
Recombinatoric exploration of novel folded
structures: A heteropolymer-based model
of protein evolutionary landscapes
Yan Cui*†, Wing Hung Wong*†‡, Erich Bornberg-Bauer§, and Hue Sun Chan¶�

*Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115; †Dana-Farber Cancer Institute, Boston, MA 02115; ‡Department of
Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138; §Bioinformatics Group, School of Biological Sciences, University of
Manchester, Manchester M13 9PT, United Kingdom; and ¶Departments of Biochemistry and Medical Genetics and Microbiology, Faculty of
Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8

Edited by Peter G. Wolynes, University of California at San Diego, La Jolla, CA, and approved November 21, 2001 (received for review May 15, 2001)

The role of recombination in evolution is compared with that of
point mutations (substitutions) in the context of a simple, polymer
physics-based model mapping between sequence (genotype) and
conformational (phenotype) spaces. Crossovers and point muta-
tions of lattice chains with a hydrophobic polar code are investi-
gated. Sequences encoding for a single ground-state conformation
are considered viable and used as model proteins. Point mutations
lead to diffusive walks on the evolutionary landscape, whereas
crossovers can ‘‘tunnel’’ through barriers of diminished fitness. The
degree to which crossovers allow for more efficient sequence and
structural exploration depends on the relative rates of point
mutations versus that of crossovers and the dispersion in fitness
that characterizes the ruggedness of the evolutionary landscape.
The probability that a crossover between a pair of viable sequences
results in viable sequences is an order of magnitude higher than
random, implying that a sequence’s overall propensity to encode
uniquely is embodied partially in local signals. Consistent with this
observation, certain hydrophobicity patterns are significantly
more favored than others among fragments (i.e., subsequences) of
sequences that encode uniquely, and examples reminiscent of
autonomous folding units in real proteins are found. The number
of structures explored by both crossovers and point mutations is
always substantially larger than that via point mutations alone,
but the corresponding numbers of sequences explored can be
comparable when the evolutionary landscape is rugged. Efficient
structural exploration requires intermediate nonextreme ratios
between point-mutation and crossover rates.

crossovers � neutral nets � sequence space � thermodynamic
stability � lattice protein models

I t is widely recognized that key events in evolution may involve
large-scale genomic rearrangements (1–6). Experiments on

plants suggest that dramatic restructuring of the genome in
response to traumas may underlie formations of many new
species (1). The presence of introns in the genes of higher
organisms implies that even a single base change can result in the
deletion or insertion of whole sequences in the protein product
(2). It has been argued that cellular ‘‘natural genetic engineer-
ing’’ machineries have evolved to modulate genomic reorgani-
zation in lower organisms (3). Moreover, certain peculiarities in
present-day genomes and cellular organizations may be ex-
plained best by ‘‘lateral’’ or ‘‘horizontal’’ transfers in the past (4,
5). Indeed, it is large-scale genomic rearrangements rather than
the accumulation of point mutations that bear the main respon-
sibility for the alarmingly quick emergence of bacterial antibiotic
resistance.

Therefore, to capture evolutionary complexities better, the-
oretical perspectives that focus exclusively on point mutations
should be augmented to include other types of sequence trans-
formations. Such efforts would benefit the development of in
vitro evolution for protein engineering (7–9) as well. In a recent

insightful study, Bogarad and Deem (10) used a generalized
(block) NK model, with terms in a potential function (interpret-
ed to represent protein interactions and substrate binding affin-
ities) assigned randomly to a large collection of sequences. Their
model construction thus is formally very similar to Bryngelson
and Wolynes’ (11) seminal random energy model treatment of
protein conformational space. Bogarad and Deem’s simulation
showed that nonhomologous recombination can lead to much
more efficient searching of the fitness space than that achievable
by point mutations alone (10).

Central to any model of evolution is a prescription for mapping
sequences onto fitness. Most progress to date has been made by
tractable but drastically simplified models. Prime examples are
NK-type models, which have led to much insight (see e.g., refs.
7, 10, and 12), although they lack an explicit sequence-structure
relationship. In certain applications, however, sequence-
structure mappings based on polymer principles are useful in
assessing how proposed ideas about evolutionary landscapes
might depend on the underlying physical interactions, for the
obvious reason that functions of biomolecules in most cases are
intimately related to their folded structures. For example, the
concept of ‘‘shape space covering’’ seems to hold for RNA
secondary structure evolution (13) but not for proteins (14),
presumably because their folding and compactification are gov-
erned by different potential functions (13, 14).

Modeling the Mortality Landscape
Here we apply the highly coarse-grained two-dimensional (2D)
hydrophobic polar (HP) model (15–17) to recombination. Now,
sequences are allowed to pair and crossover (recombine) in
addition to undergoing point mutations (18). Similar HP and
HP-like models (15, 18–22), other simplified chain constructs
(23–26), and related statistical mechanics theories (27) have
been used previously to study point mutations. Here, as in ref.
18, a favorable energy � (�0) is assigned to each hydrophobic-
hydrophobic (HH) contact in a chain conformation; other
contacts are neutral. Results are presented for chain length n �
18. Unique sequences (model proteins) are those with a single
ground-state (native) conformation. A conformation is encod-
able if it is the native state of at least one unique sequence
(15–18).

The HP model is motivated by the prominence of hydrophobic
interactions in protein folding. However, hydrophobic effects
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alone are insufficient to account for certain generic protein
properties (28, 29), and simple lattice models with different
alphabets can lead to significantly different folding codes (17,
30). Our premise here is that insofar as the 2D HP sequence to
native structure mapping is concerned, it is competent in cap-
turing the essential physics of the corresponding mapping for
real proteins (31). This working assumption is consistent (31)
with the ‘‘principle of minimal frustration’’ (11) or ‘‘consistency
principle’’ (32) and is bolstered by at least two observations: (i)
the hydrophobicity pattern in real proteins (33) has statistical
properties similar to those of 2D HP model proteins (34), and (ii)
results from recent mutagenesis experiments of Cordes et al. (35,
36) are highly suggestive of predicted features of the 2D HP
model sequence-structure mapping (14, 18, 31).

We consider one-point crossovers, in which a single cut is
made at the same position of a pair of sequences, followed by
cross-splicing. For example, given two parent sequences HP-
PHHPHHPHPPHPPHHH and HPHPHPPHHPHPHHPHPH,
cutting between the seventh and eighth monomers produces the
offspring HPHPHPPHPHPPHPPHHH and HPPHHPHHHPH-
PHHPHPH, where underlined monomers are from the first
parent sequence. Crossovers in which only one monomer is
exchanged are not counted, because they are equivalent to point
mutations at chain ends. It follows that each pair of n � 18 parent
HP sequences may undergo (n � 3) � 15 crossover events to
produce 2 � (n � 3) � 30 crossover offspring. Fitness or
mortality measures (see details below) of a sequence are based
on its native thermodynamic stability (18). Mutations or cross-
overs that lead to a nonunique sequence are considered lethal
(i.e., infinitely unfit). These modeling choices merely serve to
provide simple, biophysically motivated, structure-based fitness
measures. They should not be construed as our view on how real
proteins function, which of course are far more complex.

Native stability of a sequence is measured by the sticking
parameter ��0 (in units of Boltzmann constant � absolute
temperature) at its folding-denaturation midpoint (18). In other
words, �0 (�0) is the favorable HH contact energy at which half
the chain population adopts the native conformation. Because a
weaker favorable HH energy (less negative �0, hence a smaller
��0 �  �0 ) would be needed for a more stable sequence than
that for a less stable sequence, lower values of ��0 imply higher
native stabilities, which we correlate with higher fitness. The
upward direction in our evolutionary landscapes denotes increas-
ing ‘‘fitness deficiency’’ (e.g., as parameterized by ��0), not

fitness itself. The resulting sequence-space representations may
be called ‘‘inverse-fitness’’ or ‘‘mortality’’ landscapes. We choose
to use these depictions instead of the conventional fitness
landscape, because picturing a locally optimized sequence as a
fitness peak (7, 37) does not quite convey its mutational stability
(18, 38) in light of Earthings’ experience with gravity. In contrast,
on the mortality landscape such a sequence and the homologous
sequences around it form a basin of attraction (18, 38) or
superfunnel (18), which may be viewed as a sequence-space
generalization of the conformational-space folding funnel on the
energy landscape (39–42).

Effectiveness of Crossovers
The 6,349 viable model protein sequences (17) do not form a
single network interconnected by point mutations. They split up
into 700 networks (Table 1). A sequence can be transformed into
any other sequence in the same network via viable (nonlethal)
point mutations, but it cannot be so transformed to a sequence
in a different network. Remarkably, there is a dominant network
with 4,553 sequences, encompassing 71.7% of model protein
sequences, and covering a majority (843, 57.2%) of the 1,475
encodable conformations (14, 18). The networks in Table 1 may
be subdivided further into 1,706 neutral nets, each consisting of
interconnected sequences encoding for the same conformation
(14, 18). Irrespective of mutational connectivity, a conforma-
tion’s neutral set is the collection of all sequences that encode for
it. In the present HP model, an overwhelming majority (1,265 of
1,475, 85.8%) of neutral sets have only one single neutral net, but
193, 13, and 4 of them have 2, 3, and 4 neutral nets, respectively.

Altogether there are (6,349 � 6,348�2) � 15 � 302,275,890
one-point crossover events between (viable) model protein
sequence pairs (Table 2). In the HP model, sequences in the
same neutral set tend to share significant numbers of conserved
monomers (14, 31). Therefore, we refer to crossovers between
sequences in the same neutral set as homologous (14, 43) and to
those between sequences in different neutral sets as nonhomolo-
gous. Our usage of ‘‘homologous’’ here is based entirely on
empirical structure and sequence comparisons (as may be ap-
plied to real proteins), not on evolutionary ancestry, unlike some
other works in which the term is rigorously reserved for se-
quences that are believed to be evolutionarily related. We find
that 27.7% of crossover events between viable sequences lead to
at least one viable offspring (11.5% have two viable offspring).
Among the 604,551,780 offspring, a total of 118,426,082 (19.6%)

Table 1. Distribution of n � 18 2D HP net sizes

Size* 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 21 37 4,553

No. of nets 337 182 42 49 19 22 4 11 11 4 4 4 2 3 1 1 1 2 1

*The number of model protein sequences in a net.

Table 2. Homologous and nonhomologous recombination

Crossover type

Structural innovation No new structure

Total2�2 1�1 1�2 0�1 0�2

Homologous 18 1,753 1,458 108,714 313,520 469,020
0.00384% 0.374% 0.311% 23.2% 66.8% 100%

(0.00423%) (0.412%) (0.343%) (25.6%) (73.7%) —
Nonhomologous 2,429,718 36,294,731 555,014 12,707,944 31,356,742 301,806,870

0.805% 12.0% 0.184% 4.2% 10.4% 100%
(2.92%) (43.5%) (0.666%) (15.2%) (37.6%) —

Numbers of crossover events that result in at least one of the two offspring sequences being viable (third and sixth rows) are classified by a crossover event’s
number of viable offspring (denominator in each fraction) and the number of which that encode for structures different from either parents’ (numerator).
Percentages without parentheses are relative to the total number of all possible crossover events (last column). Percentages in parentheses are relative to the
total number of homologous or nonhomologous crossover events that have at least one viable offspring.
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are viable, but 60,916,664 (10.1%) are identical to one of the
parent sequences. Of the remaining 543,635,116 offspring that
differ from either parent, 57,509,418 (10.6%) are viable,
41,765,030 (7.68%) are viable and not in either parents’ neutral
nets, and 41,712,428 (7.67%) are viable and not in either parents’
neutral sets.

The difference in outcome between homologous and nonho-
mologous crossovers is dramatic. An overwhelming majority
(90.7%) of homologous crossover events results in one or two
viable sequences, with 78.9% of crossover offspring viable, but
only 0.688% of the crossover events result in structural innova-
tion, i.e., give rise to one or two sequences encoding for new
structures different from either parent. These sequences account
for only 0.346% of all homologous crossover offspring. On the
other hand, the viability of nonhomologous crossover events is
significantly lower. Only 27.6% have one or two viable offspring,
with 19.5% of nonhomologous crossover offspring viable, yet
their rate of structural innovation is at least an order of
magnitude higher. Given that a nonhomologous crossover event
produces at least one viable offspring, there is a 47.1% chance
that one or both offspring sequences are innovative structurally,
and 35.4% of all viable nonhomologous crossover offspring
encode for new structures. Overall, 13.0% of all nonhomologous
crossover events and 6.91% of all nonhomologous crossover
offspring lead to new folds (Table 2).

We compare these new observations with the 18 � 6,349 point
mutations on the same set of model proteins, 14.3% of which
result in viable sequences (44). This viability rate is lower than
that among all crossover events (27.7%) or crossover offspring
(19.6%). Thus overall, crossovers are less lethal than point-
mutation events in this model. However, among the crossover
offspring that are different from either parent, only 10.6% are
viable. This conditional viability rate is lower than that for point
mutations, which necessarily produce offspring that are different
from the original sequences. Most viable point mutations are
neutral. Only 3,428 (3.0% of all point mutations) lead to new
structures (44). This is significantly lower than the structural
innovation rates of crossovers. Overall, 6.90% of all crossover
offspring encode for new structures, corresponding to a struc-
tural innovation rate of 7.67% among crossover offspring that
are different from either parent.

Because only 2.4% of all n � 18 HP sequences are viable (44),
the high crossover viability rates (above) signify a high degree of
nonrandomness in these processes, suggesting strongly that part
of a sequence’s signal for uniqueness is local. Fig. 1 confirms this
idea. The sigmoidal solid curves say that certain local sequence
patterns are preferred over others. In the absence of biases and
sampling effects (see below), only (1�2)3 � 12.5% of the
sequences would remain when one half of the 6-segments were
disallowed (dotted curve). For the complete set of model
proteins, however, 2,202 of 6,349 (34.7%) of the sequences
remain. Segment popularity is not a function of H composition
alone. For instance, HHPPPP has the same composition as the
most popular 6-mer pattern but is much less frequent (0.35 vs.
3.7%). Segment bias is even more prominent among the subset
of prototype sequences, which have relatively high mutational
stabilities (14, 18). As much as 745 of 1,706 (43.7%) of them are
covered by just one half of the 6-mer patterns. Although the
small sizes of the two sets of model proteins in question and the
biases in average H composition among the unique and proto-
type sequences contribute to this phenomenon, the large differ-
ences between the solid and dashed curves in Fig. 1 rule out the
possibility that they are the primary causes of the significant
segment preferences observed. We also divided the sequences in
these sets into two or six segments each and enumerated the
frequencies of the resulting 9- and 3-segments (fixed windows as
in Fig. 1). Frequencies of segments extracted from the two sets
by a sliding window of length ranging from 3 to 9 were deter-

mined as well. Significant nonrandomness is found in every case
(data not shown), and the local preferences of unique and
prototype sequences appear to be robust. For segments longer
than 6 monomers, the most popular segment always contains the
most popular PHPPHP as a subsequence. The most popular 4-
or 5-mer patterns always contain the HPPH motif, and the most
popular 3-mer pattern is PHP, both subsequences of the most
popular 6-mer pattern. It is intriguing to note that these popular
sequence patterns favor lattice helices and turns (45).

Tunneling and Autonomous Folding Units
Evolutionary explorations by point mutations may be likened to
diffusion. Their extent is limited on a fragmented mortality
landscape, because sequences belonging to different networks
(Table 1) are beyond reach. On the other hand, crossovers can
‘‘tunnel’’ through the infinitely high mortality barriers between
networks. Fig. 2 shows that with point mutations alone, even if
one starts in the largest network a substantial fraction of viable
sequences and structures cannot be explored (dotted curves). In
contrast, with both point mutations and crossovers, practically all
viable sequences (6,347 of 6,349) can be reached from the
dominant network (see Fig. 7, which is published as supporting

Fig. 1. Model proteins prefer certain local sequence patterns. Each 18-mer
HP sequence is divided into three 6-segments (monomers 1–6, 7–12, and
13–18). For a given set of sequences, 6-segment frequencies among the 26 �
64 HP patterns are sorted. Starting with the least frequent, 6-mer patterns are
disallowed cumulatively until all 64 possibilities are disallowed when the most
popular 6-segment is eliminated at the last step (horizontal scale). At each
step, the fraction of full-length sequences that still can be assembled from the
remaining 6-segments is determined (vertical scale). The solid curves are for all
6,349 unique sequences and the 1,706 prototype sequences (14, 18). In gen-
eral, relative 6-segment frequencies are not identical for different sequence
collections, but the sets of all unique and prototype sequences share much
similarity in this regard; e.g., the all-P segment is least popular among both,
accounting for 0.063 and 0.039% of their 3 � 6,349 and 3 � 1,706 6-segments,
respectively. PHPPHP is most popular among all unique sequences (3.7%) and
also the prototype sequences (5.1%). In fact, the five most popular (PHPPHP,
HPPHPH, HPHPPH, HPPHHH, and HHHPPH) and the three least popular (PPP-
PPP, HPPPPP, and PPPPPH) of the two sets coincide. As controls, results from
several random collections of sequences are included for comparison. Each
dashed curve (i–iv) shown is an average over 10,000 samples. Each sample is
calculated by the above sorting�disallowing procedure for: 6,349 (i) and 1,706
(ii) randomly selected sequences constrained to be all distinct and have an
overall H-composition of 54.8 (i) and 53.6% (ii), respectively, equal to the
average H compositions over the 6,349 unique sequences and the 1,706
prototype sequences; 1,706 (iii) and 6,349 (iv) unconstrained randomly se-
lected sequences from all possible sequences. The lowest dotted curve is for all
218 possible sequences. Further constraining the samples in i and ii to conform
to their respective distribution of H composition results in plots that are
practically indistinguishable from the dashed curves i and ii shown.
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information on the PNAS web site, www.pnas.org). Depending
on the single starting sequence, the number of generations
needed to explore all 4,553 sequences in the network by point
mutations ranges from 25 to 42; the average over all possible
starting sequences is 31.8 generations. Exploration of the same
sequences is more efficient when crossovers are included (Fig. 2,
solid curves), the corresponding average being only 12.8
generations.

Fig. 3 compares an example crossover with point mutations.
Here ��0 is the model mortality measure, playing a sequence-
space role analogous to that of energy or ‘‘internal free energy’’
(40) in conformational space. A point mutation that results in a
decrease in fitness, i.e., an increase in mortality, is represented
by an upward step (a positive change in ��0) and vice versa. The
two paths in Fig. 3 are optimized by Dijkstra’s algorithm (44)
such that (i) the total extent of upward climbs encountered (i.e.,
the sum of positive changes in ��0) along each of these paths is
the minimum possible among, respectively, all paths from B to
C and all paths from D to C, and (ii) each of these paths has the
smallest number of steps if more than one path satisfies condition
(i). We also obtained optimal point-mutation paths from each of
the other 4,552 sequences in the dominant network to sequence
C, which is one of the two global minima on the landscape (��0
� 2.37). Barrier effects are significant. The average minimized
sum of positive ��0 increments is 5.50 along these paths, which
have 13.0 steps on average, indicating the point-mutational
evolutionary landscape is rugged.

Fig. 3 shows how crossovers make it possible to reach a
structural target directly, bypassing tortuous point-mutation-
only routes that often involve many intermediate structures. Of
particular interest here is the 11-monomer segment that has the
same fold in the native structures of sequences B and C (dotted
boxes). This 11-mer is a 2D lattice analog of an autonomous
folding unit (46) or a ‘‘least-frustrated foldon’’ (47), because as
an independent sequence its unique native structure is identical
to that in the dotted boxes of Fig. 3. This feature is not rare in
the model: 821 (12.9%) and 285 (4.49%) of the n � 18 6,349
unique HP sequences contain, respectively, 11- and 12-mer

autonomous folding units that act in a similar manner. Evolu-
tionarily, the crossover in Fig. 3 has the important advantage of
preserving the autonomous folding unit. In contrast, if the
point-mutation-only route from B to C in Fig. 3 were taken, this
unit would be dismantled first along the path before it could be
reassembled.

Evolution in Time-Dependent Environments
Rapid exploration of a broad range of evolutionary possibilities
is key to the survival of viruses and bacteria in an environment
subjected to ever-changing attacks from the immune system and
new drugs. To gain insight into such processes, we introduce a
population dynamics model. The time dependence of the model
is governed by the following nonlinear difference (master)
equation relating the population Pi(q � 1) of any given viable
sequence i at generation q � 1 to the populations of all viable
sequences at generation q, namely

Pi�q � 1� � ��q������m � �c�Pi�q� �
�m

n �
j � 1

Ai

P�i�j��q�

�
�c

n � 3 �
j � k

�
s � 1

2�n � 3�

C�i�j, k; s�Pj�q�Pk�q�� � Pi�q�� fi, [1]

where �m and �c are the point-mutation and crossover rates,
respectively (�m is equivalent to ��n in ref. 18), and �i(j) values
label the Ai viable sequences that differ from i by a single point
mutation. The matrix C(i j,k;s) specifies crossover connectivi-
ties, where s labels the 2(n � 3) crossover offspring from any
given pair of parent sequences j and k. For the n � 18 case
studied here, the j � k summation is over all possible pairings
among the 6,349 viable sequences. C(i j,k;s) � 1 if the crossover
offspring defined by {j,k;s} is identical to sequence i; otherwise

Fig. 2. Sequence and structure exploration. As indicated, the curves show
the average number of distinct unique sequences visited or the average
number of distinct structures these sequences encode, over 4,553 explora-
tions, each using one of the model protein sequences in the largest net (Table
1) as the starting point at generation 0. Exploration proceeds at any given
generation to the next by including new unique sequences from (i) all possible
single point mutations on all unique sequences visited thus far (dotted curves,
point mutations only) or (ii) all possible crossovers between every pair of
unique sequences visited thus far and those from (i) (solid curves, point
mutations plus crossovers).

Fig. 3. Tunneling underneath a mortality landscape. (A) shows a 25- and a
15-step optimal point-mutation path that lead from sequences B and D to
sequence C (shown in their unique native conformations), respectively. The
graduations on the horizontal scale correspond to 41 different unique se-
quences that collectively encode 19 different structures (marked by vertical
shadings, two of the regions encode for the same structure.) The ��0 vs.
sequence profile is the mortality landscape along these point-mutation paths.
The dotted arrows in A depict the ‘‘tunneling effect’’ of a crossover between
sequences B and D that leads directly to sequence C. In this crossover, the
11-monomer segment (enclosed by dotted boxes) inherited by sequence C
from parent sequence B acts similar to an ‘‘autonomous folding unit.’’
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C(i j,k;s) � 0. The quantity enclosed by the square brackets in
Eq. 1 represents the change in population of sequence i caused
by point mutations and recombinations in a time step (genera-
tion). During the same time interval, part of the population of
sequence i may be eliminated by the environment, and the
remaining part can grow by faithful reproduction. The combined
effect of death and faithful reproduction is accounted for by �(q)
and fi. For simplicity, here we constrain the total population to
a constant by using �(q) as an overall normalization factor
(independent of i) such that �iPi(q � 1) � 1 for all q � 0. (This
condition can be relaxed when necessary in future applications.)
The likelihood of death and the efficiency of faithful reproduc-
tion affect the sequences’ relative populations. These features
are governed by the fitness factor fi � Ri

nn exp(	�0), in which the
fitness measure ��0 is exponentiated, with 	 � 0; hence more
stable sequences tend to be more efficient reproductively. But,
native stability is not the only determinant of fitness in Eq. 1. To
simulate a fluctuating environment, Ri

nn, which takes the same
value for all sequences in the neutral net containing a given
sequence i, is assigned a new random number every GN gener-
ations in the range 0.1 � Ri

nn � 10.0, and Ri
nn values of different

neutral nets are uncorrelated. Here the role of 	 is similar to that
of an inverse ‘‘temperature,’’ because disparities in survival rates
increase with 	. Thus it may be viewed as an average selection
gradient as well as a measure of the ruggedness of the evolu-
tionary landscape.

Ri
nn is the only nondeterministic factor in the present imple-

mentation of Eq. 1. Because population is treated as a contin-
uous variable in our formulation, there is no explicit account of
finite-population effects such as extinction (48). Instead, we use
a population-threshold criterion for whether a structure has been
explored to capture part of these effects (Figs. 4-6). (In contrast,
Fig. 2 involves no nonzero population thresholds.) Because very
low sequence populations are possible in this approxi-

mate treatment, the chances of trapping and extinction can be
underestimated.

Fig. 4 shows that more rapidly changing environments (smaller
GN) lead to faster and broader explorations of sequence and
structure space. This is because a highly fluctuating environment
means that there is a higher probability for any given sequence
to be favorable for at least some time, during which it would
enjoy some chance of being populated significantly. In all cases
shown, the exploration is more effective with point mutations
plus crossovers than with point mutations alone.

The power of recombination is in amplifying existing diversity
(7), not in generating a high degree of diversity from a very small
number of starting sequences. A case in point is that because the
monomer types at eight of the positions along the starting
sequences in Figs. 4–6 are identical, with this starting pair,
crossovers alone can reach only 127�6,349 (2.0%) of all viable
sequences and 58�1,475 (3.9%) of all encodable structures. This
result underscores the importance of having a sizable rate of

Fig. 5. Number of sequences (squares) and structures (dots) explored after
5,000 generations at different crossover rates (as defined in the Fig. 4 legend)
for GN � 100, 	 � 1, and �m � �c � 0.1 � constant. The lines between data
points are merely visual guides.

Fig. 6. The number of sequences (A) and structures (B) explored after 5,000
generations (as defined in the Fig. 4 legend, GN � 100) with point mutations
plus crossovers (�m � 0.09, �c � 0.01; solid curves) and with point mutations
alone (�m � 0.1, �c � 0; dashed curves), both plotted as functions of 	. The
smallest 	 value considered is 0.05.

Fig. 4. Sequence and structure exploration in a changing environment. All
results reported in Figs. 4–6 are computed by using Eq. 1, with the initial
population at q � 0 equally divided between sequence C in Fig. 3 and its
reverse sequence. Simulation results from one trajectory are reported for each
given set of �m, �c, 	, and GN. A model protein sequences that attained a
normalized population threshold of Pi(q	) � 10�6 at any q	 
 q is defined as
already explored at generation q (A). Explored structures are those encoded
by explored sequences (B). The exploration trajectories here are for GN � 20,
50, and 100 (as marked) with either point mutations plus crossovers (�m � 0.09,
�c � 0.01; solid curves) or with point mutations alone (�m � 0.1, �c � 0; dashed
curves).
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point mutation working in concert with crossovers. Fig. 5
suggests that optimal exploration in the present model requires
approximately 0.1 � (�c��m) 
 1, which is consistent with
genetic algorithm studies (7).

Fig. 6 shows that exploration is more efficient when the
evolutionary landscape is smooth (small 	), but as ruggedness or
the average selection gradient increases (larger 	), exploration
becomes sluggish. When 	 is large, populations are more con-
centrated in a relatively small number of low-mortality se-
quences. When the landscape is smooth, with the same total rate
(0.1) of sequence transformation, point mutations plus cross-
overs visit more sequences and more structures than point
mutations alone. When the landscape is rugged, the number of
sequences explored by point mutations alone is comparable to
that explored by point mutations plus crossovers. This is because
point mutations are more effective in finding a low-mortality
area from an already well populated spot nearby, whereas when
the landscape is rugged many crossover offspring are likely to
end up at high-mortality spots. Even so, Fig. 6B shows the
remarkable result that structural innovation is still enhanced by
crossovers at high 	 values. This result implies that when the
average selection gradient is high, acting in concert with point
mutations, crossovers can make more efficient use of their
offspring sequences to achieve a higher structural diversity than
a comparable number of sequences explored by point mutations
alone.

Concluding Remarks
We have presented a simple structure-based study of evolution.
Notwithstanding the present model’s extreme simplicity,
protein-like features such as autonomous folding units arise
naturally from its minimalist construct. Segment analyses suggest
that crossovers can be a much more effective means to explore
new viable sequences than one might have hitherto posited, and
nonhomologous recombination is seen as an efficient tool of
structural innovation. These theoretical predictions may help
elaborate the schema idea (7) of modular evolution (49) as well
as the foldon concept (47) and are testable by experiments. The
present results also bear on the evolution of sexual reproduction
(50, 51). It is hoped that the insight gained from this effort would
shed light not only on in vivo evolution but would facilitate the
development of in vitro evolution technology as well (52, 53).

We thank Peter Wolynes for very helpful advice and a critical reading of
the manuscript, Richard Goldstein, Yuji Goto, Magnus Rattray, and
Tetsuya Yomo for stimulating discussions and useful comments, Hüseyin
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