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Evolutionary processes generating biodiversity and ecological
mechanisms maintaining biodiversity seem to be diverse them-
selves. Conventional explanations of biodiversity such as niche
differentiation, density-dependent predation pressure, or habitat
heterogeneity seem satisfactory to explain diversity in communi-
ties of macrobial organisms such as higher plants and animals. For
a long time the often high diversity among microscopic organisms
in seemingly uniform environments, the famous ‘‘paradox of the
plankton,’’ has been difficult to understand. The biodiversity in
bacterial communities has been shown to be sometimes orders of
magnitudes higher than the diversity of known macrobial systems.
Based on a spatially explicit game theoretical model with multiply
cyclic dominance structures, we suggest that antibiotic interactions
within microbial communities may be very effective in maintaining
diversity.

The past 10 years have seen great progress in measuring
bacterial diversity by the application of several molecular

approaches (1). Many studies (2) conducted in very diverse
microbial habitats have arrived at the same general conclusion:
only a very small fraction (less than 1%) of the bacterial species
present can be recovered by standard cultivation techniques, but
the actual biodiversity in microbial communities is enormous in
many cases. For a striking example, a 30-g soil sample from a
Norwegian forest has been estimated to contain �500,000
species, although this estimate necessarily is based on many ad
hoc assumptions (3, 4). It is difficult to see how such astronom-
ical species numbers could fit into the conventional resource
competition framework even if forest soil can be considered a
highly structured habitat.

Widespread Antibiosis in Microbial Communities
Microorganisms very commonly produce and excrete antibiotic
compounds that inhibit or kill sensitive strains from their own or
closely related species. The excretion of antimicrobial substances
is known to be widespread among bacteria (5), yeasts (6), and
other fungi (7). Particularly well studied systems comprise some
bacteriocins (antimicrobial toxins produced by bacteria) such as
the colicins from Escherichia coli and nisins from lactic acid
bacteria (8). Experimental data based on the analysis of strains
in E. coli collections (9, 10) suggest that at least 35% of the
strains are colicinogenic. Most strains were sensitive to at least
one of the 20 different types of colicin tested, but multiple
resistance was common, with 22% of the strains being resistant
to all of them. Also, the killer phenotypes of Saccharomyces
cerevisiae and a few other yeasts have been studied in depth (11).
Estimates of killer activity among wild yeasts from various
habitats suggest that between 5 and 30% of the strains can kill
a standard sensitive Candida glabrata strain (6, 12).

Effects of Excreted Toxins on Diversity: Inconclusive
Experimental Evidence
In view of the widespread occurrence of antibiosis in microbial
communities, the diversity conundrum seems particularly con-
fusing: multiple toxic environments are the least expected to

maintain many different species. Pioneering work (13, 14) on the
ecological and evolutionary aspects of antimicrobial toxin ex-
cretion has demonstrated that competition between a colicino-
genic and a sensitive strain of E. coli results in the final exclusion
of one or the other depending on their initial proportions.
Theoretical work (15, 16) on competition between colicin-
producing and -sensitive strains seems to be in line with these
results, but other sets of empirical data show a very different
picture: small-scale coexistence of toxin-producing and -sensi-
tive strains has been reported in a number of natural and
laboratory systems (6, 12, 17). One theoretical explanation for
killer-sensitive polymorphism within a single species invokes
microscale habitat segregation such that sensitive strains do
better in poor-quality habitats, and toxin producers do better in
rich habitats (18). However, because of the requirement of a very
special habitat structure and spatial distribution of different
toxicity types, this explanation seems unlikely to be of general
validity.

Cyclic Dominance Hierarchy of Killer (K), Resistant (R), and
Sensitive (S) Strains May Favor Polymorphism
Another theoretical approach assumes an interplay of interfer-
ence and resource competition (19–22), defining a cyclic dom-
inance structure of K, R, and S strains within a species. The new
element of this theory is the inclusion of resistance, a common
empirical observation for bacteriocin systems left out from
previous models altogether. R strains are immune to the corre-
sponding toxin without actually producing it because of the
damage or the loss of the toxin gene and the presence of intact
immunity genes. Because toxin production involves a certain
metabolic cost, R strains are assumed to be superior to Ks in
resource competition. Similarly, S strains are supposed to out-
compete Rs, because they do not pay the metabolic cost of
producing the immunity factor. The remaining S-K interaction
is settled to the advantage of the K strain by means of the
interference competitive effect of toxic killing, a mechanism
fundamentally different from resource competition, involving
the active suppression of the concurrent population by means
other than resource exhaustion. This cyclic interaction pattern
(K beats S beats R beats K) can be cast naturally into the game
theoretical framework of the rock-scissors-paper (RSP) game
(23, 24). However, the mean-field (nonspatial) model for RSP
dynamics admits neutrally stable periodic trajectories on the
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state space of the system at best (Fig. 1a), and assuming a small
fitness cost of interaction makes the situation even worse: the
system becomes unstable, with all trajectories approaching the
margin of the state space gradually through all limits (Fig. 1b)
such that eventually only one of the three strategies survives (24).
The spatial (cellular automaton) version of the same model is
very robustly stable (Fig. 1c; ref. 25).

An extension of the spatial cyclic exclusion approach to a
multitype eco-evolutionary model (21) of the dynamics of nine
different colicin plasmids in E. coli populations showed that a
high diversity of colicin plasmid types is maintained easily in a
single niche. This high diversity is expressed in one of two
possible modes, dependent on the metabolic cost associated with
resistance. For high resistance cost, persistent strains show
‘‘multitoxicity,’’ different strains maintaining different combi-
nations of colicin genes. For low metabolic costs the community
approaches the state of ‘‘hyperimmunity,’’ in which most bacteria
are immune to most toxins but produce only a few, which is in
good agreement with experimental data (9).

A Model of Antibiotics Excretion Shaping the Structure and
Diversity of Microbial Communities
We have studied a spatially explicit model of a multispecies
microbial community using a multitype RSP game implemented
in a randomly updated cellular automaton. The arena is an
environmentally uniform 180 � 180 square grid of cells with a
toroidal topology. Each cell of the grid represents the site of a
single microbial clone such as a bacterial colony that is charac-
terized by its ability to produce particular antimicrobial toxin(s)
and the corresponding resistance factors. All sites are always
occupied, i.e., a colony can be replaced only by another one or
remain locally persistent. The model specifies up to 14 different
toxins, and for each one a clone is K (i.e., it can excrete the toxin
and is also resistant to it), R (i.e., resistant to the toxin but unable
to produce it), or S (i.e., unable to produce both the toxin and
the resistance factor). Thus the maximum number of strains with
different toxicity-resistance patterns is 314. Toxin production and
resistance are assumed to be costly: metabolic costs are ordered
as S � R � K. The update of a single cell is comprised of the
following steps. First, with a probability m, the colony in the cell
mutates a randomly chosen toxin type into the subsequent
dominant state, i.e., K 3 R, R 3 S, and S 3 K. The first two
transitions require the mutational inactivation of a gene and
therefore are ‘‘normal’’ mutations. The transition from S to K
requires the acquisition of a novel toxin production gene as well
as the corresponding resistance gene and is probably best viewed
as a horizontal transfer (e.g., by transformation) of a genetic
element (e.g., a plasmid or virus RNA) carrying both genes or

as some other rare sequence of events resulting in the evolution
of a novel toxin system (26). When mutation does not occur the
colony undergoes recombination, with probability r, with a
neighboring colony that is chosen randomly from the four
orthogonal neighbors. We have modeled recombination in the
simplest possible way by not specifying any type of segregation;
the strains simply incorporate the toxin and resistance genes of
the other strain into their genome in addition to its own toxin and
resistance genes, resulting in two identical colonies. If neither
mutation nor recombination occurs, the two interacting colonies
determine whether one colony is dominant over the other.
Colony A interacting with a neighboring colony B will invade and
replace B if (i) A can kill B, but B cannot kill A, (ii) neither can
kill the other, but A has a smaller metabolic burden, or (iii) both
can kill the other, but A has a smaller metabolic burden. The
update rule for a single site can be represented in pseudocode
as follows

Pick-Random-Site;

if (chance � mutation_rate)

Mutate-Random-Toxin-Type

Else-If (chance � recombination_rate)

Recombine-With-Random-Neighbor;

Else Interact-With-Random-Neighbor:

It is clear that the time scale of an update step of the model is
comparable to the time scale of local population dynamics; a
complete colony replacement process can be accomplished
during such a time unit. One generation is a number of such
update steps equal to the number of sites in the grid such that
on average each site is updated once every generation.

Results
‘‘Frozen State’’ Quasi-Equilibrium. First we consider how a micro-
bial community in which initially no toxin is excreted evolves
toward a state of widespread toxin production. Starting from a
random community close to the uniform all-S state [S(0) close
to 1.0], allowing small S3 K, K3R, and R3 S mutation rates,
and setting the metabolic cost of K (toxin production � resis-
tance) equal to twice the cost of R (just resistance), the system
evolves to a fine-grained distribution of small patches consisting
of monotoxic strains. All 14 possible toxins persist in the system,
but the great majority of the colonies carry just one toxin gene
plus the corresponding resistance gene. Fig. 2 illustrates the main
findings in this case. After a few hundreds of generations the
spatial pattern appears frozen, with very little subsequent change

Fig. 1. The single-toxin RSP game. (a) Periodic orbits of the simplest RSP game dynamics. (b) Divergent oscillations in the simple RSP game with a small interaction
cost added. (c) Stability of the spatial (cellular automaton) version of the simple RSP game model.
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going on. We interpret the quasi-frozen mosaic pattern as a
‘‘deadlock,’’ in which the great majority of neighboring colonies
hold each other in check because their (single) toxin is either the
same, in which case they are resistant to each other, or their
toxins are different, in which case neither can invade the other
because both have the same metabolic cost. Colonies that have
acquired an additional toxin gene will spread within the mono-
toxic patch (group of neighboring cells containing identical
colonies), in which they appeared because they are effective
against the ‘‘parent’’ strain but then with a high probability will
encounter a neighboring patch consisting of monotoxic colonies
with a third type of toxin to which they are not resistant. These
monotoxic neighbors will defeat the bitoxic mutant strain be-
cause of the higher metabolic burden the latter carries; the patch
of the mutant is invaded by monotoxic colonies from all sides,
and finally it disappears and the pattern becomes frozen again.
Remarkably, the quasi-frozen spatial distribution of small
patches of monotoxic strains does not occur in the simulations
when the number, n, of possible different toxins is smaller than
4. A plausible explanation for this limit invokes the famous
four-color-map theorem (27) of mathematical topology, which

states that for any map four colors are sufficient to color
neighboring countries always different. Our grid containing
patches (coherent groups of identical monotoxic colonies) can
be viewed as a map, on which each patch is a different country.
With less than four different toxins, a (monotoxic) patch will
with a high probability border to a patch of the same type. In
other words, at start the grid then will actually contain a
labyrinth-like percolation network of connected patches for each
monotoxic type. Let us consider the n � 3 case. A bitoxic mutant
A has a large ramified habitat to colonize, giving it more time to
survive. During this longer survival time, also a neighboring
patch carrying a different toxin has a good chance to obtain a
second toxin to form mutant B. The two bitoxic strains play draw
against each other, and the time for both to pick up the third
toxin is again long enough. With four or more different toxins,
the likelihood of forming extended patches is small from the
outset (this is the point at which the four-color-map theorem
becomes relevant), therefore mutations remain local, confined
to relatively small patches, resulting in quick elimination by
monotoxic neighbors.

Hyperimmunity Quasi-Equilibrium. Starting the simulations from a
community composition in which the average strain already
possesses a few toxin and resistance genes produces convergence
to a very different hyperimmunity (21) quasi-equilibrium char-
acterized by low toxicity, high resistance, and a very dynamic
pattern. Apparently with the average initial strain possessing
more than one toxin plus resistance factor, the likelihood of a
draw against all neighboring patches is so small that a frozen
pattern is prevented from emerging. The patches persist long
enough to collect more and more toxin � resistance genes by
mutation, and the system evolves toward multiple toxicity.
However, once this state has developed, losing some toxin genes
while maintaining resistance to all the toxins becomes advanta-
geous because of the reduction of metabolic costs. Eventually the
system settles at the generic quasi-equilibrium at which the
average colony harbors a few (typically 0–5 in the 14-toxin
system) toxin genes and many (10–14) resistance genes (Fig. 3).
The diversity of toxicity�resistance types is very high at the
quasi-equilibrium; we have found up to a thousand different
strains in a 180 � 180 grid, and this number increases with grid
size. Although the average levels of toxicity and resistance
remain within rather narrow limits, the spatial configuration of
the community continues to change while the average patch size
is much greater than in the frozen pattern.

Frozen State Prevented by Recombination and Fast Interference. The
frozen state is prevented also by frequent recombination. If the
frequency of recombination events is higher than 10�4 per
colony per generation, the system converges to the hyperimmune
quasi-equilibrium. Recombination creates multiply toxic strains
on the border of two different patches that can invade both
parental patches, thus acquiring a relatively large territory. With
a sufficiently high rate of recombination, this acquisition may be
repeated frequently enough at the newly established borders
with other patches to offset the invasion by strains with at least
one different toxin and a smaller metabolic cost. In this way the
average number of toxins per strain continues to rise until
mutant strains appear with increasing numbers of resistances.
Eventually the generic hyperimmune quasi-equilibrium is estab-
lished with low-toxin and high-resistance multiplicity. This typ-
ical sequence of events is depicted in Fig. 3. Even the all-S start
and negligible recombination are not enough to maintain the
quasi-frozen monotoxicity state if the rate of exclusion is much
slower for resource competition than it is for toxic killing (i.e.,
interference competition). If interference competition is at least
four times faster than resource competition in excluding a
competitor strain, the terminal state is always hyperimmunity.

Fig. 2. Multitoxin RSP game: frozen state. (a) Time series of the relative
frequencies of K, R, and S phenotypes on an average toxin locus with different
initial states. The yellow dotted line is the approximate ‘‘separatrix’’ between the
‘‘basins of attraction’’ for the frozen state and the generic hyperimmunity state.
(b) Distribution of the numbers of K and R phenotypes per strain at different
generationsfor theall-S initial state.Simulationtype:14toxin loci;180�180grid;
metabolic cost for killing is twice as large as for just resistance; all mutation rates
are m � 10�5; no recombination (r � 0). T, time in generations.
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Discussion
Several conclusions follow from these simulation studies. First,
local interference competition resulting from the excretion of
antibiotic compounds and the resource competitive effects
caused by the associated metabolic costs may produce stable
coexistence of huge numbers of different strains or species even
in a temporally constant and spatially homogeneous environ-
ment if the fitness relations between K, R, and S types conform
to those of the RSP game. The self-organized spatial pattern (28)
of the system always plays a crucial role in defining the resulting
community composition. Interestingly, the key idea underlying
our work was proposed 25 years ago to explain observed patterns
of sessile invertebrates on coral reefs. Jackson and Buss (29)
suggested that a cyclic competitive hierarchy among species (A
eliminates B, B eliminates C, but C eliminates A directly) may
maintain diversity in space-limited systems in the absence of high
levels of predation or physical disturbance. However, another
study (30) failed to find evidence in support of this hypothesis.
Apparently, in the following years ecologists lost interest in the
idea, presumably because convincing examples were lacking. A
second conclusion from our work is that the rates of processes
such as recombination or horizontal genetic transfer, which
enable the reallocation of genetic toxicity and resistance deter-
minants among different strains, are relevant for the ultimate
composition and spatial pattern of the system. With sufficiently

frequent recombination (r � 10�4) a community evolves in which
the average strain produces only a few toxins but is resistant to
many, whereas for smaller r the system remains in the monotoxic
frozen state in which the average strain produces just one toxin
and is sensitive to all others. Recombination rate behaves as the
control parameter of a phase transition here, with the critical
value rc being close to 10�4.

Species Diversity in a Community or Polymorphic Species? In our
model the organisms (‘‘strains’’) are specified by their toxin-
production profiles and their resistances and sensitivities to
toxins. Depending on the rates of the evolution of novel toxin,
resistance systems, and of their transmission between strains
relative to the rates of genetic diversification in other traits and
of speciation, different interpretations of the model strains are
possible. At one extreme, every strain represents a different
species in a community. This interpretation is applicable if novel
toxicity systems appear at a very low rate and horizontal
transmission between species is very rare. At the other extreme,
all strains represent variants within a species. This interpretation
applies in cases of relatively fast evolution of toxicity systems and
high rates of between-strain transfer (either horizontally or by
some recombination process). Intermediate interpretations ap-
ply to a community consisting of different species, in which
species may share one or more toxin systems with some other
species but also may exhibit some intraspecific polymorphism in
toxin systems. The most natural interpretation of the quasi-
frozen ensemble of strains in our model is a multispecies
community with low rates of recombination between species. In
the hyperimmunity state the many (�1,000) different strains in
the grid can be interpreted as belonging to the same species, but
because plasmid transfer often also occurs between strains from
different bacterial species, the game model also can be viewed
as that of a multispecies bacterial community. It is interesting in
this connection to contrast the available evidence on bacterial
systems and yeast communities. Many bacterial systems are
characterized by relatively frequent horizontal genetic transfer
of toxin and resistance genes, particularly when these are located
on conjugative plasmids, and the evidence on bacterial toxin
systems indeed suggests that the majority of strains typically
produces only a few toxins but are resistant to many (9). On the
other hand, among yeast strains transfer of genes coding for
toxin production and resistance (often located on symbiotic
dsRNA virus-like particles) probably is very rare, and here the
evidence, although not so extensive as for bacterial systems,
points to monotoxicity and absence of multiple resistances (6, 11,
12). It would be very interesting to find out empirically whether
yeast communities in fact may exhibit a spatially quasi-frozen
mosaic pattern. The relative time scales of interference and
resource competition can play a decisive role in shaping the
outcome of interaction on the community level, the prediction
of which also calls for experimental verification. It is fortunate
that the class of organisms to which we think our model applies
best, i.e., microorganisms, provides systems that are quite suit-
able for experimental testing under controlled conditions in the
laboratory. This potential is testified by recent work on the
relationships between diversity and productivity (31) and diver-
sity and disturbance (32) using the bacterium Pseudomonas
fluorescens. It will be a challenge to design experiments that can
discriminate among various proposed explanations of diversity-
,whether they are based on environmental heterogeneity in some
form or another (18) or should apply even in homogeneous
environments (ref. 33 and the present model), although of course
they do not exclude each other.
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Fig. 3. Multitoxin RSP game: hyperimmunity state. Time series (a) and
phenotype distribution (b) with r � 10�3 recombination rate. All other pa-
rameters are as described for Fig. 2. T, time in generations.
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22. Szabó, Gy. and Czárán, T. (2001) Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.

Interdiscip. Top. 63, 061904.
23. Maynard Smith, J. (1982) Evolution and the Theory of Games (Cambridge Univ.

Press, Cambridge, U.K.).
24. Hofbauer, J. & Sigmund, K. (1998) Evolutionary Games and Population

Dynamics (Cambridge Univ. Press, Cambridge, U.K.).
25. Frean, M. & Abraham, E. R. (2001) Proc. R. Soc. London Ser. B 268, 1323–1327.
26. Tan, Y. & Riley, M. A. (1997) Trends Ecol. Evol. 12, 348–351.
27. Appel, K. & Haken, W. (1977) Illinois J. Math. 21, 429–567.
28. Czárán, T. (1998) Spatiotemporal Models of Population and Community Dy-

namics (Chapman & Hall, London).
29. Jackson, J. B. C. & Buss, L. (1975) Proc. Natl. Acad. Sci. USA 72, 5160–5163.
30. Connell, J. H. (1976) in Coelenterate Ecology and Behavior, Mackie, G.O., ed.

(Plenum, New York), pp. 51–58.
31. Kassen, R., Buckling, A., Bell, G. & Rainey, P. B. (2000) Nature (London) 406,

508–512.
32. Buckling, A., Kassen, R., Bell, G. & Rainey, P. B. (2000) Nature (London) 408,

961–964.
33. Huisman, J. & Weissing, F. J. (1999) Nature (London) 402, 407–410.

790 � www.pnas.org�cgi�doi�10.1073�pnas.012399899 Czárán et al.


