluated with an independent test dataset generated in part from search-

ing public and private genome-wide sequencing datasets from ~1.5 million individuals. Of

the 2,447 cancer mutations, 691 corresponding germline variants had been previously clas-

sified in ClinVar: 426 (61.6%) as likely pathogenic/pathogenic, 261 (37.8%) as uncertain sig-

nificance, and 4 (0.6%) as likely benign/benign. The odds ratio for a likely pathogenic/

pathogenic classification in ClinVar was 28.3 (95% confidence interval: 24.2–33.1, p <
0.001), compared with all other germline missense variants in the same 216 genes. Both
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supervised learning models showed high correlation with pathogenicity assessments in the

training dataset. There was high area under precision-recall curve values (0.847 and 0.829)

and area under the receiver-operating characteristic curve values (0.821 and 0.774) for

logistic regression and random forest models, respectively, when applied to the test dataset.

With the use of cancer and germline datasets and supervised learning techniques, our study

shows that cancer mutation data can be leveraged to improve the interpretation of germline

missense variation potentially causing rare Mendelian disorders.

Author summary

Our study introduces an approach to improve the interpretation of rare genetic variation,

specifically missense variants that can alter proteins and cause disease. We found that

published evidence from somatic cancer sequencing studies may be relevant to under-

standing the impact of the same variant in the context of rare inherited (Mendelian) disor-

ders. By using widely available datasets, we noted that many cancer driver mutations have

also been observed as rare germline variants associated with inherited disorders. This

intersection led us to employ machine learning techniques to assess how cancer mutation

data can predict the pathogenicity of germline variants. We trained machine learning

models and tested them on a separate dataset curated by searching public and private

genome-wide sequencing data from over a million individuals. Our models were able to

successfully identify pathogenic genetic changes. This study highlights that cancer muta-

tion data can enhance the interpretation of rare missense variants, aiding in the diagnosis

and understanding of rare diseases. Integrating this approach into current genetic classifi-

cation frameworks could be beneficial, and opens new avenues for leveraging existing can-

cer research to benefit broader genetic research and diagnostics for rare genetic

conditions.

Background

Genome-wide sequencing (GWS; including exome and genome sequencing) allows for com-

prehensive detection of coding sequence variants associated with a wide range of diseases,

spanning from rare Mendelian disorders to common cancers [1–3]. Our ability to filter and

prioritize variants associated with disease lags behind our ability to detect variation [2]. Rare

missense variants are collectively common in every human genome [3,4], and interpreting the

clinical impact of these variants is especially challenging. The American College of Medical

Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) devel-

oped a widely used system for assessing variants by scoring lines of evidence supporting vari-

ant pathogenicity or benign-ness [4]. Even after a decade of implementing and refining the

ACMG/AMP classification system, variants of uncertain significance (VUS) account for the

vast majority of missense variant entries in databases like ClinVar [5,6]. Despite commendable

efforts to generate functional data through multiplexed assays of variant effects (MAVEs) and

other variant-to-function maps, missense variant classification in clinical practice continues to

often rely on in silico evidence and heuristics like rarity and inheritance [7,8]. New scalable

and easy-to-implement strategies that produce evidence complementary to (and not derivative

of) existing in silico methods are needed to improve the pathogenicity assessment of rare germ-

line missense variants.
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learning models, the LRM and RFM pathogenicity

scores assigned to training and test dataset

variants, and prediction scores generated by other

in silico tools for the test dataset are all available in

S1 Data. All variants used in test and training

datasets are included in S1 Data. R scripts used to

train supervised learning models can be found in

Supplemental Appendices 1 and 2 in S3 Text.

Datasets from Genomics England, MSSNG,

Care4Rare, and GeneDx are not openly available

due to controlled access requirements. Research

on the de-identified patient data used in this

publication can be carried out in the Genomics

England Research Environment subject to a

collaborative agreement that adheres to patient led

governance. All interested readers will be able to

access the data in the same manner that the

authors accessed the data. For more information

about accessing the data, interested readers may

contact research-network@genomicsengland.co.

uk or access the relevant information on the

Genomics England website: https://www.

genomicsengland.co.uk/research. Data from

MSSNG can be accessed through an online

application process and additional details can be

found on the MSSNG website: https://research.

mss.ng/. Access to data from Care4Rare can be

requested by contacting genomics4rd@cheo.on.ca

for additional information. Access to de-identified

variant data used in this publication can be

requested by contacting support@genedx.com for

further details.
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Using available but underused genomic databases to identify additional evidence for patho-

genicity could aid in classifying rare missense variants [8–10]. Oncogenic mutations (also

known as cancer driver mutations) are genetic alterations that contribute to cancer initiation

and progression [11]. Tumour sequencing initiatives like The Cancer Genome Atlas (TCGA)

and International Cancer Genome Consortium (ICGC) have accelerated the identification of

oncogenic mutations [3,12]. Germline dysregulation of some proto-oncogenes and tumour

suppressor genes (TSGs) causes Mendelian disorders (“oncoprotein duality”) (Fig 1A)

[7,11,13,14]. For instance, the somatic HRASQ61K missense mutation implicated in various

types of cancers causes Costello syndrome (MIM #218040), a developmental disorder, when it

occurs as a germline variant (Fig 1B) [15,16]. These Mendelian disorders may or may not

include cancer as a major phenotypic feature [5,17–21]. Walsh and colleagues previously

explored the use of cancer mutational hotspots data for interpreting germline variants in genes

causing cancer predisposition syndromes [13]. However, when and to what extent cancer

driver mutations are pathogenic in germline contexts, for rare Mendelian disorders in general,

remains unknown.

This study investigates the concept of oncoprotein variant duality, and specifically the

degree to which germline variant classification could be informed by observations that the

equivalent tumour mutation drives cancer. The underlying logic of our approach is that cancer

driver mutations have functional consequences at the protein level, and those functional con-

sequences are expected to be present regardless of whether the variant is observed in a

somatic/mosaic/tissue-specific or constitutional/germline context. Through comparative anal-

ysis of Cancer Hotspots [22,23] (cancer mutations) and ClinVar [24] (restricting to germline

variants), we developed and tested supervised learning models for predicting germline mis-

sense variant pathogenicity using cancer mutation data.

Results

Association between cancer mutations from Cancer Hotspots and LP/P

classification as germline variants

Putative driver mutations from Cancer Hotspots were extracted, annotated, and filtered to

obtain a list of 2,447 missense mutations (“CH mutations”) distributed across 216 genes (Fig

1C). Of these 216 genes, 41% are proto-oncogenes, 36% are tumour suppressor genes, and

15% can have either role, as determined by the Cancer Gene Census (S1A Fig) [25]. We pre-

sumed that cancer driver missense mutations in proto-oncogenes and tumour suppressor

genes have gain of function and loss of function mechanisms, respectively. The Mendelian dis-

ease associations in the Online Mendelian Inheritance in Man (OMIM) database [26] for these

genes revealed that 20% are associated with hereditary cancer predisposition syndromes

(Table A in S2 Text). Among the 216 genes, 154 had known modes of inheritance for cancer

and an associated Mendelian disease reported in OMIM [26]. Of these 154 genes, 107 (69%)

had a Mendelian disease mechanism that was concordant with the cancer mechanism, 26

(17%) were discordant, and 21 (14%) were semi-concordant, meaning the gene could function

as both a proto-oncogene and a tumor suppressor, or had Mendelian diseases with variants

exhibiting both gain of function and loss of function mechanisms (Table B in S2 Text).

Although Cancer Hotspots infers cancer driver status of a mutation from probabilistic argu-

ments (statistical enrichment), we found that the functional impact was experimentally tested

for 990 of these mutations with the majority (943/990, 95%) confirmed to result in gain or loss

of protein function (S1 Text and S2 Fig).

Overall, 691 missense mutations in 84 genes from Cancer Hotspots had been classified with

respect to germline pathogenicity in ClinVar: 426 (61.6%) as LP/P, 261 (37.8%) as VUS, and 4
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Fig 1. Germline variant and somatic cancer mutation overlap. (A) The presence of either gain-of-function or loss-

of-function mutations in cancer driver genes can lead to cancer (left) or rare Mendelian disorders (right) in different

contexts. Most cancers result from somatic mutations that accumulate in a tissue-specific manner, whereas germline

mutations are present in all cells of the body and cause a type of rare Mendelian disorder (e.g., neurodevelopmental

disorder). (B) The HRASQ61K mutation is an example of a known cancer mutation that drives different types of cancers

that also causes Costello syndrome, a developmental disorder, when observed as a germline variant. (C) Workflow for

extracting cancer mutations from Cancer Hotspots. Recurrent cancer mutations were filtered to 2,447 missense

mutations. See main text for details. REVEL scores thresholds correspond to supporting evidence for pathogenicity

(PP3) and for benign-ness (BP4). Created with Lucidchart. Created with BioRender.

https://doi.org/10.1371/journal.pgen.1011540.g001
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(0.6%) as LB/B (Fig 1C). The median number of variants observed for each gene was 2 (inter-

quartile range = 4). As expected, all variants were rare (gnomAD allele frequency < 0.001)

except for three out of four that were classified as LB/B. Of these 84 genes, 50% are proto-onco-

genes, 37% are tumour suppressor genes, and 10% can have either role, as determined by the

Cancer Gene Census (S1B Fig). Germline variants overlapping with cancer (driver) mutations

may provide insights into their mechanisms, such as loss of function in tumor suppressor

genes or gain of function in proto-oncogenes and provide functional context for Mendelian

diseases. The disease associations in OMIM for these genes also revealed that 38% were heredi-

tary cancer predisposition syndromes (e.g., VHL associated with von Hippel-Lindau syn-

drome) and 62% were not known to include cancer as a predominant feature (e.g., FGFR3
associated with Achondroplasia) [26]. In both groups, most associated conditions had autoso-

mal dominant inheritance (88% and 77%, respectively). A significant difference was observed

in the proportion of LP/P, VUS, and LB/B variants between these two gene groups (256 LP/P,

231 VUS, 1 LB/B versus 170 LP/P, 30 VUS, 3 LB/B, respectively), with an LP/P classification

more likely for variants in genes not associated with hereditary cancer predisposition syn-

dromes (p< 2.2e-16) (Table A in S2 Text).

The odds ratio for these 691 variants having a LP/P classification in ClinVar was 107.6

(95% confidence interval (CI): 40.1–288.4, p< 0.0001), when comparing only LP/P and LB/B

classifications with all other germline missense variants with ClinVar entries in the 216 genes

(n = 5,474) (S3 Fig and Table C in S2 Text). Even if all VUS were considered as LB/B variants,

the odds ratio was 28.3 (95% CI: 24.2–33.1, p< 0.001) compared with all other variants in

ClinVar (n = 50,655) (S3 Fig and Table C in S2 Text). In an even more extreme scenario of

considering all VUS and CIP variants as LB/B, the odds ratio was 21.0 (95% CI: 18.2–24.2,

p< 0.001) (n = 53,593) (S3 Fig and Table C in S2 Text). If these variants were restricted to the

107 genes with Mendelian disease mechanism that was concordant with the cancer mecha-

nism, 337 cancer mutations would overlap with germline missense variants in ClinVar (238

LP/P, 98 VUS, 1 LB/B). The odds ratio for an LP/P classification in ClinVar would increase to

46.2 (95% confidence interval: 36.4–58.6, p< 0.001), compared to all other germline missense

variants in the same 107 genes. However, the odds ratio for LP/P classification for the “discor-

dant” and “semi-concordant” mechanisms was still 12.5 (95% confidence interval: 9.9–15.7,

p< 0.001). The most conservatively estimated positive likelihood ratio of 18.3 still exceeded

“moderate evidence” thresholds described previously (i.e., 4.33 and 5.79) (S1 Text and Table D

in S2 Text) [27,28]. The potential impact of an additional moderate evidence criterion for

pathogenicity applied to the 261 CH mutations that overlap with germline VUS in ClinVar is

shown in S4 Fig, revealing 66 (27%) of the VUS could be hypothetically upgraded to LP.

For the remaining CH mutations that did not overlap with germline variants in ClinVar

(n = 1,756), we explored the degree to which in silico scores used for germline variant adjudica-

tion supported “pathogenicity”. We grouped these CH mutations by REVEL scores using the

ClinGen-proposed PP3/BP4 score thresholds (Fig 1C) [28]. Over half (58.8%; 1,032) had

REVEL scores indicating at least PP3-level evidence (i.e., evidence in favour of pathogenicity),

while only 9.6% (168) had at least BP4-level evidence (Figs 1C and S5A). Findings were similar

using AlphaMissense (S5B Fig) [29]. For these CH mutations that are absent from ClinVar,

the in silico score profiles resemble the ClinVar LP/P germline missense variants in the same

genes more than the set of LB/B variants or VUS (S5 Fig).

Through collaborations with GEL, MSSNG, C4R, and GeneDx (see Methods), we searched

GWS datasets from approximately 1.5 million participants (probands and affected or unaf-

fected family members) and identified additional instances of germline variants overlapping

with CH mutations (Table E in S2 Text). Across the four datasets, we found 302 unique over-

lapping germline variants. Of these, 194 were already classified and present in ClinVar (140
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LP/P, 1 LB/B, 53 VUS) and 108 were absent in ClinVar. Out of these 108 variants, 43 had been

previously assessed and classified in accordance with ACMG/AMP variant interpretation

guidelines by our collaborators. Among these variants, 30 were classified as LP/P, 12 as VUS,

and 1 conflicting (LP and VUS by different groups). The classifications of the remaining 65

variants (79% found in probands) were uncertain due to limited phenotype information.

Cancer Hotspots database includes most highly recurrent cancer mutations

in COSMIC

We retrieved 231,377 somatic missense mutations by filtering the Cancer Census Genes data

from COSMIC (S6 Fig). With the results of the tumour sample count analysis using overlap-

ping CH mutations and ClinVar germline variants (S1 Text and S7 Fig), we stringently filtered

for COSMIC mutations that were observed in >25 tumour samples and absent from Cancer

Hotspots, resulting in 125 missense mutations across 63 genes (S6 Fig). This approach, using

Cancer Hotspots as a benchmark, aimed to identify recurrent (putative) driver mutations in

COSMIC, a more heterogeneous database with both driver and passenger mutations. Of these

genes, 31 are new additions to the list of genes from Cancer Hotspots and 11 are associated

with rare Mendelian diseases as reported in OMIM [26]. However, only 12 of these mutations

overlapped with germline variants in ClinVar. Among them, 2 (16.7%) were LP/P, 8 (66.7%)

VUS/CIP and 2 (16.7%) were LB/B (S6 Fig). Only 2 of these 12 overlapping variants were

found in the “new” 31 cancer genes discovered through COSMIC. While we identified 125

additional missense mutations in COSMIC, only a small fraction of these overlapped with

germline variants in ClinVar. Thus, despite being smaller and less frequently updated than

COSMIC, Cancer Hotspots effectively captures most putative cancer driver missense muta-

tions relevant to our research question.

Robust predicted probabilities of pathogenicity generated by supervised

learning models

We used the training dataset to develop two types of supervised learning models with the goal

to accurately predict the pathogenicity of germline variants in our test dataset. The training

dataset fit the LRM with a McFadden’s pseudo-R2 value of 0.50 (i.e., higher than the 0.20–0.40

range that indicates a good model fit [30] and generated predicted probabilities of pathogenic-

ity for all variants in the training dataset. The predicted probabilities were significantly higher

for all germline LP/P variants compared with LB/B/VUS variants (U = 1655893, nLB/B/VUS =

11,644, nLP/P = 2,095, p< 0.0001) and for germline variants that are present in the Cancer Hot-

spots database compared with those that are absent (U = 32029, nAbsent = 13,316, nPresent =

423, p< 0.0001) (Fig 2A and 2B). We trained a second supervised learning model, an RFM,

since it is gene-independent and can be broadly applied to variants beyond the 66 gene catego-

ries in the LRM. The RFM achieved an out-of-bag (OOB) error estimate of 10.8% for predict-

ing outcomes. The RFM generated probability scores of pathogenicity and, similar to the

LRM, these were significantly higher for all germline LP/P variants compared with LB/B/VUS

variants, as well as for germline variants that overlap with CH mutations compared to those

without overlap (U = 6109589, nLB/B/VUS = 11,644, nLP/P = 2,095, p< 0.0001) (Fig 2C and 2D).

To gain a comprehensive understanding of the overall impact of each independent variable on

the data, exploratory analyses were conducted on the ClinVar dataset (before filtering) (S1

Text and S7–S10 Figs). The analyses show variability in the number of variants across genes

(S8 Fig), distinct tumour sample count thresholds between LP/P and LB/B/VUS variants (S7

Fig) and indicated that the model fit was not primarily driven by the conservation scores (S9

and S10 Figs).
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Fig 2. Fit of training dataset using supervised learning models. (A) Plot of predicted probabilities of pathogenicity

for all likely benign/benign/variant of uncertain significance (LB/B/VUS) and likely pathogenic/pathogenic (LP/P) in

the training dataset assigned by the logistic regression model. Mann-Whitney U test: U = 1655893, nLB/B/VUS = 11,644,

nLP/P = 2,095. (B) Comparison of predicted probabilities for germline variants with absence or presence of overlap with

cancer mutations. Mann-Whitney U test: U = 32029, nAbsent = 13,316, nPresent = 423. (C) Plot of probability scores of
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RFM outperformed LRM in correctly predicting pathogenicity of germline

missense variants overlapping with cancer mutations

Using the test dataset (n = 335), distinct from training dataset variants, we calculated the area

under precision-recall curve (AUPRC) values for the LRM and RFM as 0.847 and 0.829,

respectively (Fig 3A). We also calculated the area under the receiver-operating characteristic

curve (AUROC) as 0.821 for the LRM and 0.774 for the RFM (S11A Fig). The higher AUROC

for the LRM indicates better ability to discriminate between LP/P and LB/B/VUS variants

compared to the RFM. Precision-recall curves guided the selection of optimal classification

thresholds, with an emphasis on minimizing false positives while maximizing AUPRCs. The

LRM had an optimal threshold of 0.74 (F1 score = 0.690) (S12A Fig). The RFM had an optimal

threshold of 0.39 (F1 score = 0.783) (S12B Fig), with the higher F1 score compared with the

LRM indicating superior performance in correctly predicting the pathogenicity of test dataset

variants.

We compared the performance of the LRM and RFM pathogenicity scores against the

scores of other in silico prediction tools by plotting precision-recall curves and comparing the

calculated AUPRCs (S13A Fig). The LRM and RFM outperformed the first-generation tools

[31] SIFT and PolyPhen-2, which had AUPRCs of 0.821 and 0.827, respectively (S13B Fig).

Second- (REVEL, CADD, VARITY, VEST4) and third-generation (AlphaMissense, Prima-

teAI, MutPred2) [31] tools demonstrated a stronger performance in classifying the test dataset

variants, with AUPRCs ranging from 0.881 to 0.963 (S13C and S13D Fig). REVEL, VARITY,

and AlphaMissense were the top-performing tools, respectively. Given the smaller size of the

test dataset compared with the training dataset, cross-validation techniques were also used to

confirm the LRM and RFM’s reliability in estimating performance (Figs 3B and S11B). The

pathogenicity for LB/B/VUS and LP/P in the training dataset assigned by the random forest model. Mann-Whitney U

test: U = 6109589, nLB/B/VUS = 11,644, nLP/P = 2,095. (D) Comparison of probability scores for germline variants with

absence or presence of overlap with cancer mutations. Mann-Whitney U test: U = 12913, nAbsent = 13,316, nPresent =

423. Created with GraphPad Prism.

https://doi.org/10.1371/journal.pgen.1011540.g002

Fig 3. Evaluation of supervised learning models. Precision-recall curve comparing the performance of the logistic regression model (blue) and the

random forest model (purple) using the (A) test dataset and (B) cross-validation set. The models’ performance was evaluated using k-fold cross-

validation, with k = 8 for logistic regression and k = 10 for random forest. AUC, area under the curve.

https://doi.org/10.1371/journal.pgen.1011540.g003
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RFM consistently outperformed the LRM in terms of AUPRC, exhibiting a higher value than

was observed with the test dataset alone (0.940 versus 0.738 AUC). Although the LRM had a

higher AUROC (0.928) compared to the RFM (0.739), AUROC reflects overall discriminative

ability across all thresholds, whereas AUPRC and F1 scores are more relevant for assessing per-

formance in detecting positive cases. We used the RFM and the optimal threshold value of

0.39 to predict pathogenicity of the 65 variants with unknown classification identified through

our collaborations with MSSNG, GEL, C4R, and GeneDx. Of these 65 variants, the RFM pre-

dicted 92% to be LP/P and 8% as LB/B. The average probability score of pathogenicity for the

predicted LP/P variants was 0.93 and 80% were in probands.

Discussion

The increasing use of GWS in clinical practice has underscored the need for novel methods to

interpret germline missense variation [2,5,32] We explored the generalizability of an under-

studied line of evidence that considers overlap with (presumed driver) cancer mutations.

Using 2,447 cancer missense mutations from the Cancer Hotspots database, we identified sig-

nificant enrichment for LP/P germline variants causing rare Mendelian disorders, regardless

of cancer being or not being a major phenotype of the disorder. The results from our models

support and extend these findings, by successfully predicting the pathogenicity of germline

missense variants using supervised learning models trained with CH mutation data. Our find-

ings indicate that statistically significant recurrent cancer mutation data can be leveraged to

improve the interpretation of germline missense variation potentially causing rare Mendelian

disorders.

Walsh and colleagues first proposed modifying the existing PM1 pathogenic evidence crite-

rion to apply to germline variants in cancer predisposition genes that overlap with cancer

mutations from Cancer Hotspots, [13] provided the variant was not already in a germline hot-

spot [4]. The results of our study support and extend this concept. A majority (62%) of genes

considered in our study are not known to be associated with hereditary/germline cancer pre-

disposition in a Mendelian disease context. We emphasize that this line of evidence is not codi-

fied in existing interpretation frameworks, including ACMG, ClinGen, and the Association

for Clinical Genomic Science (ACGS), and is distinct from other criteria specific to missense

variants, such as germline mutational hotspots (PM1) and instances where a previous patho-

genic variant has been previously observed (PS1/PM5). This evidence may be most relevant in

scenarios involving the interpretation of (rare) missense VUS. Cancer mutations may be

embryonic lethal as germline variants [11]; this biological constraint will limit the extent of

overlap we observe between cancer mutations and germline variants.

The stand-alone probability scores of pathogenicity from our supervised learning models

were not superior to other widely used in silico prediction tools in classifying germline mis-

sense variants. This was an expected result, since existing in silico tools were likely used a priori
to inform classifications for these variants. Regardless, this comparison underscores our pro-

posal that the LRM and RFM models would be used in addition to, rather than instead of,

existing in silico tools for variant classification. Since our models are the first to be trained on

somatic cancer mutation data, they demonstrate proof-of-concept, leverage orthogonal lines

of evidence, and warrant consideration for use in aggregator tools. The supervised learning

models in our study can be implemented using the training dataset, and subsequently applied

to variants of interest prospectively to obtain probability scores of pathogenicity. While the

LRM is restricted to the 66 genes constituting our training dataset, the RFM is not limited to

these genes. Through our collaborations with MSSNG, C4R, GEL, and GeneDx, we identified

an additional 65 individuals with suspected rare diseases and a germline variant that
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overlapped with a Cancer Hotspot mutation. Many of these cases remain “unsolved”, and the

inclusion of this criterion may offer valuable insights for variant interpretation.

This study focused on missense variants because of the existence of a cancer driver missense

mutation database and because of the large number of missense variants in ClinVar. We

explored the potential application of using cancer missense mutations to inform germline vari-

ant interpretation to non-coding variants by leveraging mutation data from COSMIC and

other putative cancer driver databases (S1 Text) but this effort is hindered by the limited avail-

ability of non-coding germline variants clinically classified in public databases.

This study has several additional limitations. It primarily focused on a subset of cancer

mutations from Cancer Hotspots, last updated in 2017. However, only a small fraction of the

additional highly recurrent missense mutations present in COSMIC in 2024 overlapped with

germline variants in ClinVar, suggesting that Cancer Hotspots remains a near comprehensive

list of statistically recurring cancer (driver) mutations. We did not assess the oncogenicity of

each cancer mutation in Cancer Hotspots [33]. There are 41 tumour types represented in Can-

cer Hotspots, with the majority being solid tumours in adults [23]. The inclusion of more

tumour tissue types over time will likely result in the identification of additional driver muta-

tions. This study used ClinVar as the set of germline missense variants, and while filtering

steps were applied, we acknowledge that the quality of ClinVar entries is not equal. Addition-

ally, it is possible that overlap with cancer mutations contributed to the clinical interpretation

of some germline variants in ClinVar, despite such evidence not yet being codified in existing

classification guidelines [4,34,35]. Of note, however, is that the term “Cancer Hotspots data-

base” was only mentioned 3 times in the context of missense SNVs in the ClinVar database of

3,614,935 submitted records (search date: December 2023). In the training dataset, there was

variability in the LRM’s independent “gene” variable, leading to inconsistent performance

across genes. Future work will focus on conducting gene-level model evaluations once larger

datasets become available, providing more statistical power to assess gene-specific effects [36].

None of the in silico prediction tools used in this study address variant pathomechanism (i.e.,

gain of function, loss of function). We recognize the potential relevance of this consideration,

particularly for germline missense variants with a gain of function mechanism, where in silico
tools like REVEL demonstrate worse performance [37]. The absence of this consideration may

limit the applicability of the findings in cases where different disease mechanisms are at play

between cancer mutations and germline variants (e.g., variants in MYD88, where germline

variants can lead to immunodeficiency through loss of function [38,39], but acts as a proto-

oncogene in cancer [40]). Even when the germline phenotype is cancer-related there may be

discrepancies in mechanism (e.g., TERT loss of function in the germline versus increased

expression somatically in certain tumours) [41]. There remains a potential for circularity intro-

duced by the inclusion of VUS with low REVEL scores in the training dataset. We included

continuous independent variables (conservation scores) in the LRM and RFM to improve

model fit and convergence. We recognize the potential circularity this may cause with use of

PP3 criterion, as existing in silico tools may already incorporate evolutionary sequence conser-

vation. To address the resulting concern that our models are reliant on or derivative to existing

in silico tools, however, we generated models without these conservation scores and found

acceptable performance (S14 Fig). Further increasing the size of the test dataset was not possi-

ble; to compensate, cross-validation was used to evaluate model performance. While steps

were taken to minimize bias during model training, factors such as class imbalance and over-

fitting of the data can lead to inflated values such as AUPRCs. Last, while we identified addi-

tional germline variants that overlap with CH mutations in private genomic datasets, we were

not able to formally reclassify variants and return new information back to those individuals.
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However, the identified variants in the GEL Research Environment were shared with GEL for

further review.

Our results demonstrate a modeling approach that uses overlapping cancer mutations to

facilitate the interpretation of pathogenic germline missense variants. The presence of a variant

in Cancer Hotspots suggests that additional published evidence from somatic cancer studies

exists that may be relevant to understanding the impact of the same variant in a germline con-

text. There are clear definitions of somatic mutational hotspots [33], that can be applied to

future published cancer datasets, enabling better applications of our tool. As we navigate the

complexities of variant interpretation, leveraging the growing wealth of genomic data in both

cancer and germline contexts will contribute to refining our understanding and improving

diagnostic capabilities in the field of rare diseases.

Methods

Ethics statement

This secondary use data study was approved by the Research Ethics Board at the Hospital for

Sick Children. The de-identified data from GeneDx was assessed in accordance with an IRB-

approved protocol (WIRB #20171030).

Extracting cancer mutation data from cancer Hotspots

We obtained cancer mutation data for 3,122 single nucleotide variants (SNVs) from the Can-

cer Hotspots [22,23] database (www.cancerhotspots.org), representing a set of true cancer

driver mutations. This database consists of mutational hotspots identified in large scale cancer

genomics data, defined as single amino acid positions in protein-coding genes that are

mutated more frequently than would be expected in the absence of selection [13,23]. This

method assigns a statistical significance to the recurrence of mutation at a given amino acid

and is corrected for background mutational rate of the position, gene, and sample both within

and across cancer types in the affected cohort [22,23]. Somatic mutational hotspots are there-

fore not common germline benign variants in a population [13,22,23]. A Python script was

developed to extract genomic coordinates in GRCh37, reference and alternate alleles, and

tumour sample counts for each mutation. Only missense mutations (n = 2,576) were used for

our analyses. We annotated the cancer missense mutations using ANNOVAR and a custom

pipeline [2] developed by The Centre for Applied Genomics (Toronto, Canada). ClinVar

annotations (date accessed: Jan 2022) were used to identify clinical classifications of those

germline variants that are also cancer mutations in Cancer Hotspots. We conservatively

excluded any mutations with corresponding germline variants with “conflicting interpreta-

tions of pathogenicity” (CIP) or considered a “risk factor” for disease (n = 129). The remaining

2,447 recurrent missense mutations (n = 216 total genes) from Cancer Hotspots are hereafter

referred to as the “CH mutations”.

Comparing cancer mutations with germline variants

Separately, we extracted from ClinVar (date accessed: Jan 2022) all missense variants in the

216 genes from the list of CH mutations (n = 51,346 SNVs) (S3 Fig). We selected missense var-

iants with a “germline” allele origin, i.e., excluding those labeled as “somatic” or “unknown”.

These variants were then grouped into three categories based on their ACMG classification in

ClinVar: “likely pathogenic” or “pathogenic” (LP/P) (n = 3,149), “likely benign” or “benign”

(LB/B) (n = 2,755), and “variant of uncertain significance” (VUS) (n = 45,442). We annotated

these variants using ANNOVAR to include REVEL [42], phyloP [43] (20way mammalian and
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7way vertebrate), and phastCons [44] (20way mammalian and 7way vertebrate) scores. For

each variant, we noted the presence or absence of an overlap with a CH mutation. These vari-

ants are hereafter referred to as the “ClinVar dataset” and were used to calculate the odds ratios

of a germline variant that overlaps with a CH mutation having an LP/P classification. This

data was also used to apply mathematical framework described by Tavtigian et al. to define

ACMG/AMP evidence strength for the use of cancer mutational hotspot data for germline var-

iant interpretation [27].

Identifying overlap with cancer mutations in other genomic databases

We queried the CH mutations in four controlled-access GWS databases, in collaboration with

MSSNG [45], Genomics England [46] (GEL), Care4Rare [47] (C4R), and GeneDx [9,48,49], to

identify matching germline missense variants (at the nucleotide level).

The MSSNG database represents a cohort of autistic individuals / individuals with autism

and their family members. All germline missense variants in this database were extracted and

converted to GRCh37 using LiftOver. Germline variants in MSSNG, and CH mutations, were

imported to R version 4.1.0 (R Foundation for Statistical Computing) to identify overlapping

variants by genomic coordinate, reference allele, and alternate allele. The GEL, C4R, and Gen-

eDx databases represent phenotypically heterogeneous cohorts of individuals with suspected

rare genetic diseases and their family members. In the GEL Research Environment, a bash

shell script was used to extract variants from variant call format (VCF) files by genomic coordi-

nates. The CH mutations were queried against germline variants in the VCF files of all partici-

pants in the Rare Disease program of GEL using this script. The participant IDs for each CH

mutation that overlapped with a germline variant in GEL were used to retrieve phenotype data

along with their classifications using the Labkey platform. In collaboration with C4R and Gen-

eDx, the CH mutations were sent to the respective study teams and queried within their data-

bases. Results of overlapping variants and participant IDs were returned. Variant classification

and phenotype data from C4R was explored by searching the Genomics4RareDisease (G4RD)

database with participant IDs [50].

Identifying cancer mutations from other cancer databases and comparing

with germline variants

We downloaded approximately 1.1 million coding mutations from the COSMIC database [51]

listed in the Cancer Gene Census [25] and filtered for confirmed somatic missense mutations

(n = 231, 477). To align with the stringent criteria used in the Cancer Hotspots database, we further

filtered based on the presence of mutations in COSMIC across a defined number of tumor sam-

ples. This step ensured the retention of only those mutations observed across a substantial number

of tumors, indicative of potential driver mutations as defined in Cancer Hotspots. For this filtering

process, we used tumor sample counts of CH mutations that overlap with germline variants in

ClinVar (S1 Text). Plotting these values by ClinVar classification groups (LP/P and LB/B/VUS), we

generated receiver operating characteristic (ROC) curves to determine the optimal tumor sample

count cut-off for distinguishing between LP/P and LB/B/VUS variants. The identified optimal

count was then used to filter the COSMIC mutations. We then conducted further filtered to iden-

tify “new” mutations in COSMIC, i.e., those absent in Cancer Hotspots, and compared these muta-

tions with germline variants in ClinVar, to identify additional overlapping variants.

Training dataset used for supervised learning models

We developed supervised learning models to predict pathogenicity of unclassified germline

variants, based on a set of variants with known classifications in ClinVar. To construct the
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training variant set, we used the ClinVar dataset including n = 51,346 SNVs in the 216 genes

from the list of CH mutations. Different nucleotide variants resulting in the same amino acid

change were grouped together. VUS with REVEL scores >0.29 were excluded from the train-

ing dataset. This cut-off is the upper-most bound for BP4 evidence level for REVEL scores

[28]. The remaining VUS were included and treated as LB/B variants (Fig 4; see below regard-

ing weighting), to address class imbalance arising from fewer LB/B versus LP/P variants in the

dataset. Variants were then restricted to a set of 66 genes, determined by the updated list of

Fig 4. Training dataset for supervised learning models. The training dataset is comprised of 13,881 germline missense variants from ClinVar (green),

including 691 overlapping with cancer mutations (blue). Different single nucleotide changes causing the same amino acid change were grouped together

accounting for the difference in the overlap shown in Fig 1. Variants of uncertain significance (VUS) with REVEL scores� 0.290 were included in the

dataset and treated as likely benign/benign (LB/B) variants (see text for justification). LP/P, Likely pathogenic/Pathogenic.

https://doi.org/10.1371/journal.pgen.1011540.g004
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428 CH mutations overlapping with germline variants (Fig 4). The resulting training dataset

comprises 13,881 variants.

Developing supervised learning models

Two types of supervised learning models were fit to the training dataset in R: a logistic regres-

sion model (LRM) and a random forest model (RFM). Pathogenicity status (LB/B, LP/P) was

used as the dependent variable and the following were used as independent variables: 1) over-

lap with a cancer missense mutation from Cancer Hotspots (2 categories: present = 1,

absent = 0), 2) the protein-coding gene associated with a variant (with 66 categories represent-

ing each gene), 3) the number of tumour samples with a specific amino acid change at a resi-

due position from Cancer Hotspots, 4) the number of tumour samples with a mutated residue

from Cancer Hotspots, 5 & 6) the phyloP conservation scores [43] (20way mammalian and

7way vertebrate), and 7 & 8) the phastCons conservation scores [44] (20way mammalian and

7way vertebrate).

The ’stats’ R package was used to fit the LRM. REVEL scores for the included VUS (all< =

0.29) were used as prior weights (weight = 1—REVEL score) compared to true LB/B variants

(weight = 1). The predicted probabilities and standard performance metrics including Akaike

Information Criterion (AIC) and McFadden’s pseudo-R2 were used to assess the fit of the

model. The same training dataset was used for the RFM using the ’randomForest’ package in

R. However, the gene variable was excluded due to a categorical variable limit of 32 levels.

Hyperparameters for the RFM, including the number of classification trees (350) and the num-

ber of independent variables randomly selected for each split (4), were selected based on pla-

teau of the out-of-bag (OOB) error rate using the training dataset.

Evaluating supervised learning models with test dataset

Both LRM and RFM performance was evaluated using a test dataset of 335 germline missense

variants that were absent from the training dataset. In the test dataset, 53.4% were LP/P

(n = 179) and 46.6% are LB/B/VUS (n = 156), with 19.4% (n = 65) variants present in Cancer

Hotspots and 80.6% (n = 270) variants absent. These variants were obtained from new ClinVar

submissions from Feb 2022 to Aug 2022 (n = 185), the Leiden Open Variation Database

(LOVD) [52] (n = 35), G4RD database [50] (n = 1), GEL database [53] (n = 93), SickKids Can-

cer Sequencing (KiCS) dataset [54] (n = 2), and from manual review of literature pertaining to

the genes of interest that was published from 2021–2022 (n = 19). The test dataset variants

impact genes that are represented in the training dataset. We used the predicted classifications

of each model across all possible classification thresholds to plot precision-recall curves and

calculate the area under the curve (AUPRC). The highest performing model and optimal

threshold were used to assess the pathogenicity of an additional set of variants with unknown

classification identified in other genomic databases through collaborations. The variants in the

test dataset were annotated using scores from other in silico prediction tools, including SIFT

[55], PolyPhen-2 [56], REVEL [42], CADD [57], VARITY [58], AlphaMissense [29], Prima-

teAI [10], VEST4 [59], and MutPred2 [60]. Some tools were selected because they are com-

monly used for variant interpretation in the diagnostic laboratory, are referenced in ACMG/

AMP guidelines [4], and/or are incorporated into annotation tools like ANNOVAR. The

remaining tools (e.g., AlphaMissense) were selected because of their strong potential to be

incorporated into clinical interpretation workflows in the future. We also plotted precision-

recall curves using these scores to calculate the AUPRCs and compared them with the LRM

and RFM.
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Evaluating supervised learning models with cross-validation

Cross-validation was conducted using the ’caret’ package in R, with the ’createFolds’ function

employed to generate the folds for model training and evaluation. The training dataset was

divided into k folds, where the model was trained on k-1 fold and tested on the remaining one.

The training dataset was divided into 8 and 10 folds for the LRM and RFM, respectively. The

F1 score and AUPRC, using a threshold of 0.5, was calculated for each fold, and averaged over

the k folds to obtain an estimate of each model’s generalization ability. Cross-validation for the

RFM used the same hyperparameters (350 classification trees and 4 independent variables per

split) as the RFM trained without cross-validation for each fold.

Statistical methods

Standard descriptive statistics, odds ratios, and Mann-Whitney U tests were performed using

R and GraphPad Prism 9 with two-tailed statistical significance set at p< 0.05.
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S1 Fig. Bar graph showing the distribution of cancer gene types, categorized as proto-onco-

genes, tumor suppressor genes (TSGs), dual-function (both proto-oncogene and TSG) or

not yet defined by the Cancer Gene Census. (A) Distribution for the 216 cancer genes

included in the Cancer Hotspots database. (B) Distribution for 84 cancer genes with mutations

that overlap with germline variants in ClinVar.

(TIF)

S2 Fig. Functional impact of missense cancer mutations from Cancer Hotspots determined

using the Clinical Knowledgebase (CKB) [1] and germline variant classifications in Clin-

Var. GoF, gain-of-function; LoF loss-of-function.

(TIF)

S3 Fig. Workflow for extracting germline missense variants from ClinVar found in the list

of 216 genes from Cancer Hotspots. This illustrates the process of filtering the variants to cre-

ate the “ClinVar dataset” used in the odd ratio calculations and as the training dataset for

supervised learning models.

(TIF)

S4 Fig. Hypothetical impact of applying an additional pathogenic moderate (PM) evi-

dence-level criterion to the interpretation of germline variants of uncertain significance

(VUS) in ClinVar that overlap with cancer mutations from Cancer Hotspots. Each row rep-

resents the existing evidence codes for VUS, with the addition of one PM criterion, to form a

combining criterion for the classification of “likely pathogenic” according to the ACMG/AMP

guidelines. Among the 261 VUS, 12 were recently reclassified to LP/P (n = 11) or LB (n = 1) in

PLOS GENETICS Predicting germline variant pathogenicity using cancer mutations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011540 January 6, 2025 15 / 21

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011540.s008
https://doi.org/10.1371/journal.pgen.1011540


ClinVar. With the remaining 249, an additional PM evidence code would be enough to poten-

tially upgrade 66 VUS (26.5%) to LP. Figure was created with BioRender and adapted from

Brnich et al., (2018) [2].

(TIF)

S5 Fig. Distribution of (A) REVEL and (B) AlphaMissense scores for CH cancer mutations

(n = 2,447) and variants in the ClinVar dataset (n = 51,346). Variants are categorized by the

presence of an overlap with cancer mutations from Cancer Hotspots and absence from Cancer

Hotspots. The figure includes a category for cancer mutations from Cancer Hotspots not

reported in ClinVar (ClinVar absent). The median scores for each group are indicated on the

plot. Score thresholds corresponding to various PP3 and BP4 evidence strengths are displayed

by labels above the dotted lines.

(TIF)

S6 Fig. Workflow for obtaining confirmed somatic missense mutations from the COSMIC

Cancer Gene Census coding mutations. This figure illustrates the process of filtering COS-

MIC mutations using a stringent tumor sample count filter to identify additional cancer muta-

tions that are absent from Cancer Hotspots.

(TIF)

S7 Fig. Number of tumor samples with cancer mutations from Cancer Hotspots and their

germline variant classifications. (A) Tumor sample count for LP/P variants compared to LB/

B/VUS variants, with an ROC curve that evaluates the discriminatory power between the two

groups based on tumor sample counts. LP/P variants exhibited significantly higher tumor sam-

ple counts than LB/B/VUS variants (p< 0.0001). The ROC curve yielded an area under the

curve (AUC) value of 0.614, indicating moderate discriminatory ability. (B) Tumor sample

counts for the same analysis as (A) but restricted to sample counts >25. his subset analysis

revealed higher discriminatory median counts (54 and 32.5 samples for LP/P and LB/B/VUS

groups, respectively) and achieved the largest AUC of 0.7640. Mann-Whitney U test was per-

formed to assess the statistical difference between LP/P and LB/B/VUS.

(TIF)

S8 Fig. Proportion of cancer missense mutations from Cancer Hotspots reported in Clin-

Var for a subset of genes for TP53, PIK3CA, PTEN, SMAD4, VHL, PTPN11, RIT1, and

FGFR3. Mutations that are present in ClinVar are indicated in blue, absent are indicated in

purple. LP/P variants (pink) and LB/B/VUS (orange) variants among those present in ClinVar

are also shown.

(TIF)

S9 Fig. Distribution of conservation scores for germline missense variants annotated with

(A) phastCons and (B) phyloP across vertebrate and mammalian species. Variants are cate-

gorized by the presence of an overlap with cancer mutations from Cancer Hotspots and

absence from Cancer Hotspots. The figure includes a category for cancer mutations from Can-

cer Hotspots not reported in ClinVar (ClinVar absent). The median scores for each group are

indicated on the plot. Mann-Whitney U test was performed to assess the differences between

Cancer Hotspots absent and present variants, and the probability of superiority (PS) was calcu-

lated to determine effect size.

(TIF)

S10 Fig. The (A) logistic regression model (LRM) and (B) random forest model (RFM)

with only conservation scores as independent variables (orange, yellow) show decreased

model fitting metrics on training dataset compared to models that include conservation
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scores (red, blue). Predicted probabilities/probability scores were plotted for LP/P and LB/B/

VUS variants in the training dataset for each model and compared. Mann-Whitney U tests

were conducted to compare the groups in original model (red/blue) and models excluding

conservation score (orange/yellow). Model performance was assessed using McFadden’s

pseudo-R2 and Akaike Information Criterion (AIC) for LRM, and out-of-bag (OOB) error for

RFM.

(TIF)

S11 Fig. Receiver-operating characteristic (ROC) curve comparing the performance of the

logistic regression model (blue) and the random forest model (purple) using the (A) test

dataset and (B) cross-validation set. The models’ performance was evaluated using k-fold

cross-validation, with k = 8 for logistic regression and k = 10 for random forest. AUC, area

under the curve.

(TIF)

S12 Fig. Accuracy of supervised learning models with test dataset using optimal thresh-

olds. (A) Confusion matrix showing the correctly classified variants (green) and incorrectly

classified variants (red) by the logistic regression model using an optimal threshold of 0.74. (B)

Confusion matrix showing variant classification by the random forest model using an optimal

threshold of 0.39. AUC, area under the curve; LB/B, Likely benign/Benign; LP/P, Likely patho-

genic/Pathogenic; VUS, variant of uncertain significance. Created with R and BioRender.

(TIF)

S13 Fig. Comparisons of pathogenicity scores for LRM, RFM, and other known in silico
prediction tools and performance on predicting pathogenicity on test dataset (n = 339).

(A) Bar graph showing the area under the precision-recall curve (AUPRC) for each tool,

including logistic regression model (LRM), random forest model (RFM), SIFT, PolyPhen-2,

REVEL, CADD, VARITY, AlphaMissense, PrimateAI, VEST4, and MutPred2. (B) Precision-

recall curves for first-generation tools (SIFT and PolyPhen-2) compared with LRM and RFM.

(C) Precision-recall curves for second-generation tools (REVEL, CADD, VARITY, VEST4)

compared with LRM and RFM. (D) Precision-recall curves for third-generation tools (Alpha-

Missense,PrimateAI, and MutPred2) compared with LRM and RFM.

(TIF)

S14 Fig. (A) Precision-recall curves and (B) receiver-operating characteristic curves com-

paring the performance of logistic regression models and random forest models with and

without the inclusion of conservation scores. Evaluation using the test dataset shows that

models incorporating conservation scores achieve higher area under the curve (AUC) values,

demonstrating improved performance compared to models that exclude these scores.

(TIF)
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46. Turro E, Astle WJ, Megy K, Gräf S, Greene D, Shamardina O, et al. Whole-genome sequencing of

patients with rare diseases in a national health system. Nature. 2020; 583: 96–102. https://doi.org/10.

1038/s41586-020-2434-2 PMID: 32581362

47. Boycott KM, Hartley T, Kernohan KD, Dyment DA, Howley H, Innes AM, et al. Care4Rare Canada: Out-

comes from a decade of network science for rare disease gene discovery. Am J Hum Genet. 2022; 109:

1947–1959. https://doi.org/10.1016/j.ajhg.2022.10.002 PMID: 36332610

48. Rehm HL, Alaimo JT, Aradhya S, Bayrak-Toydemir P, Best H, Brandon R, et al. The landscape of

reported VUS in multi-gene panel and genomic testing: Time for a change. Genet Med. 2023; 25:

100947. https://doi.org/10.1016/j.gim.2023.100947 PMID: 37534744

49. Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Evidence for 28 genetic disor-

ders discovered by combining healthcare and research data. Nature. 2020; 586: 757–762. https://doi.

org/10.1038/s41586-020-2832-5 PMID: 33057194

50. Driver HG, Hartley T, Price EM, Turinsky AL, Buske OJ, Osmond M, et al. Genomics4RD: An integrated

platform to share Canadian deep-phenotype and multiomic data for international rare disease gene dis-

covery. Hum Mutat. 2022; 43: 800–811. https://doi.org/10.1002/humu.24354 PMID: 35181971

51. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue Of

Somatic Mutations In Cancer. Nucleic Acids Res. 2019; 47: D941–D947. https://doi.org/10.1093/nar/

gky1015 PMID: 30371878

52. Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. LOVD v.2.0: the

next generation in gene variant databases. Hum Mut. 2011; 32: 557–563. https://doi.org/10.1002/

humu.21438 PMID: 21520333

53. Genomics England. The National Genomics Research and Healthcare Knowledgebase v5. 2019 [cited

22 Jun 2023]. https://doi.org/10.6084/m9.figshare.4530893.v5

54. Villani A, Davidson S, Kanwar N, Lo WW, Li Y, Cohen-Gogo S, et al. The clinical utility of integrative

genomics in childhood cancer extends beyond targetable mutations. Nat Cancer. 2022; 1–19. https://

doi.org/10.1038/s43018-022-00474-y PMID: 36585449

55. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino

acid substitutions on proteins. Nucleic Acids Res. 2012; 40: W452–W457. https://doi.org/10.1093/nar/

gks539 PMID: 22689647

56. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server

for predicting damaging missense mutations. Nat Methods. 2010; 7: 248–249. https://doi.org/10.1038/

nmeth0410-248 PMID: 20354512

57. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating

the relative pathogenicity of human genetic variants. Nat Genet. 2014; 46: 310–315. https://doi.org/10.

1038/ng.2892 PMID: 24487276

58. Wu Y, Liu H, Li R, Sun S, Weile J, Roth FP. Improved pathogenicity prediction for rare human missense

variants. Am J Hum Genet. 2021; 108: 1891–1906. https://doi.org/10.1016/j.ajhg.2021.08.012 PMID:

34551312

59. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the

variant effect scoring tool. BMC Genomics. 2013; 14 Suppl 3: S3. https://doi.org/10.1186/1471-2164-

14-S3-S3 PMID: 23819870

60. Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H-J, et al. Inferring the molecular and

phenotypic impact of amino acid variants with MutPred2. Nat Commun. 2020; 11: 5918. https://doi.org/

10.1038/s41467-020-19669-x PMID: 33219223

PLOS GENETICS Predicting germline variant pathogenicity using cancer mutations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011540 January 6, 2025 21 / 21

https://doi.org/10.1101/gr.3715005
https://doi.org/10.1101/gr.3715005
http://www.ncbi.nlm.nih.gov/pubmed/16024819
https://doi.org/10.1038/s41586-020-2579-z
https://doi.org/10.1038/s41586-020-2579-z
http://www.ncbi.nlm.nih.gov/pubmed/32717741
https://doi.org/10.1038/s41586-020-2434-2
https://doi.org/10.1038/s41586-020-2434-2
http://www.ncbi.nlm.nih.gov/pubmed/32581362
https://doi.org/10.1016/j.ajhg.2022.10.002
http://www.ncbi.nlm.nih.gov/pubmed/36332610
https://doi.org/10.1016/j.gim.2023.100947
http://www.ncbi.nlm.nih.gov/pubmed/37534744
https://doi.org/10.1038/s41586-020-2832-5
https://doi.org/10.1038/s41586-020-2832-5
http://www.ncbi.nlm.nih.gov/pubmed/33057194
https://doi.org/10.1002/humu.24354
http://www.ncbi.nlm.nih.gov/pubmed/35181971
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gky1015
http://www.ncbi.nlm.nih.gov/pubmed/30371878
https://doi.org/10.1002/humu.21438
https://doi.org/10.1002/humu.21438
http://www.ncbi.nlm.nih.gov/pubmed/21520333
https://doi.org/10.6084/m9.figshare.4530893.v5
https://doi.org/10.1038/s43018-022-00474-y
https://doi.org/10.1038/s43018-022-00474-y
http://www.ncbi.nlm.nih.gov/pubmed/36585449
https://doi.org/10.1093/nar/gks539
https://doi.org/10.1093/nar/gks539
http://www.ncbi.nlm.nih.gov/pubmed/22689647
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1038/ng.2892
https://doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
https://doi.org/10.1016/j.ajhg.2021.08.012
http://www.ncbi.nlm.nih.gov/pubmed/34551312
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1186/1471-2164-14-S3-S3
http://www.ncbi.nlm.nih.gov/pubmed/23819870
https://doi.org/10.1038/s41467-020-19669-x
https://doi.org/10.1038/s41467-020-19669-x
http://www.ncbi.nlm.nih.gov/pubmed/33219223
https://doi.org/10.1371/journal.pgen.1011540

