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ARTICLE

TEMR: Trans-ethnic mendelian randomization method
using large-scale GWAS summary datasets

Lei Hou,1,2,5 Sijia Wu,1,2,5 Zhongshang Yuan,2,3 Fuzhong Xue,1,2,4,6,* and Hongkai Li2,3,6,*
Summary
Available large-scale genome-wide association study (GWAS) summary datasets predominantly stem from European populations,

while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, etc., remain comparatively limited,

resulting in low precision of causal effect estimations within these ethnicities when usingMendelian randomization (MR). In this paper,

we propose a trans-ethnicMRmethod, TEMR, to improve the statistical power and estimation precision ofMR in a target population that

is underrepresented, using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates trans-ethnic genetic correlation coeffi-

cients through a conditional likelihood-based inference framework, producing calibrated p values with substantially improved MR po-

wer. In the simulation study, compared with other existing MR methods, TEMR exhibited superior precision and statistical power in

causal effect estimation within the target populations. Finally, we applied TEMR to infer causal relationships between concentrations

of 16 blood biomarkers and the risk of developing five diseases (hypertension, ischemic stroke, type 2 diabetes, schizophrenia, andmajor

depression disorder) in East Asian, African, and Hispanic/Latino populations, leveraging biobank-scale GWAS summary data obtained

from individuals of European descent. We found that the causal biomarkers were mostly validated by previous MR methods, and we

also discovered 17 causal relationships that were not identified using previously published MR methods.
Introduction

In recent years, the evolving landscape has witnessed a

progressive expansion of large-scale genome-wide associa-

tion studies (GWASs), leading to the widespread release

and utilization of GWAS summary data among researchers.

At the forefront of these developments is Mendelian

randomization (MR),1,2 a method that hinges on the use

of publicly available GWAS summary data for causal infer-

ence. MR uses genetic variants as instrumental variables

(IVs) to infer the causal effect of an exposure on an

outcome. Three assumptions must be met: relevance (IVs

are strongly associated with the exposure), exchangeability

(IVs are independent of confounders among the exposure

and outcome), and exclusion restriction (IVs affect the

outcome only through the exposure). However, a note-

worthy challenge is that the bulk of available large-scale

datasets predominantly stem from European populations,

such as the UK Biobank (UKB)3–7 and the FinnGen con-

sortium,8 while sample sizes for other ethnicities, notably

Central/South Asians, East Asians, Africans, Hispanics,

etc., remain comparatively limited.9–12 Taking the East

Asian population as an example, despite the substantial

data provided by BioBank Japan (BBJ),11,12 Taiwan Biobank

(TWB),13 and China Kadoorie Biobank (CKB)14 for the East

Asian population (>100,000 individuals), the number of

included participants falls short of those for the extensive

datasets derived from individuals of European descent
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available from the UKB (>500,000 individuals) and the

FinnGen consortium (>620,000 individuals). Moreover,

the UKB incorporates a substantial amount of omics

data, including imaging omics,4 exomes,5 proteomics,6

and metabolomics.7 BBJ, TWB, and CKB have significantly

smaller sample sizes and may also lack some omics data.12

Furthermore, omics databases dedicated to other ethnic-

ities tend to exhibit relatively smaller sample sizes.15–21

The potential inadequacy of GWAS summary data from

smaller samples to furnish robust causal evidence for MR

is apparent. Additionally, causal evidence derived from a

substantial European population cannot be directly

extrapolated to other ethnic groups due to diversity in

the genetic structure between individuals of different eth-

nicities.22,23 The unbalanced sample makeup across global

populations may exacerbate disparities in genetic studies

of non-European individuals. Therefore, it is crucial to

propose a methodology that leverages the genetic correla-

tions24,25 among different ethnicities, harnessing the ad-

vantages of large European datasets to enhance the accu-

racy and statistical power of MR in estimating causal

effects in underrepresented populations.

Numerous trans-ethnic MR (TEMR) analyses have been

published, predominantly in applied research articles.26–28

The common approach in these studies involves con-

ducting separateMR analyses within distinct ethnic groups

and subsequently comparing the nuances in the MR re-

sults between these groups. This is unfair for ethnicities
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with small sample sizes, as the statistical power of MR is

much lower than that observed with large-sample-size

studies. Methodological advancements have been made

in cross-ethnic approaches within GWAS meta-analysis

and the polygenic risk score (PRS). The published trans-

ethnic meta-analysis approaches account for the similarity

in allelic effects between the most closely related popula-

tions while allowing for heterogeneity between more

diverse ethnic groups.29–32 While trans-ethnic GWAS

meta-analysis has the potential to improve the efficiency

of identifying new loci bymerging populations of different

ethnicities, it operates at a mixed-population level and

may not necessarily contribute to the discovery of genetic

loci specific to particular ethnic groups. Trans-ethnic PRS

prediction methods leverage shared genetic effects across

ancestries to increase the accuracy of predicting the genetic

predisposition of complex phenotypes in underrepre-

sented populations.33–35 However, these methods high-

light that, regarding the improvement of the power to

discover new loci or disease predictions, a noticeable gap

in the current literature lies in the lack of attention given

to methods facilitating the transfer of causal effects

observed in MR studies across different ethnicities. Despite

progress in various methodological aspects of trans-ethnic

analysis, there remains an unexplored avenue concerning

the migration of causal effects across ethnic groups in the

context of MR.

In this paper, we propose an MR method based on mul-

tiple ethnic populations, TEMR, to improve the statistical

power and estimation precision of MR in a target popula-

tion that is underrepresented using trans-ethnic large-scale

GWAS summary datasets. Under the framework of the con-

ditional likelihood-based inference framework, TEMR

bridges the causal effects of different ethnicities using a

trans-ethnic genetic correlation coefficient, which is the

correlation of Wald ratios for shared SNPs in different

ethnic populations. In the simulation study, TEMR showed

superior precision and power for causal effect estimation in

the target population relative to the other seven methods

in the case of continuous and binary outcome variables.

Finally, we applied TEMR to infer causal relationships be-

tween concentrations of 16 blood biomarkers and the

risk of developing five diseases (hypertension, ischemic

stroke, type 2 diabetes [T2D], schizophrenia, and major

depressive disorder [MDD]) in East Asian, African, and

Hispanic/Latino populations, leveraging biobank-scale

GWAS summary data taken from individuals of European

descent.
Methods

TEMR model based on two ancestries
Figure 1 serves as a visual summary of the TEMR method and the

framework for our case analysis. Consider a target dataset

fG1;X1;Y1g from an underrepresented ancestry (e.g., East Asian

ancestry) with a small sample size, where G1 is an n13p genotype

matrix and X1 and Y1 are n131 phenotype/disease vectors, which
The Am
represent the exposure and outcome, respectively. Now, we sup-

pose that a biobank-scale dataset fG2;X2;Y2g (e.g., European

ancestry) is also available, where G2 is an n23p genotype matrix

and X2 and Y2 are n231 phenotype/disease vectors that represent

exposure and outcome, respectively. We assume that n2 > n1.

Since we are mainly interested in improving the statistical power

of causal effect estimation in the target population by leveraging

biobank-scale datasets from another auxiliary ancestry, we chose

p independent IVs (SNPs) associated with at least one exposure in

two ancestries (X1 and X2). We can obtain summary-level data on

p SNPs from published GWASs, including b-coefficients (bbY1j
; bbX1j

and bbY2j
;bbX2j

) and their standard errors (bs2
Y1j
; bs2

X1j
and bs2

Y2j
;bs2

X2j
).

When the three core assumptions of MR are all satisfied, we can

obtain the causal effect estimation using theWald ratio for each SNP

bb1j ¼
bbY1jbbX1j

; bb2j ¼
bbY2jbbX2j

; j ¼ 1; :::; p; (Equation 1)

with their variances

bs2
b1j

¼
bb2
Y1j

3 bs2
X1jbb4

X1j

þ
bs2
Y1jbb2
X1j

，bs2
b2j

¼
bb2
Y2j

3 bs2
X2jbb4

X2j

þ
bs2
Y2jbb2
X2j

: (Equation 2)

bb1j and bb2j are the causal effect estimates of exposure on outcome

using the j-th SNPs in the target and auxiliary populations, respec-

tively. We constructed the following multivariable normal distri-

bution model for Wald ratios from two populations:

� bb1jbb2j

�
� N

0@�b1

b2

�
;

0@ bs2
b1j

rbbsb1j
bsb2j

rbbsb1j
bsb2j

bs2
b2j

1A1A; (Equation 3)

where b1 and b2 are the causal effects of exposure on outcome in

the target and auxiliary populations, respectively. They can be

the same or different. rb is the trans-ethnic genetic correlation,

which represents the correlation of the causal effects of one expo-

sure on one outcome in two ancestries (e.g., Chinese and Euro-

pean), and it can be calculated using the Pearson correlation

coefficient

rb ¼ covðz1; z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðz1Þ$varðz2Þ

p ; (Equation 4)

where z1 and z2 are the Z scores of p-dimensional Wald ratio vec-

tors in two ancestries:

z1j ¼
bb1jbsb1j

; z2j ¼
bb2jbsb2j

; j ¼ 1; :::; p: (Equation 5)

We aimed to improve the statistical power of causal effect (b1)

estimation in the target population using the trans-ethnic genetic

correlation (rb), which connects the causal effects of two ethnic-

ities. Based on model 3 (Equation 3) and the conditional normal

distribution formula,36 we have

bb1j

���bb2j � N
�
b1 þ rbbsb1j

bs�1
b2j

�bb2j � b2

�
; bs2

b1j
� rb

2bsb1j

2
�

(Equation 6)

with its variance

var
�bb1j

��bb2j

�
¼ bs2

b1j

�
1 � rb

2
	
< bs2

b1j
: (Equation 7)

Therefore, the variance of the j-thWald ratio estimation bb1j con-

ditional on bb2j is smaller than its original variance as the trans-

ethnic genetic correlation rb increases. Then, we obtained the con-

ditional log likelihood function of model 8 (Equation 8),
erican Journal of Human Genetics 112, 28–43, January 2, 2025 29



Qðb1Þ ¼
X

j
� p lnð2pÞ � 1

2
ln
�bs2

b1j
� rb

2bsb1j

2
�

� 1

2

�bb1j � b1 � rbbsb1j
bs�1
b2j

�bb2j � bb2

��2
�
1 � rb

2
	bsb1j

2
;

(Equation 8)

where bb2 is obtained by inverse-variance weighting (IVW) or other

effective MR methods using a large-scale dataset in the auxiliary

population. We aimed to maximize the log conditional likelihood

function using the Nelder-Mead method37 to obtain the estima-

tion of b1. Then, we used the likelihood ratio test to perform hy-

pothesis testing:

H0 : b1 ¼ 0 vs: H1 : b1s0; (Equation 9)

with the testing statistics

c2 ¼ � 23
Qðbb1Þ
Qð0Þ � c2ð1Þ: (Equation 10)

When there is horizontal pleiotropy, the third assumption ofMR

is violated, and causal effect estimation using the traditional Wald

ratio is biased; therefore, we modeled the TEMR-Wald ratio as

follows:

b1j ¼
bbY1j

� a1jbbX1j

; b2j ¼
bbY2j

� a2jbbX2j

(Equation 11)

where a1j represents horizontal pleiotropy and is unknown. There-

fore, in the first step, we need to estimate a1j and a2j using MR-

Egger regression.

(1) Separately estimate causal effects b
Egger
1 and b

Egger
2 for each

ancestry using MR-Egger regression:

bbY1j
¼ bbX1j

$bEgger
1 þ a1 þ ε1j; ε1j � N

�
0; bs2

Y1j

�
bbY2j

¼ bbX2j
$bEgger

2 þ a2 þ ε2j; ε2j � N
�
0; bs2

Y2j

� (Equation 12)

(2) Separately estimate horizontal pleiotropy a1j and a2j in

each ancestry using

ba1j ¼ bbY1j
� bbX1j

$bbEgger
1ba2j ¼ bbY2j

� bbX2j
$bbEgger

2

(Equation 13)

Then, we can obtain the estimations of the modified Wald ratiosbb1j and bb2j by substituting ba1j and ba2j into Equation 11. Next,

we used models 1, 3, 6, and 8 (Equations 1, 3, 6, and 8) to estimate

b1. The difference is that the bb2 in model 8 (Equation 8) is ob-

tained by horizontal-pleiotropy-robust MR methods using a

large-scale dataset in the auxiliary population.
TEMR model based on multiple ancestries
If there are E > 2 ancestries, the target dataset is fGT ;XT ;YTg, and
the auxiliary datasets are fGa;Xa;Yagða ¼ 2; :::;EÞ, then we set up

the followingmultivariable normal distributionmodel usingWald

ratios from E ancestries:

� bbTjbbAj

�
� N

 �
bT

bA

�
;

 bs2
bTj

SA1

S1A SAA

!!
; (Equation 14)
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where bb ¼
0@ bb2j

:::

1A; b ¼
0@b2

:::

1A; SAA ¼
Aj bbEj

A

bE
,

0BBB@
bs2
b2j

::: rbð2;EÞ bsb2j bsbEj

::: ::: :::

rbðE;2Þ bsbEj bsb2j ::: bs2
bEj

1CCCA
SA1 ¼ �

rbð1;2Þ bsb1j bsb2j ::: rbð1;EÞ bsb1j bsbEj

	
; S1A ¼ SA1

T , and

rbðm;nÞ ¼ rbðn;mÞ . The conditional distribution of bbTj given bbAj is

bbTj

���bbAj � N
�
bT þSA1S

�1
AA

�bbAj � bA

�
; bs2

bTj
� SA1S

�1
AAS1A

�
:

(Equation 15)

Then, we obtained the estimation of bT via maximum likelihood

estimation using the Nelder-Mead method.

Due to the predominant representation of European individuals

in public GWAS summary datasets, with smaller sample sizes for

other ethnicities, our aim was to utilize information from the

European population to improve the precision of causal effect esti-

mation and testing efficacy for smaller sample populations.

Furthermore, if our focus is exclusively on the Asian population,

then the inclusion of other small-sample ethnicities could still

contribute to enhancing the estimation of causal effects on the

Asian population, although the contribution may not be as sub-

stantial as that from the European population.
Simulation settings
In our simulation study, we systematically evaluated the perfor-

mance of TEMR through several steps. We first generated the

GWAS summary statistics using trans-ethnic genetic correlation

rbðe1 ;e2 Þ
:

bbXej
� Nð0:2;0:05Þ for target population;

bbXej
� Nð0:2;0:03Þ for auxiliary population;

0@bbY1j

:::bbYEj

1A� MVN

0BBB@
0@bbX1j

b1

:::bbXEj
bE

1A;

0BBB@
bs2
Y1j

::: rbð1;EÞ bsYEj
bsY1j

::: ::: :::

rbðE;1Þ bsYEj
bsY1j

::: bs2
YEj

1CCCA
1CCCA;

where bs2
Yej

was the variance of bbYej
. Then, we generated the Wald

ratios (bbej) for different ethnicities from the above GWAS summary

statistics:

bbej ¼ bbYej

.bbXej
; e ¼ 1; :::;E

We considered scenarios where the causal effects were the same

or different across different ethnicities, as well as situations

where the causal effects were either zero (be ¼ 0) or non-zero

(be ¼ 0:05). We also explored various scenarios, including

different trans-ethnic genetic correlation coefficients between eth-

nicities. We considered the number of ethnicities to be E ¼ 2 or

E ¼ 4, rbðe1 ;e2 Þ
to vary from 0.1 to 0.9, and that the trans-ethnic ge-

netic correlations are the same or different across different race

pairs. Acknowledging the potential influence of genetic factors

across diverse racial backgrounds, in this study, we aimed to
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account for variations in genetic correlation. Furthermore, in an

effort to optimize precision and statistical power, we systemati-

cally varied the number of SNPs (p ¼ 25, 50, 100, and 200) while

keeping the other parameters constant. This process allows us to

determine how much the precision and statistical power of causal

effect estimates can be significantly improved under different

numbers of IVs. Finally, our simulation study was designed to

encompass four distinct scenarios: one where pleiotropy was ab-

sent (gje ¼ 0), another where balanced horizontal pleiotropy

was present (gje � Uð� 0:01;0:01Þ), a third scenario where direc-

tional horizontal pleiotropy was present (gje � Uð0; 0:01Þ), and

one where some IVs were weakly associated with the exposure

(bbXej
� Nð0; 0:01Þ), especially when there were only several SNPs

(e.g., 5 SNPs) significantly associated with exposure in the target

population but a large number of SNPs (e.g., 95 SNPs) were signif-

icant in other populations. For E ¼ 2, we set bsYej
� Uð0:01;0:13Þ

for the target population and bsYej
� Uð0:0002;0:01Þ for the auxil-

iary population. For E ¼ 4, we set Uð0:01; 0:13Þ, Uð0:02; 0:12Þ,
Uð0:02; 0:25Þ, and Uð0:0002;0:01Þ for four populations. The

smaller bsYej
represent the larger sample size. The bsYej

in different

populations were set in terms of the standard errors of bbYej
in the

GWAS summary statistics of application. Table S14 lists the sample

sizes and quantile ranges of bsYej
for five diseases in different popu-

lations. Taking hypertension as an example, the sample sizes were

2,703 (East Asian), 6,626 (African), 10,526 (Hispanic/Latino), and

337,199 (European), and the corresponding quantile ranges of

standard errors were 0.08–0.10 (East Asian), 0.05–0.12 (African),

0.02–0.11 (Hispanic/Latino), and 0.0006–0.0013 (European). We

then applied our TEMR method to estimate causal effects in the

target population. To benchmark the performance of our

approach, we conducted a comparative analysis with previously

published MR methods2 based on the Wald ratio, including the

IVW method,38 MR-Egger,39 simple median,40 weighted me-

dian,41 simple mode,42 and weighted mode.43 By thoroughly

examining these scenarios, we aimed to provide a comprehensive

assessment of the performance and robustness of TEMR analysis

under diverse genetic and phenotypic conditions.

The evaluation metrics include estimation bias, standard error,

type I error for testing null causal effects, and statistical power

for testing non-null causal effects. We utilized boxplots to demon-

strate the results of bias and standard error, Q-Q plots to showcase

the results of type I error, and bar charts to depict the results of sta-

tistical power. We also report the empirical coverage of 95% confi-

dence intervals for causal effect estimation, and it is calculated by

the bootstrap method.
Application
Weapplied TEMR to estimate the causal effects of several biomarkers

on the risk of developing five diseases (hypertension, ischemic

stroke, T2D, schizophrenia, and MDD) in the East Asian, African,

and Hispanic/Latino populations, leveraging data from large Euro-

pean cohorts. We selected all blood biomarkers from the UKB that

were consistently available across four ethnicities, focusing on 18

biomarkers that could bematched with data from the other popula-

tions. The diseases were chosen for their significant public health

impact, high prevalence, and representative nature of the complex

interplay between genetics and the environment. The GWAS sum-

mary data for the Asian population were mainly sourced from the

BBJ, with a sample size of 170,000. For the African population, the

data were mainly obtained from the Pan-UKB, with a sample size

of 6,000, and for the Hispanic population, the data were obtained
The Am
fromtheGWASCatalog,witha sample sizeof6,000.TheGWASsum-

mary data of the European population were derived from the UKB,

with a sample size of 500,000. The details of the dataset information

are shown in Table S7. First, for each trait, we chose significant SNPs

based on the criterion of p values<5310�8 in each ethnicity. Then,

we obtained the union set of significant SNPs in four ethnicities.

Next, we calculated the combined p value of four ethnicities for

each SNP in the union set. The combined p value for j-th SNP was

calculated by the Fisher’s method44,45: pj ¼ 23 ð1 � FðZjÞÞ, where

Zj ¼ P
eZje ¼ P

eF
�1ð1 � pje =2Þ, F was the standard normal cu-

mulative distribution function, and pje was the p value for the j-th

SNP in the e-th ethnicity. Finally, we conducted the linkage disequi-

librium (LD) clump process (r2 < 0.01) based on the combined

p value using the LD panel in the target ethnicity. For two SNPs

with high LD, we kept the SNP with the smaller combined p value.

After the above steps, we obtained the IVs for each target ethnicity.

Then, we applied TEMR and six other MR methods for -ethnic MR

analysisof the associationsbetweenconcentrationsof16biomarkers

and the risk of developing five diseases. For each target population,

we used the other three datasets as auxiliary datasets. The data

used in our study were all publicly available and obtained written

informed consent from all participants.
Results

Simulation

We conducted a series of simulation studies to evaluate the

performance of the TEMR, comprising seven publishedMR

methods. We assessed variations in the magnitudes of the

following parameters in the scenarios of no pleiotropy and

horizontal pleiotropy: causal effect, trans-ethnic genetic

correlation, and the number of SNPs. We utilized boxplots

to demonstrate the results of estimation bias and standard

error, Q-Q plots to show the results of type I error, and bar

charts to depict the results of statistical power. We also

report the empirical coverage of 95% confidence intervals

for causal effect estimation, and it is calculated by the boot-

strap method.

Figure 2 shows the simulation results of causal effect esti-

mation in the target population when there is one auxil-

iary population and no pleiotropy. The simulation results

demonstrated nearly unbiased estimates of causal effects

for TEMR, regardless of the alignment between causal ef-

fects in the auxiliary and target populations. TEMR also

showed superior precision and power across a broad spec-

trum of scenarios relative to the other seven methods.

The precision of TEMR incrementally improved as rb
increased. When rb < 0:4, the precision of TEMR was

similar to that of the IVWandweightedmedian estimation

(WME) methods. However, when rb R0:4, the precision of

TEMR surpassed that of the other seven methods

(Figure 2A). Additionally, TEMR exhibited stable type I er-

rors unaffected by variations in rb or causal effects in the

auxiliary population (Figures 2B and 2C). Moreover, the

statistical power of TEMR significantly increased with

increasing rb, especially outperforming the other seven

methods when rb R0:4 (Figures 2D and 2E). Specifically,

when rb ¼ 0:6, there was a notable decrease in the
erican Journal of Human Genetics 112, 28–43, January 2, 2025 31



Figure 1. TEMR flowchart
(A) An example of multiple ethnicities,
which also are the ethnicities in which we
are interested in the applied example.
(B) The aim of TEMR is to improve the sta-
tistical power and estimation accuracy of
MR in the target population only using
trans-ethnic large-scale auxiliary dataset.
(C) Flowchart of TEMR model taking two
ethnicities as example: one target popula-
tion and one auxiliary population.
standard error of approximately 15%–20% and an increase

in the power of approximately 20%. At a higher rb, the

standard error decreased by up to 50%, while the power

improved by 40% (Table S1). The empirical coverage of

95% confidence intervals for causal effect estimations us-

ing TEMR were around 95% under any scenarios

(Table 1), while the coverages of other methods including

median-based and mode-based methods were a bit higher

than 95%.

Then, we extended our simulation to a scenario in which

horizontal pleiotropy, both balanced and directional, was

present. In addition to achieving unbiased estimates of

causal effects and stable type I errors, TEMR also main-

tained the advantages of precision and power, as described

above (Figures 3 and S1), while other methods demon-

strated biased causal effect estimations. When there was

directional pleiotropy, the empirical coverage of 95% con-

fidence intervals for TEMR and simple mode methods was

around 95%, while other methods were far below 95%

(Table S1). Furthermore, we also incorporated the scenario

where the utilized SNPs were weak IVs, a common chal-

lenge in MR studies. Our results indicated that when the

target population comprised over 90% of weak IVs, the

variance of causal effect estimations across all methods

saw a marked increase. However, the TEMR demonstrated

decreasing variance, with its accuracy continuing to

improve as rb increased (Figure S2; Table S2). The empirical

coverage of 95% confidence intervals for TEMR was a bit

lower than 95%, while that of mode-based methods

reached 1. This observation underscores the robustness

and effectiveness of TEMR in the presence of weak IVs,

highlighting its potential as a reliable method for esti-
32 The American Journal of Human Genetics 112, 28–43, January 2, 2025
mating causal effects even under less-

than-ideal conditions. Additionally,

we validated our findings by gener-

ating individual-level data to calculate

summary-level data and conducting

similar simulations, which yielded

consistent results (Figures S3 and S4).

To investigate the impact of the

number of SNPs (Figure 4; Table S3)

on the causal effect estimates, we first

conducted a thorough exploration by

varying the number of SNPs while

maintaining other parameters at their
initial settings. The simulation results indicated that an in-

crease in the number of SNPs leads to greater precision and

greater test power in the causal effect estimates derived

from the TEMR analysis. While other methods also

demonstrated improvements with more SNPs, the

enhancement was not as pronounced as that observed

with TEMR.

Additionally, we explored the causal effect estimates us-

ing TEMR when there was a negative genetic correlation

between ethnic groups. The results indicated that precision

and statistical power significantly improved as the absolute

value of the genetic correlation increased, which was

consistent with the aforementioned findings (Figures S5

and S6; Table S4).

Subsequently, we considered the case of multiple auxil-

iary populations, taking three auxiliary populations and

one target population as an example, assuming uniform

causal effects across different populations. In the absence

of horizontal pleiotropy, TEMR produced nearly unbiased

estimates of causal effects. The precision and statistical po-

wer of the TEMR analysis also increased as rb increased;

when rb R0:4, the precision and power of TEMR surpassed

those of the other methods (Figure 5A). Specifically, when

rb ¼ 0:6, there was a notable decrease in the standard error

of approximately 15%–20%and an increase in the power of

approximately 20%. At a higher rb, the standard error

decreased by up to 50%, while the power improved by

40% (Figure 5C). Furthermore, TEMR exhibited stable

type I errors, which were unaffected by variations in rb
(Figure 5B). In cases involving horizontal pleiotropy,we ob-

tained results consistent with our previous findings

(Figure S7; Table S5). We also obtained consistent results



Figure 2. Simulation results for causal effect estimation in the target population when there is one auxiliary population (no
pleiotropy)
(A) Boxplots show the performances of causal effect estimation in the target population.
(B and C) Q-Q plots show the performances of type I error rates of zero causal effect estimation in the target population when the causal
effects of the auxiliary population are 0 and 0.05, respectively.
(D and E) Bar chart plots show the performances of statistical power of non-zero causal effect estimation in the target population when
the causal effects of the auxiliary population are 0 and 0.05, respectively. IVW, inverse-variance weighted method.
when the genetic correlationswere negative (Figures S8 and

S9; Table S6).Moreover, compared tohavingonlyone auxil-

iary population, the precision (standard error) of the causal
The Am
effect estimate obtained from three auxiliary populations

also improved with the increase in genetic correlations,

with an improvement of approximately 15% when
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Table 1. Empirical coverage of 95% confidence intervals for causal effect estimation

b1 b2 rb IVW TEMR
Simple
median

Weighted
median

Penalized
median

Simple
mode

Weighted
mode

Penalized
mode

0 0 0.1 0.958 0.952 0.979 0.979 0.968 0.989 0.962 0.970

0 0 0.2 0.954 0.946 0.976 0.976 0.962 0.983 0.962 0.975

0 0 0.4 0.953 0.944 0.979 0.979 0.966 0.980 0.967 0.985

0 0 0.6 0.955 0.946 0.975 0.975 0.965 0.987 0.968 0.977

0 0 0.8 0.963 0.932 0.976 0.976 0.970 0.985 0.975 0.984

0 0 0.9 0.963 0.934 0.975 0.975 0.962 0.985 0.960 0.980

0 0.05 0.1 0.951 0.938 0.974 0.974 0.965 0.981 0.959 0.980

0 0.05 0.2 0.946 0.946 0.978 0.978 0.967 0.984 0.956 0.983

0 0.05 0.4 0.957 0.942 0.977 0.977 0.966 0.981 0.962 0.974

0 0.05 0.6 0.954 0.954 0.975 0.975 0.968 0.977 0.964 0.985

0 0.05 0.8 0.963 0.926 0.984 0.984 0.960 0.980 0.956 0.977

0 0.05 0.9 0.948 0.922 0.977 0.977 0.962 0.984 0.963 0.981

0.05 0 0.1 0.950 0.926 0.980 0.980 0.970 0.981 0.961 0.976

0.05 0 0.2 0.963 0.938 0.985 0.985 0.967 0.988 0.964 0.983

0.05 0 0.4 0.958 0.932 0.980 0.980 0.962 0.982 0.970 0.983

0.05 0 0.6 0.961 0.952 0.966 0.966 0.973 0.987 0.971 0.986

0.05 0 0.8 0.951 0.926 0.980 0.980 0.963 0.995 0.965 0.979

0.05 0 0.9 0.954 0.928 0.973 0.973 0.964 0.983 0.960 0.978

0.05 0.05 0.1 0.954 0.940 0.970 0.970 0.964 0.987 0.962 0.979

0.05 0.05 0.2 0.957 0.946 0.980 0.980 0.959 0.980 0.969 0.979

0.05 0.05 0.4 0.964 0.944 0.976 0.976 0.969 0.987 0.964 0.982

0.05 0.05 0.6 0.944 0.946 0.985 0.985 0.973 0.991 0.971 0.984

0.05 0.05 0.8 0.950 0.936 0.976 0.976 0.963 0.981 0.966 0.984

0.05 0.05 0.9 0.953 0.935 0.977 0.977 0.966 0.988 0.965 0.982
rb ¼ 0:9. Furthermore, we also incorporated the scenario

where the utilized SNPs exhibited weak IVs. The results

indicated that when the target population comprised over

90% of weak IVs, the precision across all methods saw a

marked increase. However, the TEMR demonstrated the

decreasing variance of causal effect estimation, with its ac-

curacy continuing to improve as rb increased (Figure S10;

Table S7).

Application

In this section, we applied TEMR to infer the causal rela-

tionships between different biomarkers and five diseases

(hypertension, ischemic stroke, T2D, schizophrenia, and

MDD) in the East Asian, African, and Hispanic/Latino pop-

ulations, leveraging GWAS summary data from large Euro-

pean cohorts (Table S8). Initially, we identified 16 specific

biomarkers that were significantly associated with at least

2 SNPs from a multitude of biomarkers. Then, we calcu-

lated the trans-ethnic genetic correlation for all pairs of

biomarkers, and the results are shown in Figure 6

(Table S9). The results showed that there were trans-ethnic
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genetic correlations between the causal effects of all bio-

markers and diseases in the four populations, which could

be analyzed by TEMR. Among these, the absolute correla-

tion coefficient of 19 pairs was 0.6 (total 163 5¼ 80 pairs),

which are shown in Figure 6.

Then, we performed TEMR and the other seven methods

to explore the causal relationships between 16 biomarkers

and five diseases. The results indicated that compared with

the other seven methods, TEMR identified a greater num-

ber of biomarkers with significant causal associations

with various outcomes (Figure 7). Among these, TEMR

emerged as the method that identified the most significant

biomarker pairs in target populations, with IVW following

close behind (Table S10), and most of the significant

biomarker pairs identified by the other methods were

also detected by TEMR but with smaller p values. Notably,

there were 5 significant relationships across different

ethnic groups that were identified as significant in the

TEMR analyses (p < 0.000625 [0.05/80]) but not identified

in other MR methods: 3 causal relationships in East Asian

and 2 causal relationships in Hispanic/Latino populations.
025



Figure 3. Simulation results for causal effect estimation in the target population when there is one auxiliary population (directional
horizontal pleiotropy)
(A) Boxplots show the performances of causal effect estimation in the target population.
(B and C) Q-Q plots show the performances of type I error rates of zero causal effect estimation in the target population when the causal
effects of the auxiliary population are 0 and 0.05, respectively.
(D and E) Bar chart plots show the performances of statistical power of non-zero causal effect estimation in the target population when
the causal effects of the auxiliary population are 0 and 0.05, respectively. IVW, inverse-variance weighted method.
If we relax the threshold (p < 0.05), there were 17 relation-

ships across different ethnic groups that were identified as

significant in the TEMR analyses but not identified in other
The Am
MR methods: 8 causal relationships in East Asian, 4 causal

relationships in African, and 5 causal relationships in

Hispanic/Latino populations.
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Figure 4. Simulation results for causal effect estimation in the target population with different numbers of SNPs
(A) Boxplots show the performances of causal effect estimation in the target population.
(B and C) Bar chart plots show the performances of statistical power of non-zero causal effect estimation in the target population. IVW,
inverse-variance weighted method.
Firstly, for hypertension, the TEMR has revealed that a 1

SD increase of the basophil count (109 cells/L) was associ-

ated with a 0.26-fold decrease in the risk of hypertension

in the East Asian population (odds ratio [OR] ¼ 0.26;

Table S11), and for every 1 SD mmol/L increase in glucose,

the risk of hypertension increased by 2.16 times in the

Hispanic/Latino population (OR ¼ 2.16; Table S13). The

physiological role of basophils in immune responses re-

mains somewhat of an enigma despite being observed for

many years, with some studies reporting that basophils

have a negative regulatory effect in immune re-

sponses.46,47 However, in recent years, multiple studies

have suggested that higher basophil counts may also serve

a protective role in the risk of developing various diseases.

Lind et al. have suggested that in the European population,

the higher basophil counts in patients with narcolepsy

may represent a positive response of the immune system

to narcolepsy. Liang et al. demonstrated that the basophil

count in patients with systemic lupus erythematosus was

significantly lower than that in healthy controls.48–50 Ba-

sophils may contribute to the maintenance of vascular
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health by influencing the tone and function of blood ves-

sels, and a balanced basophil count may aid in the healthy

functioning of the vasculature. Fasting glucose is a stan-

dard measure for diabetes. Insulin resistance, common in

diabetes, can lead to high blood pressure by increasing kid-

ney’s sodium retention, activating the nervous system,

changing ion transport, and causing blood vessel wall

thickening.51,52 A retrospective cohort study from Japan

has shown that higher fasting blood glucose was an inde-

pendent risk factor for the development of hypertension.53

Next, for ischemic stroke, the TEMR found that DBP was

a risk factor, that is, an increase of 1 SD mmHg in DBP re-

sulted in a 2.06-fold increase in the risk of disease in East

Asian population (OR¼ 2.06; Table S11) and a 1.06-fold in-

crease in the Hispanic/Latino population (OR ¼ 1.06;

Table S13). Higher height (OR ¼ 0.91; Table S11) and

mean corpuscular hemoglobin (OR ¼ 0.92; Table S11)

were protected factors of ischemic stroke in East Asians.

A 1 SD increase of triglyceride (109 cells/L) was associated

with a 2.19-fold increase in the risk of ischemic stroke in

the African population (OR ¼ 2.19; Table S12). Elevated
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Figure 5. Simulation results for causal effect estimation in the target population when there are multiple auxiliary populations
(A) Boxplots show the performances of causal effect estimation in the target population.
(B) Q-Q plots show the performances of type I error rates of zero causal effect estimation in the target population.
(C) Bar chart plots show the performances of statistical power of non-zero causal effect estimation in the target population. IVW, inverse-
variance weighted method.
DBP increases the stress on the blood vessel walls, which

may lead to alterations in hemodynamics and, conse-

quently, heighten the risk of thrombus formation.54

Numerous studies in the European population have

demonstrated a clear association between hypertension

and the occurrence of ischemic stroke, highlighting the

importance of blood pressure control in stroke prevention

strategies.54–56 Krieg et al. found that increased body

height was negatively associated with coronary heart dis-

ease in Europeans.57 A European cohort study indicated

that elevated hemoglobin was also associated with

increased mortality for ischemic stroke.58 The Copenha-

gen City Heart Study found that the incidence of ischemic

stroke increased with increasing levels of nonfasting tri-

glycerides,59 and this also supported the result of TEMR.

Additionally, with each 1 SD mmHg increase in DBP, the

risk of MDD decreased by 44% in East Asian (OR ¼ 0.56)

and 43% in African (OR ¼ 0.57) populations, while an in-

crease of 1 SD mmol/L in TC led to a 1.25-fold increase

in the risk of MDD (OR ¼ 1.25) in the African population,

and for every 1 SD mmol/L increase in glucose, the risk of

MDD increased by a factor of 1.35 (OR ¼ 1.35) in the East

Asian population. Besides, for every 1 SD increase in

neutrophil count (109 cells/L), the risk of schizophrenia
The Am
increased by a factor of 1.91 in the Hispanic/Latino popu-

lation (OR ¼ 1.91; Tables S11–S13). For DBP, its protective

role in MDD might be related to better cerebrovascular

health, as adequate blood pressure is crucial for maintain-

ing proper brain perfusion and oxygenation, which are

essential for emotional regulation and mood stabiliza-

tion.60 Cholesterol is essential to axonal functioning and

myelin formation in the central nervous system.61

Coupled with biological plausibility, lipid profile distur-

bances have been reported in patients withMDD in the Eu-

ropean population.62,63 Elevated glucose concentrations

are commonly linked to insulin resistance, a condition

that can precipitate neurochemical imbalances within

the brain. Specifically, it can disrupt the homeostatic equi-

librium of key neurotransmitters, including glutamate and

g-aminobutyric acid (GABA), which play pivotal roles in

the modulation of affect.64,65 As the relationship between

neutrophil count and the risk of developing schizophrenia

is complex and not fully understood, some studies have

suggested that increased neutrophil activity may be associ-

ated with a reduced risk of the disease, potentially due to its

role in modulating inflammatory responses.66,67

Finally, for T2D, with each 1 SD increase in platelet count

(109 cells/L), the risk of T2D decreases by 32% in East Asian
erican Journal of Human Genetics 112, 28–43, January 2, 2025 37



Figure 6. Heatmap of trans-ethnic genetic correlation for 16 biomarkers and four diseases
The color intensity indicates the strength of the correlation. Warmer colors, tending toward red, signify a correlation coefficient ap-
proaching 1, indicating a strong positive correlation. Conversely, cooler colors, leaning toward blue, denote a correlation coefficient
nearing �1, suggesting a strong negative correlation. **

��rb�� > 0:6.
(OR¼0.68;TableS11)and2%inHispanic/Latino(OR¼0.98;

Table S13) populations, an increase of each 1 SD in lympho-

cyte count (109 cells/L) leads to a 0.47-fold decrease of T2D

risk in the Hispanic/Latino population (OR ¼ 0.47;

Table S13), and each 1 SD increase in mean corpuscular he-

moglobin concentration (MCHC) (g/dL) leads to a 2.35-

fold increase of T2D risk in the African population (OR ¼
2.35; Table S12), while BMI was considered as a risk factor

in the East Asianpopulation (OR¼ 2.16; Table S11). The pro-

tective role of platelet count might be related to the way
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platelets interact with insulin resistance and inflammation,

which are key players in the pathogenesis of T2D. A study

from Saudi Arabia indicated that, compared to the control

group, the mean platelet volume in patients with T2D was

significantly reduced.68 Benjamin er al. found that increased

MPV in Europeans was significantly associated with dia-

betes.69 The causal relationship between lymphocyte count

and T2D could be linked to the immune system’s ability to

modulate inflammation, which is crucial in maintaining

glucose homeostasis.70 Several lymphocyte subtypes were
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Figure 7. Results of trans-ethnic MR analysis for
causal relationships from 16 biomarkers to four
diseases
Different colors represent the�log10(p) calculated
by different methods. The triangle points repre-
sent the relationships that are significant in
TEMR results but not significant in other
methods. The solid or dashed points indicate
whether the causal effects are significant
(p < 0.05). In cases where the MR-Egger test sug-
gests the presence of horizontal pleiotropy be-
tween biomarker pairs, the p values presented
are those adjusted for such pleiotropy.
found to associated with the risk of T2D in Europeans.71 The

relationships of MCHC and T2D were not significant in the

study based on Europeans.72 Many studies have demon-

strated that BMIwas a risk factor for T2D indifferent popula-

tions.73–75
The American Journal of
Discussion

In this paper, we propose a trans-ethnic MR

method, TEMR, to improve the statistical

power and estimation accuracy of MR in

the target population using only trans-

ethnic large-scale GWAS summary datasets.

TEMR showed superior precision and po-

wer for causal effect estimation in the

target population relative to other pub-

lished MR methods in the simulation

study. Leveraging biobank-scale GWAS

summary data from Europeans, the infer-

ence of causal relationships between con-

centrations of 16 blood biomarkers and

the risk of developing five diseases in East

Asian, African, and Hispanic populations

revealed 17 causal relationships that were

not found using previously published MR

methods.

TEMR bridges the causal effects of multi-

ple ethnicities using a trans-ethnic genetic

correlation coefficient. With the increase

in trans-ethnic genetic associations, the

statistical power of causal effects in the

non-European population is significantly

improved. Trans-ethnic genetic correlation

measures the extent to which genetic vari-

ants influence phenotypes similarly across

different populations. With the advent of

genomic technologies, researchers were

able to conduct GWASs of large cohorts

from different ethnicities. These studies

revealed that while there is substantial

genetic variation between different popula-

tions, certain variants have similar fre-

quencies and effects across groups.

Numerous studies have shown that the ge-

netic variants for many traits are highly
correlated across different populations. Trans-ethnic

genetic correlation is assessed using various methods,

such as multi-ancestry GWAS, TWAS, and PRS predic-

tion, and can be estimated by numerous methods,

including LD score regression,59 HDL,76 GCTA-GREML,77
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BOLT-REML,78 and PAINTOR.79 These methods can

achieve much greater accuracy than Z score-based

methods. In this paper, TEMR was conducted using a sim-

ple Z score method to obtain results quickly, and using

these methods will improve the performance of TEMR.

TEMR is suitable for traits with high genetic associations

between different ethnicities. When the genetic associa-

tion between traits is nearly zero, the TEMRmethod yields

results similar to those obtained with traditional MR.

There are several limitations in our study. The impact of

pleiotropy is an important topic in MR studies. Here, we

consider the case of no pleiotropy or horizontal pleiotropy.

For the latter, we proposed a two-step process to remove

the pleiotropy effect from the traditional Wald ratio using

MR-Egger regression, obtaining the TEMR-Wald ratio esti-

mation. The limitation of this process is that it also re-

quires the InSIDE assumption to be met, and the influence

of correlated pleiotropy cannot be eliminated. An available

solution is to detect outliers using published methods such

as radial MR and MR-PRESSO and then remove them

before conducting TEMR. In addition, when the data are

obtained from people with multiple ethnicities, TEMR

can improve the statistical power of causal effect estima-

tion only in one target population, leveraging other target

populations and the European population. In the future,

we will extend TEMR to improve the statistical power of

causal effect estimation in multiple target populations,

leveraging only the European population. The degree of

improvement in statistical power is closely related to the

number of IVs and the magnitude of trans-ethnic genetic

correlations.

In application, we use the GWAS summary statistics of

Africans from the UKB. In general, there are (both genetic

and environmental) differences between individuals of Af-

rican ancestry living in developed countries (such as the

UKB sample) and individuals living in Africa. Therefore,

our results are restricted to the African population in the

UKB but not to all African individuals, especially when

we take African ancestry as the target population. When

the African ancestry is the auxiliary population, regardless

of which country the African population is from, TEMR

can improve the statistical power of causal effect estima-

tion in other target populations. In addition, all of the 17

associations identified by TEMR had previously been

observed in either observational, cohort or MR studies

based on Europeans. The results reveal that some relation-

ships are only significant in one or two ancestries but not

significant in other ancestries. This may be because the

auxiliary datasets could not provide enough statistical po-

wer for TEMR to detect these relationships or due to ge-

netic and environmental differences among ancestries

that modify the causal associations between biomarkers

and diseases.

In conclusion, we proposed a trans-ethnic MR method,

TEMR, to improve the statistical power and estimation ac-

curacy of MR in the target population using only a trans-

ethnic large-scale GWAS summary dataset. This study has
40 The American Journal of Human Genetics 112, 28–43, January 2, 2
important guiding significance for the discovery of new

disease-related factors.
Data and code availability

The GWAS summary data in the UKB are publicly available at UK

Biobank: http://www.nealelab.is/uk-biobank. The GWAS sum-

mary data in BBJ are publicly available at BBJ: https://pheweb.

jp/. The GWAS summary data in Pan-UKB are publicly available

at Pan-UKB: https://pan.ukbb.broadinstitute.org/. Other GWAS

summary data are publicly available at the IEU OpenGWAS proj-

ect: https://gwas.mrcieu.ac.uk/ and GWAS Catalog: https://www.

ebi.ac.uk/gwas/. All the analyses in our article were implemented

by R software (v.4.3.2). R packages used in our analysis include

TwoSampleMR, MendelianRandomization, ggplot2, plinkbinr, and

ieugwasr. The TEMR package can be implemented by GitHub:

https://github.com/hhoulei/TEMR. All the codes for simulation

are uploaded in GitHub: https://github.com/hhoulei/TEMR_

Simul.
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