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Abstract
Background  Molecular-clinical prognostic models for Myelodysplastic syndromes (MDS) offer more accurate 
prognosis predictions, yet existing models often overlook the heterogeneity of mutational profiles against the 
cytogenetic background. Moreover, how to apply these models in regions where large panel NGS is unaffordable 
remains a significant challenge to be addressed.

Methods  A total of 237 NK MDS patients from our center were used as the training set to screen for key variables and 
develop a prognostic model with overall survival (OS) as the endpoint. The C-index was used as the main evaluation 
metric to assess the model’s performance. The IWG-PM cohort (n = 691) was used as an external independent 
validation set to evaluate the generalizability of the model.

Results  We developed a seven-parameter molecular-clinical prognostic model, the Molecular Prognostic Scoring 
System for NK MDS (NK-PSS-M), which only incorporates three gene mutations as parameters. The NK-PSS-M 
can reliably predict OS and leukemia-free survival (LFS). The performance of NK-PSS-M was comparable to that 
of the Molecular International Prognostic Scoring System (IPSS-M), and it significantly outperformed the Revised 
International Prognostic Scoring System for MDS (IPSS-R).

Conclusions  The NK-PSS-M model improved the risk stratification of non-molecular models and provided a reliable 
alternative to the IPSS-M. This strategy provides insights into how resource-scarce regions can apply molecular-clinical 
models.
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for normal karyotype myelodysplastic 
syndromes
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Background
Myelodysplastic syndrome (MDS), a heterogeneous 
clonal hematopoietic disorder, is characterized by cyto-
penia, lineages dysplasia, and an increased risk of trans-
formation to acute myeloid leukemia [1]. MDS patients 
exhibit significant heterogeneity in clinical manifesta-
tions and prognoses; some experience rapid deterioration 
within months of diagnosis, whereas others may live with 
the disease for decades [2]. Therefore, accurate predictive 
models are essential for the management of MDS which 
can assess disease progression at the initial stage of diag-
nosis and assist clinicians in formulating clinical treat-
ment strategies [3, 4].

Unlike the International Prognostic Scoring System 
(IPSS) and the Revised IPSS (IPSS-R) which was based 
on cytopenia, BM blast burden, and cytogenetic abnor-
malities, modern prognostic models include molecular 
features as key variables [5, 6]. Integrating molecular 
factors into non-molecular prognostic models like IPSS 
or IPSS-R can significantly enhance predictive accu-
racy. For instance, Nazha et al. [7] combined age, TP53, 
SF3B1, and EZH2 with the IPSS-R score, improving the 
model’s predictive performance (concordance index 
[C-index] = 0.73 vs. 0.69 for the IPSS-R). The molecular 
IPSS(IPSS-M) integrates clinical features, cytogenetic 
data, and information of 31 gene mutations reclassifying 
nearly half of IPSS-R model patients into more appropri-
ate risk categories [8].

However, next-generation sequencing (NGS) is an 
expensive process, which can pose significant challenges 
for resource-limited centers [6]. Moreover, fixed and lim-
ited panels may not provide sufficient data to meet the 
requirements of the molecular model and can inevitably 
lead to missing data. Although the IPSS-M has addressed 
this issue and introduced targeted remedies, the accuracy 
of model predictions can be significantly affected by gene 
deletions, with accuracy dropping below 50% when dele-
tion numbers are high [9]. There is an urgent need for 
reliable molecular-clinical prognostic models that can be 
applied in resource-limited situations.

Another issue worth noting is that models devel-
oped have often been constructed based on either all 
MDS patients or subgroups categorized based on the 
IPSS-R, which may lead to the oversight of cytogenetic 
background in the identification of genes as model 
parameters. In our previous investigation focusing on the 
molecular profiles of 928 cases of normal karyotype (NK) 
MDS across two cohorts, we unveiled distinct patterns 
of gene mutation frequency and prognostic outcomes 
among these patients. For instance, TP53 gene mutation 
is commonly regarded as an adverse prognostic indica-
tor and frequently incorporated into various molecular-
clinical prognostic models for MDS, while in the context 
of normal karyotype MDS, it exhibited lower mutation 

incidence, reduced variant allele frequency (VAF), dimin-
ished occurrence of multi-hit events, and lacked prog-
nostic relevance [10–12]. Accordingly, the prognostic 
mutation spectrum identified in the broader MDS pop-
ulation may not reflect the specific mutation patterns 
observed in the subset of patients with normal karyotype 
[13, 14]. Incorporating molecular features that do not 
accurately represent the subset of patients with normal 
karyotype into the MDS prognostic model may lead to 
decreased prediction precision and could inadvertently 
result in the misallocation of resources.

Drawing on insights from our comprehensive explo-
ration of the unique molecular characteristics of NK 
MDS, we constructed a lightweight molecular-clinical 
model, NK-PSS-M, which is more likely to be applied in 
resource-limited centers. This model has sufficient capa-
bility to serve as a reliable alternative to IPSS-M when its 
application is limited.

Materials and methods
Patient cohort, genomic information acquisition, and 
analysis
The study was conducted under the approval of the Eth-
ics Committee of the First Affiliated Hospital of Zheji-
ang University and in accordance with the Declaration 
of Helsinki, with informed consent obtained from all 
participants. The baseline characteristics of our patient 
cohort, genomic information acquisition, and analysis 
methodologies were extensively described in our previ-
ous publications [14]. Accordingly, we enrolled 237 de 
novo NK MDS patients based on WHO 2016 criteria [15] 
who underwent comprehensive pre-treatment exami-
nations including NGS, bone marrow (BM) examina-
tion, cytogenetic, and hematological analysis to confirm 
MDS diagnosis. To ensure diagnostic accuracy, at least 
20 metaphase spreads were analyzed using G-banding 
or R-banding to detect the presence of NK in MDS [16, 
17]. For external validation, data from NK primary MDS 
patients from the International Working Group for the 
Prognosis of MDS (IWG-PM) cohort of the IPSS-M 
study, available through the cBioPortal platform, were 
used (https://www.cbioportal.org/). All patients included 
in this study were treatment-naive and had primary nor-
mal karyotype MDS. The patient selection process was 
not influenced by clinical characteristics, treatment, or 
other biases. The parameters for our prognostic model—
patient age, peripheral blood cell count, bone marrow 
blast percentage, and gene mutation data—were cho-
sen for their widespread availability in clinical practice, 
ensuring the model’s ease of implementation. Genomic 
analysis entailed targeted NGS on individual BM cells 
with a predefined gene list, identifying pathogenic muta-
tions with a variant allele frequency > 2%. Genes with 
mutation frequencies < 1% were excluded, culminating in 
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a focused list of 23 significant genes including SETBP1, 
U2AF1, ASXL1, CBL, CEBPA, CSF3R, DNMT3A, 
ETV6, EZH2, IDH1, IDH2, KRAS, NPM1, NRAS, PHF6, 
PTPN11, RUNX1, SF3B1, SRSF2, TP53, WT1, ZRSR2, 
and TET2.

Statistical analysis
Overall survival (OS) represents the duration from the 
initial diagnosis to either the date of death or the most 
recent follow-up. Leukemia-free survival (LFS) measures 
the time from the point of diagnosis to the occurrence 
of leukemia transformation or death due to any reason. 
Survival probabilities were evaluated using Kaplan–
Meier estimates, and the statistical significance of differ-
ences was analyzed with the log-rank test. To normalize 
the distribution of skewed platelet (PLT) count data, we 
applied a natural logarithm transformation; no modifi-
cations were necessary for the other hematological data. 
Age was categorized using a 60-year threshold.

In total, 29 variables were included in the analysis, 
with age and mutation status being binary variables and 
the remaining variables being continuous variables. A 
fixed random seed was set to ensure the reproducibility 
of the analysis. Preliminary variable filtering for factors 
affecting OS was performed using univariate Cox regres-
sion, and variables with a P value < 0.05 were considered 
as candidates for analysis. To develop a parsimonious 
model, we used the least absolute shrinkage and selection 
operator (LASSO) algorithm to filter and select variables; 
this algorithm can exclude weaker variables by increas-
ing the penalty while retaining stronger variables. The 
R package “glmnet” [18] was used to perform LASSO 
regression and select variables associated with OS, with 
10-fold cross-validation used to estimate the LASSO pen-
alty weight (λ). The λ value (lambda. min) corresponding 
to the minimum mean squared error was selected. The 
resulting parameters were used for stepwise Cox regres-
sion to obtain the final model and regression coefficients. 
Time-dependent receiver operating characteristic (ROC) 
curves were generated for different prediction times. 
Harrell’s C-index evaluated model discriminatory ability 
and the R package “compareC” was used to test for dif-
ferences among models. Calibration curves were used to 
evaluate the consistency between predicted and observed 
probabilities. Decision curve analysis (DCA) evalu-
ated the clinical effectiveness of the models. Categorical 
covariates were analyzed using Fisher’s test or χ2 test. 
We used simplified P values for some results, where “ns” 
indicates not significant and *, **, ***, and **** indicate 
P values of < 0.05, < 0.01, < 0.001, and < 0.0001, respec-
tively. Statistical analyses were conducted, and figures 
were created, using R software (version 4.2.1; R Develop-
ment Core Team, Vienna, Austria).

Results
Patient cohorts and genetic profiles
In keeping with our earlier descriptions, the develop-
ment of our model utilized two cohorts: a derivation set 
comprising 237 cases from our center and an external 
validation set of 691 NK MDS patients from the IWG-
PM cohort. These cohorts showed typical geographical 
variations in aspects such as patient age, bone marrow 
blast percentage, and cytopenias (Table S1) [14]. Broadly, 
the profiles of the top 10 genes by mutation frequency 
showed general similarity across both cohorts (Fig. S1A, 
B). Additionally, a discernible decline in TP53 mutation 
frequency was observed, consistent with trends noted in 
our previous research.

Variable selection and model construction
Univariate Cox regression analysis revealed that, of the 
Age, ln(PLT), HB, BM Blasts, and seven genes (CEBPA, 
EZH2, NPM1, NRAS, RUNX1, U2AF1, and SRSF2) that 
correlated with OS, only ln(PLT) and hemoglobin (HB) 
were protective factors; all other clinical features and 
genes were identified as risk factors (Fig. 1A). The abso-
lute neutrophil count was not significantly associated 
with OS and LFS, which is consistent with IPSS-M, and 
therefore was excluded from further analysis. Among the 
seven genes, the CEBPA mutation was significantly asso-
ciated with OS and had the highest HR (4.97, 95% CI: 
2.45–10.1, P < 0.001).

The features with P < 0.05 were further subjected to 
LASSO analysis in the univariate Cox regression analy-
sis. While both “lambda.1se” and “lambda.min” were 
provided as potential λ value, we selected “lambda.min” 
as our criterion considering that “lambda.1se” would 
exclude PLT from the model which has been recog-
nized as a crucial clinical parameter in MDS and has 
been widely incorporated into well-established prognos-
tic scoring systems such as IPSS-R and IPSS-M. Under 
“lambda.min”, Age, ln(PLT), HB, BM Blasts, CEBPA, 
U2AF1, RUNX1, and NRAS were identified as signifi-
cant risk predictors (Fig. S1C-D). The backward stepwise 
Cox regression analysis retained the seven parameters 
except NRAS. The final model included age, ln(PLT), 
HB, BM Blasts, CEBPA, U2AF1, and RUNX1 as risk 
predictors. Based on the regression coefficients, a risk 
score was calculated using the following formula: Risk 
score = age (≥ 60) * 0.84 + BM Blasts * 0.1 – HB * 0.15 – 
ln(PLT) * 0.27 + CEBPA (mutation) * 0.84 + U2AF1 (muta-
tion) * 0.94 + RUNX1 (mutation) * 0.55 (Fig.  1B). Using 
maximally selected rank statistics, a “− 1.1” risk score 
was identified as the optimal cut-off value. High- and 
low-risk patients had values higher and lower than the 
cut-off value, respectively (Fig.  1C). Next, we divided 
patients into very high- (risk score > 0, 17%), high- (risk 
score > − 1.1, 25%), intermediate- (risk score > − 1.7, 
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Fig. 1  Development and risk classification of NK-PSS-M. (A) Univariate Cox regression forest plot, with colors indicating the significance of the variables. 
(B) Multivariate Cox regression forest plot, with diamonds representing hazard ratios (HRs) and line segments representing confidence intervals. (C) The 
optimal risk score cut-off value is calculated using maximally selected rank statistics to classify patients into high- and low-risk groups. (D) Density plot of 
the NK MDS risk scores from 237 patients in the training set. The x-axis represents the risk score calculated by NK-PSS-M; the vertical dashed line represents 
the cut-off value. The groups are represented by their abbreviated names, and the numbers below indicate the proportion of each group. VL, very low; L, 
low; M, intermediate; H, high; VH, very high
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22%), low- (risk score > − 2.8, 31%), and very low- (risk 
score ≤ − 2.8, 5%) risk groups (Fig. 1D). Prognoses varied 
significantly among these different groups, with the very 
low- and low-risk groups not reaching median survival. 
Conversely, the intermediate-, high-, and very high-risk 
groups had a median survival of 6.46 (95% CI: 6.142–
NA), 2.81 (95% CI: 1.8–NA), and 1.21 (95% CI: 0.926–
1.92) years, respectively, (P < 0.0001; Fig. 2A). The 5-year 
time-dependent area under the ROC curve values were 
0.78, 0.86, 0.86, 0.86, and 0.89, respectively (Fig. 2B). We 
applied the same parameters to calculate the risk score of 
all patients in the validation set and assigned patients to 
the same risk groups based on the thresholds.

According to the survival analysis results, the model 
maintained excellent discriminatory ability in the vali-
dation cohort. The very low-risk group did not reach 
median survival, whereas the low-, intermediate-, high-, 
and very high-risk groups had median survival times of 
7.18 (95% CI: 5.91–9.03), 4.71 (95% CI: 3.46–7.62), 2.45 
(95% CI: 2.02–3.38), and 1.42 (95% CI: 1.1–1.90) years, 
respectively (P < 0.0001). The 5-year time-dependent area 
under the ROC curve values were 0.7, 0.74, 0.74, 0.73, 
and 0.74, respectively (Fig. S2A, B).

In the training set, the very low-risk group not reach 
median LFS, whereas the low-, intermediate-, high-, 
and very high-risk groups had median LFS times of 8.92 
(95% CI: 7.384–NA), 6.46 (95% CI: 6.142–NA), 2.55 (95% 
CI: 1.233–NA), and 1.06 (95% CI, 0.863–1.63) years, 
respectively (P < 0.0001) (Fig.  3A). In the validation set, 
the median LFS time was not reached for very low-risk 
group, whereas the low-, intermediate-, high-, and very 
high-risk groups had median LFS times of 6.68 (95% CI: 
5.814–9.03), 3.33 (95% CI: 2.751–6.55), 1.82 (95% CI: 
1.507–2.45), and 1.03 (95% CI: 0.638–1.61) years, respec-
tively (P < 0.0001) (Fig. S3A). The 5-year time-dependent 
area under ROC curve values were > 0.7 for both cohorts 
(Fig. 3B; Fig. S3B).

Model performance
In addition to the IPSS-M and IPSS-R models, we com-
pared two additional models in this study, the IPSS-R 
Age-adjusted (referred to as IPSS-R-Age below) and 
Nazhe et al. (referred to as Nazha-2016 below). Patients 
with Moderate Low and Moderate High-risk levels in the 
IPSS-M model were combined as Intermediate to create 
a five-category variable, as NK-PSS-M, IPSS-R, and IPSS-
R-Age are five-category models. The predictive ability of 
all models for LFS and OS were evaluated (Figs. 2 and 3; 
Fig.  S2-S4). Moreover, we evaluated the ability of four 
five-category models (except Nazha-2016) to predict 
clinical outcomes (Table S2 and S3).

For both OS and LFS, NK-PSS-M and IPSS-M 
improved the poor differentiation of IPSS-R/IPSS-
R-Age for higher-risk patients (Very High and High). 

NK-PSS-M and IPSS-M had similar time-dependent 
area under ROC curve values (0.78–0.89 and 0.76–0.85, 
respectively), which were higher than those of IPSS-R 
(0.71–0.8) (Fig.  2; Fig. S5A). However, after adjustment 
for age, the gap between IPSS-R-Age, NK-PSS-M, and 
IPSS-M was reduced (0.74–0.85; Fig.  2H). The C-index 
for NK-PSS-M (0.776) was not significantly different 
from that of IPSS-M (0.75, P = 0.264); however, it was sig-
nificantly higher than the C-index of IPSS-R-Age (0.728, 
P = 0.0244), IPSS-R (0.695, P < 0.0001), and Nazha-2016 
(0.7, P < 0.001) (Fig. 4A).

In the validation set, NK-PSS-M demonstrated high 
discriminatory ability for the OS and LFS in risk-strati-
fied patients and improved the poor differentiation of 
IPSS-R and IPSS-R-Age for high-risk patients (Fig. S2, 3). 
Furthermore, the C-index of NK-PSS-M (0.692) was not 
significantly different from that of IPSS-M (P = 0.693); 
however, it was significantly higher than the C-index 
of IPSS-R (0.665, P = 0.0101) and Nazha-2016 (0.631, 
P < 0.0001). Although the difference was not statistically 
significant, the C-index of IPSS-R-Age (0.678) remained 
lower than that of NK-PSS-M (P = 0.141) (Fig. 4A).

The calibration curve demonstrated that the NK-PSS-
M maintained a consistent relationship between the 
predicted and observed OS for NK MDS patients in the 
training and validation cohorts (Fig. S5B, C). Compared 
with IPSS-M and IPSS-R, NK-PSS-M showed compa-
rable or better calibration across different time points 
(1-year, 3-year, and 5-year OS) (Fig. S5D-I). In addition, 
decision curve analysis was conducted to evaluate the 
clinical effectiveness of the five models. The findings 
revealed that NK-PSS-M and IPSS-M had similar ben-
efits at various risk thresholds and outperformed IPSS-R, 
IPSS-R-Age, and Nazha-2016 (Fig. 4B, C).

Restratification of patients from IPSS-R and IPSS-M to 
NK-PSS-M
We compared the efficacy of the novel NK-PSS-M risk 
classification systems with the established IPSS-M and 
IPSS-R systems. The NK-PSS-M system reclassified a sig-
nificant proportion of patients in the IPSS-M and IPSS-
R risk categories (44% and 50%, respectively; Fig. 5A, B); 
similar reclassification proportions were observed in the 
validation cohort (53% and 42% of patients, respectively; 
Fig. S6A, B). Although there was substantial reclassifica-
tion of patients, no statistically significant difference was 
observed in performance between NK-PSS-M and IPSS-
M (Fig.  5C, D; Fig. S6C, D). However, the NK-PSS-M 
demonstrated superiority over the IPSS-R in reclassifying 
patients with a briefer OS among those classified as inter-
mediate- or low-risk by IPSS-R in the training and valida-
tion cohorts (Fig. 5E; Fig. S6E). IPSS-R was ineffective in 
reclassifying patients based on NK-PSS-M (Fig.  5F; Fig. 
S6F).
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Fig. 2  Overall survival (OS) in the training cohort according to four models. (A–B) Kaplan–Meier probability estimates of OS are presented across NK-PSS-
M risk categories and in time-dependent receiver operating characteristic (ROC) curves. (C–D) IPSS-M risk categories. (E–F) IPSS-R risk categories. (G–H) 
IPSS-R Age-adjusted (IPSS-R-Age) risk categories
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Fig. 3  Leukemia-free survival (LFS) in the training cohort according to four models. (A–B) Kaplan–Meier probability estimates of LFS are presented across 
NK-PSS-M risk categories and in time-dependent receiver operating characteristic (ROC) curves. (C–D) IPSS-M risk categories. (E–F) IPSS-R risk categories. 
(G–H) IPSS-R Age-adjusted (IPSS-R-Age) risk categories
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Fig. 4  Comparison of the NK-PSS-M model with IPSS-M, IPSS-R-Age, IPSS-R, and Nazha-2016. (A) The concordance index (C-index) of the five prognostic 
models and the significance of the differences between NK-PSS-M and the other four models were calculated in the training and validation cohorts. (B–C) 
Decision curve analysis of the five prognostic models in the training and validation cohorts, respectively. Each color represents a different model, with 
red representing NK-PSS-M, blue representing IPSS-M, orange representing IPSS-R, green representing IPSS-R-Age, and purple representing Nazha-2016
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Fig. 5  Restratification of patients from IPSS-M and IPSS-R to NK-PSS-M in the training cohort. (A) Balloon plot shows the number of patients reclassified 
in each of the five IPSS-M (row) and five NK-PSS-M (column) categories. (B) The balloon plot shows the number of patients reclassified in each of the five 
IPSS-R (row) and five NK-PSS-M (column) categories. (C) The Kaplan-Meier (KM) curve evaluates overall survival (OS) based on the NK-PSS-M classification 
within each IPSS-M category. (D) The KM curve evaluates OS based on the IPSS-M classification within each NK-PSS-M category. (E) The KM curve evalu-
ates the OS based on the NK-PSS-M classification within each IPSS-R category. (F) The KM curve evaluates the OS based on the IPSS-R classification within 
each NK-PSS-M category
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Among the patients who were re-stratified by the NK-
PSS-M, we observed that those who were upstaged were 
generally older, while those who were downgraded were 
generally younger in both cohorts (Fig. 6A; Fig. S8E). Fur-
thermore, patients who were upstaged tended to have 
more gene mutations identified by the NK-PSS-M model, 
with the occurrence of ≥ 2 gene mutations being almost 
exclusively found in the (very) high-risk groups, suggest-
ing that the occurrence and accumulation of gene muta-
tions have a significant impact on the prognosis (Fig. 6B; 
Fig. S8F).

Our analysis reveals that BM blasts, Hb, PLT, and ANC 
concentrations indeed play roles in the NK-PSS-M’s res-
tratification process, particularly for patients catego-
rized as (very) low risk in IPSS-R. However, for those at 
a relatively higher risk, the NK-PSS-M model distinctly 
emphasizes the significance of age and gene mutations, 
offering a more nuanced consideration of these factors 
(Fig. S7A-D and S8A-D).

We assessed the performance of different prognostic 
models within specific categories of bone marrow blast 
cell percentages. Our findings indicated that for nor-
mal karyotype MDS patients with low blasts (especially 
blasts ≤ 2%), both the NK-PSS-M and IPSS-M models can 
effectively distinguish patients with potential higher risk, 
who are often categorized as lower risk according to the 
IPSS-R model (Fig. 6C-E; Fig. S7E-G). Further analysis of 
model discrimination in different blast groups showed 
that NK-PSS-M exhibited superior discriminative ability 
in patients with blasts ≤ 2% and maintained comparable 
performance with IPSS-M in patients with blasts > 2%, 
while both models demonstrated better discrimination 
than IPSS-R and Nazha-2016 (Fig. S9A-B).

Performance and validation of the simplified NK-PSS-M 
model
While the NK-PSS-M model is effective, it requires for-
mulaic calculations to determine each patient’s prog-
nostic score. Here, we provide an alternative simplified 
version of the NK-PSS-M model to achieve comparable 
predictive efficacy (referred to as the NK-PSS-M easy 
model). The streamlined NK-PSS-M (easy model) clas-
sifies patients into five distinct prognostic categories—
Very low, Low, Intermediate, High, and Very high—based 
on a composite score from previously described seven 
parameters (Fig. S10A). The simplified model maintains 
robust predictive performance in both the training and 
validation cohorts (P < 0.001 in all) (Fig. S10B). More-
over, the C-index of the NK-PSS-M easy model surpasses 
that of IPSS-R and is comparable to IPSS-M, with values 
for the training cohort at 0.767 for the easy model, 0.750 
for IPSS-M, and 0.695 for IPSS-R; and for the validation 
cohort at 0.675 for the easy model, 0.693 for IPSS-M, and 
0.665 for IPSS-R (Fig. 10C).

A practical application strategy for NK-PSS-M in clinical 
practice
To further validate the potential value of NK-PSS-M in 
real-world clinical practice, we tested the model’s predic-
tive efficacy under certain extreme scenarios. First, we 
created a panel that included only three genes: CEBPA, 
U2AF1, and RUNX1. Under this condition, the predictive 
results of IPSS-M were significantly affected, while NK-
PSS-M appeared to handle this situation well (Fig. 7A-C).

Secondly, considering the genetic heterogeneity of 
MDS, it may lead to misjudgments when the number of 
genes included in the model is insufficient. Therefore, we 
evaluated the model’s predictive performance in patients 
with mutations other than the three genes included in 
NK-PSS-M. The results demonstrated that NK-PSS-
M retained excellent predictive performance for these 
patients, which was confirmed in the validation cohort 
(Fig. 7D, E).

Based on these findings, we believe that NK-PSS-M 
is a reliable molecular-clinical prognostic model capa-
ble of handling the complex situations encountered 
in real-world clinical practice. Here, we provide a rec-
ommended application strategy for clinical practice 
(Fig.  7F). For patients who can afford NGS testing, we 
suggest performing NGS at the initial diagnosis and pri-
marily using IPSS-M for prognostic stratification. For NK 
MDS patients whose NGS panels cannot cover the genes 
required by IPSS-M, we recommend considering NK-
PSS-M. For patients who cannot afford NGS, we advise 
using IPSS-R as the basis for diagnosis and treatment in 
non-normal karyotype MDS patients. For normal karyo-
type MDS patients, if IPSS-R indicates a higher-risk cat-
egory (IPSS-R score > 3.5), no additional action is needed. 
However, for lower-risk patients (IPSS-R score ≤ 3.5) 
or those with blasts ≤ 2%, we strongly recommend per-
forming mutation detection of the three genes (CEBPA, 
RUNX1, and U2AF1) to apply NK-PSS-M for prognostic 
assessment.

Discussion
MDS, a highly heterogeneous hematological disorder, 
demands accurate and reasonable stratification for opti-
mal clinical management. Although the MDS prognostic 
model has entered the molecular era, clinicians rely pri-
marily on the IPSS or IPSS-R. Multiple studies have dem-
onstrated that integrating molecular information into the 
model can significantly enhance its predictive accuracy. 
Molecular prognostic models are in the early stages of 
development and have limited validity, and additional 
concerns must also be considered. These include the 
cost of implementing the model and the suitability of the 
local NGS panels at medical centers to meet the model 
requirements [6].
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Fig. 6  NK-PSS-M parameters and their impact on risk stratification in MDS. Utilizing Simplified Risk Category Models from NK-PSS-M, IPSS-M, and IPSS-R. 
(A-B) Relationship between age (A) and the number of mutated NK-PSS-M genes (B) with patient restratification. (C-E) Relationship between different 
IPSS-R blast categories and the definition of patient risk stratification in relation to the number of mutated NK-PSS-M genes across the three models. The 
numbers inside parentheses on the Y-axis represent the number of cases, while the numbers on the X-axis represent percentages
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Fig. 7  NK-PSS-M demonstrates robust performance in extreme scenarios and a recommended application strategy. (A-C) Comparison of the predictive 
performance of NK-PSS-M, IPSS-M, and IPSS-R when the gene panel only includes CEBPA, U2AF1, and RUNX1. (A-B) The balloon plots show the changes 
in IPSS-M prediction results in the training and validation cohorts, respectively. (C) C-index values of each model in the training and validation cohorts. 
(D-E) Evaluation of the predictive performance of NK-PSS-M, IPSS-M, and IPSS-R in patients with mutations other than the three genes. (D) Proportion of 
patients with different mutation status. (E) C-index values of each model in the training and validation cohorts. (F) A recommended application strategy 
for NK-PSS-M in clinical practice

 



Page 13 of 14Wang et al. Journal of Translational Medicine           (2025) 23:76 

Furthermore, most MDS prognostic models are based 
on the entire population and incorporate cytogenetic 
information as a variable. Because the prognostic sig-
nificance of genes varies in different cytogenetic back-
grounds, these models may not be optimal for specific 
cytogenetic MDS patients. Although our research 
revealed that the mutation frequency of most NK MDS 
genes is similar to that of the entire MDS population, 
variations may be detected in specific genes. Some popu-
lar prognostic genes, such as TP53, have lost their associ-
ation with prognosis in NK MDS, revealing heterogeneity 
in prognostic significance across different cytogenetic 
backgrounds [14]. Incorporating these ‘unimportant’ 
molecular factors into the model can compromise its 
predictive performance, particularly for molecular prog-
nostic models with few parameters. Such as Nazha-2016, 
the addition of age and molecular factors to the model 
does not significantly enhance its predictive power for 
NK MDS compared to IPSS-R.

We developed a parsimonious molecular-clinical 
prognostic model based on 237 NK MDS patients. The 
NK-PSS-M includes age, HB, PLT, BM Blasts, and three 
genes. Clinical characteristics remained significant even 
after incorporating molecular factors, indicating that a 
single molecular feature cannot represent MDS specific-
ity. Clinical characteristics represent unique aspects of 
MDS that differ from molecular features, which is con-
sistent with a previous study that developed a prognostic 
model based on only gene mutation. Although the pure 
molecular prognostic model demonstrates certain advan-
tages, its performance does not match that of the molec-
ular-clinical model [19].

The NK-PSS-M model allows for personalized risk 
assessment based on patient characteristics, with higher 
scores indicating a greater risk and poorer prognosis. 
In addition, we developed a five-class classification sys-
tem based on these scores, which differentiates patients 
across risk categories and predicts outcomes, such as 
OS and LFS. Compared to our central cohort, the IWG-
PM cohort displayed typical differences between West-
ern and Asian patients, such as lower BM blast burden 
and milder cytopenias [20–22]. Although the IWG-PM 
cohort is considered a relatively low-risk group compared 
to our training cohort according to established models 
like IPSS-M and IPSS-R, our model demonstrated excel-
lent generalizability and performed equally well in pre-
dicting outcomes across both cohorts. Furthermore, the 
performance of our model was comparable to that of 
IPSS-M, and it significantly outperformed IPSS-R and 
other molecular prediction models based on it.

The superior performance of NK-PSS-M over IPSS-
R can be attributed to the inclusion of age and gene 
mutation information. Compared to the Nazha-2016, 
the NK-PSS-M incorporates a gene list with more 

prognostic relevance in NK MDS. Compared to the 
IPSS-M, the advantage of NK-PSS-M is its parsimoni-
ous design, which includes only three common molecu-
lar features. This reduces the demand for sequencing 
resources and panel restrictions, making it more suitable 
for resource-limited centers.

Furthermore, based on the parameters identified in 
NK-PSS-M, we developed a version that simplifies the 
calculation process. The simplified version of the NK-
PSS-M model has proven to be an effective tool for the 
stratification of MDS patients, maintaining robust pre-
dictive accuracy with less complexity. This model offers 
another choice that can enhance clinical usability, facili-
tating quicker and more efficient patient assessment and 
decision-making in routine practice.

The robust performance and practical applicability 
of NK-PSS-M offer several advantages in clinical set-
tings. First, as a model specifically designed for NK MDS 
patients, it provides more precise risk stratification for 
this particular subgroup. Notably, NK-PSS-M could iden-
tify an additional 10% of high-risk patients among those 
previously classified as (very) low risk by IPSS-R. Second, 
NK-PSS-M demonstrates reliable prognostic accuracy 
across different time points and populations, making it 
a dependable tool for long-term survival prediction and 
treatment planning. Third, the model’s parsimonious 
nature, incorporating only three genes along with readily 
available clinical parameters, provides a streamlined and 
cost-effective approach to risk stratification. This feature 
is particularly valuable in resource-limited settings where 
extensive genetic testing may not be accessible or afford-
able. Finally, the model’s excellent performance in both 
Asian and Western populations suggests its broad appli-
cability across different ethnic backgrounds and health-
care settings. These characteristics position NK-PSS-M 
as a practical and reliable tool for improving risk-adapted 
treatment strategies in NK MDS patients, potentially 
influencing decisions regarding treatment intensity, tim-
ing of interventions, and clinical trial eligibility.

Although our study showed promising results, it 
had some limitations. It was a single-center retrospec-
tive study that included 237 NK MDS patients. We only 
included 23 common genes in the final panel to ensure 
study uniformity and clinical applicability. In addition, 
we focused on OS as the outcome during variable selec-
tion and model construction, which may have limited the 
predictive ability for LFS and AML transformation. Our 
study provides an alternative to overcome the challenges 
associated with the application of IPSS-M, particularly 
for NK MDS. In addition, our findings suggest the impor-
tance of considering different cytogenetic backgrounds in 
MDS molecular model development.

In conclusion, we developed and validated a molecular-
clinical prognostic model for NK MDS patients, which 
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can predict OS and LFS. NK-PSS-M is superior to the 
IPSS/IPSS-R, which currently guides clinical practice, 
and has stronger universality while maintaining compa-
rable predictive ability to IPSS-M, making it a reliable 
alternative. However, further validation using larger and 
more diverse clinical cohorts is necessary to promote its 
clinical translation.
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