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Abstract 
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several 
conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no ef-
fective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), 
maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to 
postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during 
normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver 
a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the 
administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs 
in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti- 
inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). 
Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experi-
mental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from 
the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges 
related to stem cell-based therapies in fetal medicine.
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Graphical Abstract 

Significance statement
Lung underdevelopment is associated with high mortality and severe complications in survivors. The hallmark of this disease regardless 
of the underlying cause is characterized by impaired lung growth, maturation, and vessel formation. The optimal therapy is one that 
addresses all aspects of lung development before birth. Extracellular vesicles (EVs) are droplets released by all cells for communication 
purposes. Herein, we describe how antenatal administration of stem cell-derived EVs rescues lung development in experimental models 
via the release of factors that are missing in underdeveloped lungs. Moreover, we discuss the steps necessary to take this promising 
therapy to the bedside.

Pathogenesis of pulmonary hypoplasia
Lung development is a finely orchestrated process whereby 
fetal pulmonary buds grow and mature throughout gesta-
tion until early childhood.1 This process requires specialized 
cell populations, such as airway epithelial, mesenchymal, 
endothelial, and immune cells, and is articulated through 5 
stages (embryonic, pseudoglandular, canalicular, saccular, and  
alveolar).1-3 (Figure 1) Patterning and coordination of these 
cell populations with mature epithelial airway cells in close 
proximity to capillaries surrounded by mesenchyme, ulti-
mately leads to the establishment of the main function of the 
organ, that is gas exchange.4,5 During the embryonic stage, 
the primitive lung bud, expressing NKX2.1, separates from  
the primitive esophageal bud, expressing SOX2, a process that 
occurs from 4 to 8 weeks in human fetuses.4,6,7 Subsequently, 
during the pseudoglandular stage lasting until the 16th 

week of gestation, the epithelial lung bud invades the mes-
enchyme, where extensive, dichotomous proliferation occurs 
in a process referred to as branching morphogenesis.4 This 
process is dependent on various signaling pathways, such as 
fibroblast growth factors (FGF), vascular endothelial growth 
factor (VEGF), WNT, and transforming growth factor beta 
(TGFB) signaling. FGF10 is a guiding cue for the proliferating 
epithelium, which is further promoted by VEGF expression 
leading to the development of supportive vascular tissue that 
supplies branching epithelial tips.8-10 WNT-signaling activates 
NKX2.1 expression and enables the primordial lung bud to 
sprout. TGFB-signaling controls cell differentiation, prolif-
eration, and motility, and its abnormal expression results in 
lung branching morphogenesis defects.11-14 During the can-
alicular stage that spans from 17 to 27 weeks of gestation 
in humans, distal epithelial airway cells mature with two 
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distinct cell types: alveolar type I (ATI) and alveolar type II 
cells: ATI cells make most of distal airway epithelial cells and 
are responsible for postnatal gas-exchange; ATII cells process 
lipoproteins to later secrete surfactant and are precursors of 
ATI cells, postnatally.4,15,16 During this developmental stage, 
physical forces related to fetal breathing movements and 
transpulmonary pressure are also critical to initiate and main-
tain lung branching morphogenesis and epithelial cell plas-
ticity.17,18 During the saccular and alveolar stages, ATII cells 
accelerate producing surfactant, the mesenchyme thins out, 
and the capillary bed expands extensively to prepare the fetus 
for gas exchange and postnatal adaptation.19,20

When lung developmental processes are altered, the fetal 
lung tissue fails to properly mature and grow. This could 
lead to alterations to localized areas of the lung giving rise to 
lesions such as pulmonary sequestration and congenital pul-
monary airway malformation, or it could involve the whole 
lung that becomes hypoplastic (pulmonary hypoplasia).4,5 
Although these events are rare, pulmonary hypoplasia is 
detected in up to 20% of perinatal autopsy studies.21 In 
fact, pulmonary hypoplasia can be present as a result of sev-
eral conditions, including congenital diaphragmatic hernia 
(CDH) and oligohydramnios. CDH is a rare birth defect 
characterized by incomplete closure of the diaphragm and 
herniation of fetal abdominal organs into the thoracic cavity 
leading to arrested development of the lungs that become 
hypoplastic.22,23 Compared to normal, CDH hypoplastic 
lungs have fewer branches and alveoli (decreased growth), 
undifferentiated epithelium and mesenchyme (impaired mat-
uration), and fewer and muscularized lung vessels (vascular 
remodeling) leading to postnatal pulmonary hypertension.22 
There is emerging evidence that arrested lung development 
may be driven by inflammatory processes in the fetal lung 
with macrophage enrichment.24-26

On the other hand, oligohydramnios is defined as 
decreased amniotic fluid volume, often caused by leakage 

through ruptured membranes that results in fetal pulmo-
nary hypoplasia. The phenotypical changes observed in 
oligohydramnios lungs are similar to those also seen in CDH. 
Both conditions have decreased lung dimensions and impaired 
lung branching morphogenesis, altered epithelial and mesen-
chymal cell differentiation with fewer ATI or myofibroblast 
progenitor cells, and impaired vascularization.15-18,27-33 For 
both CDH and oligohydramnios fetuses, the pathogenesis 
of pulmonary hypoplasia remains elusive. Nonetheless, it is 
known that the amniotic fluid itself contains growth factors, 
proteins, lipids, RNA species among other bioactive molecules 
that also contribute to normal lung development.34

Role of microRNAs in regulating lung 
development
Among all factors implicated in normal lung development, 
special consideration has been given to microRNAs (miRNAs) 
in the last decade. miRNAs are small non-coding RNAs that 
consist of ~22 nucleotides.35 They downregulate gene expres-
sion by binding to messenger RNAs and causing their degra-
dation or by inhibiting translation.36 miRNAs are recognized 
to play a critical role in organogenesis, including fetal lung 
development, where they regulate key signaling molecules 
like FGF, TGFB, and WNT. There are several miRNAs and 
miRNA clusters (a group of miRNA genes that are processed 
from a single primary transcript) that regulate processes of 
lung growth, maturation, and vascularization. The miR17~92 
cluster consists of polycistronic miRNA genes encoding 15 
miRNAs that control FGF-10-mediated branching morpho-
genesis, lung epithelial cell proliferation, differentiation, and 
apoptosis.37-41 Targeted deletion of the miR17~92 cluster in 
transgenic mice causes fatal bilateral pulmonary hypoplasia 
and ventral septal defect.41 This miRNA cluster has also 
been reported to be downregulated in human preterm babies 
that develop bronchopulmonary dysplasia, a severe form of 

Figure 1. Stages of lung development in rats and humans.
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chronic lung disease that typically affects neonates that are 
born prematurely.42 Moreover, miR-200 and miR-93-5p con-
trol branching morphogenesis and epithelial plasticity during 
human fetal lung development via modulation of TGFB.43-45 
miR-200b deficient transgenic mice have features of pulmo-
nary hypoplasia, including dysregulated epithelial cell differ-
entiation and thicker alveolar walls.46 In addition, miR-142 
is involved in WNT signaling during lung development as it 
has been reported to regulate proliferation of mesenchymal 
progenitor cells.47

There has been growing evidence that experimental CDH 
and human fetuses with pulmonary hypoplasia secondary 
to CDH have missing or dysregulated miRNA expression. 
In studies investigating fetuses with CDH treated with a 
fetoscopic procedure called fetoscopic endotracheal occlu-
sion (FETO), researchers reported differential expression of 
miR-379-5p, miR-889-3p, miR-223-3p, miR-503-5p, miR-
200b, and miR-10 between survivors and non-survivors.48,49 
Moreover, tracheal fluid of patients undergoing FETO showed 
upregulation of some of the miR17~92 cluster (miR-16, 
miR-17, miR-18, miR-19b, and miR-20a) compared to age-
matched controls.50 A study investigating the expression of 
circulating miRNAs in blood samples drawn within 24 hours 
after birth reported differential expression levels of miRNAs 
let-7b/c, miR-1307-3p, miR-185-3p, miR-8084, miR-331-3p, 
and miR-210-3p between CDH babies that either died or 
developed chronic lung disease up to 28 days after birth 
compared to survivors that did not develop lung disease.51 
Examination of fetal CDH lung autopsy specimens indicated 
dysregulated miR-449a patterning and over-expression of 
its downstream target N-MYC that is known to be associ-
ated with human CDH.52,53 Lastly, miRNA dysregulation has 
also been reported in experimental CDH. This includes the 
dysregulation of miR-130a-5p with impaired Foxa2 expres-
sion leading to impaired lung branching in the rat model of 
CDH.54 Another study reported a marked decrease in miR-33, 
a miRNA that regulates epithelial–mesenchymal interactions, 
Wnt signaling pathways, and macrophage immuno-metabolic 
response.55,56

Use of amniotic fluid stem cells extracellular 
vesicles as a regenerative therapy
Since miRNAs are pivotal during lung organogenesis, 
addressing the missing or dysregulated miRNA levels in fetal 
hypoplastic lungs could be a strategy to foster normal lung de-
velopment. Extracellular vesicles (EVs), lipid-bound particles 
secreted by cells, transport a diverse array of miRNAs and play 
crucial roles in intercellular communication and signaling, 
both in normal physiological conditions and during patho-
logical states.57,58 EVs transport genetic material like miRNAs 
and bioactive proteins to target cells, activating biological 
responses.59 Due to this ability, EVs are being explored as ther-
apeutic agents for conditions characterized by deficiencies or 
dysregulation in multiple molecules and pathways.58 These in-
clude a variety of conditions such as bronchopulmonary dys-
plasia, retinopathy of prematurity, necrotizing enterocolitis, 
or perinatal brain injury, as well as myocardial infarction.60-65

There is consensus that the ideal therapy for pulmonary 
hypoplasia would be delivered antenatally and would ad-
dress all aspects of impaired lung development, that is im-
paired lung growth and branching morphogenesis, altered 
epithelial and mesenchymal cell maturation, and impaired 

vascularization with vascular remodeling. To this end, EVs 
derived from amniotic fluid stem cells (AFSCs) and mesen-
chymal stromal cells (MSCs) have shown promise. AFSCs 
have been reported to exhibit significant capacity to repair 
lung injury and induce lung growth in experimental models 
of CDH.66-68 This is due to their ability to differentiate into 
lung cell lineages and promote alveolar wound healing, ep-
ithelial cell differentiation, and lung homeostasis via para-
crine signaling.69 In a fetal rat model of CDH, Pederiva et al 
demonstrated that AFSC administration rescued lung growth 
back to normal levels.67 Using the same model of CDH, Di 
Bernardo et al proved similar benefits with branching mor-
phogenesis and lung epithelial maturation following admin-
istration of AFSC conditioned medium.66 Tzanetakis et al 
demonstrated that administering AFSCs to primary epithelial 
cells extracted from rat fetal hypoplastic lungs restored their 
tissue balance. This was achieved by reducing the cellular 
endoplasmic reticulum stress response and apoptosis while 
enhancing both cell proliferation and migration capabilities.68 
Moreover, DeKoninck et al reported that intratracheal AFSC 
administration using the fetal rabbit CDH model acceler-
ated the beneficial effects of tracheal occlusion in rescuing 
branching morphogenesis and alveolarization.70

As the EV cargo reflects the molecular profile of their pa-
rental cells, AFSC and MSC-EVs have been tested in several 
in-vitro, ex-vivo, and in-vivo rodent and human disease models 
of pulmonary hypoplasia (Table 1)16,24,33,71-79 In these models, 
the authors reported that antenatal administration of AFSC-
EVs restores growth, maturation, and vascularization in fetal 
hypoplastic lungs secondary to CDH.16,33,73-75,77 These bene-
ficial effects were obtained not only in the pseudoglandular 
stage of lung development but also during the canalicular and 
saccular stages that are translationally relevant timepoints for 
potential antenatal CDH therapy.16 The effects of AFSC-EVs 
on lung growth were evidenced by the increased number of 
airspaces and restoration of key factors involved in branching 
morphogenesis, such as Fgf10, Vegfa, Flt1, and Kdr.73 
Restoration of lung maturation in hypoplastic CDH lungs 
was indicated by increased lung differentiation of epithelial 
(ATI, ATII, club, ciliated epithelial, and pulmonary neuro-
endocrine cells) and mesenchymal cells (lipofibroblasts).16,73 
Some of these effects were also observed during the alveolar 
stage of lung development, as shown in the surgical model of 
CDH in fetal rabbits, where alveolar formation in this spe-
cies occurs prenatally.73 Lung vascular regeneration following 
AFSC-EV administration was characterized by restoration 
of vascular density, expression of key angiogenic markers, 
such as Vegfa, Vegfr1, and Vegfr2, and attenuation of pul-
monary vascular remodeling.33 Beyond structural and mo-
lecular improvements, Figueira et al also demonstrated that 
intra-amniotic administration of AFSC-EVs in fetal rats with 
CDH improved lung mechanics, as evidenced by the improve-
ment in lung resistance, elastance, and compliance, as well as 
reduced lung collagen deposition.76

MSCs and their EVs (MSC-EVs) have also been reported to 
exhibit regenerative potentials when administered in utero to 
fetal hypoplastic lungs secondary to CDH (Table 1).66,71,72,80-84 
In particular, MSC-EV administration has been reported to 
exert beneficial effects on the endothelium of fetal hypoplastic 
lungs.71,72 In this study, the authors showed that administration 
of MSC-EVs led to decreased reactive oxygen species produc-
tion in vitro using stressed human pulmonary artery endothe-
lial cells. Similarly, in vivo administration of MSC-EVs in an 
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experimental rodent model of CDH improved contractility of 
the pulmonary artery and decreased the medial wall thickness 
suggesting improved vascular remodeling.71,72

The AFSC-EV mechanism of action is classically ascribed to 
the release of the EV cargo content.58 Experimental studies on 
CDH fetal hypoplastic lungs reported that AFSC-EV effects 
were found to be at least in part due to the release of small RNA 
species contained in the EV cargo.73,74 The authors detected 
fluorescently labeled RNA cargo in the lung parenchyma and 
observed that administration of AFSC-EVs whose RNA cargo 
was enzymatically digested did not rescue lung development.73 
The role of the RNA cargo was further confirmed by miRNA 
inhibition studies, where AFSCs transfected with antagomirs 
against miR-17 and -20a produced EVs that were not able 
to improve branching morphogenesis in rat fetal hypoplastic 
lungs.74 Small RNA sequencing analysis showed that the 
AFSC-EV cargo was highly enriched with miRNAs respon-
sible for mediating the expression of genes involved in lung 
development, such as the miR17 ∼ 92 family cluster, miR-200, 
miR-379-5p, miR-223-3p, miR-503-5p, miR-93-5p, miR-10, 
let-7b/c, miR-185-3p, miR-331-3p, miR-210-3p, miR-449a, 
miR-130a-5p, or miR-33.45,48,49,51,52,54,55,59,73,85 Interestingly, 
Antounians et al found that some of these miRNAs were 
differentially expressed when compared to the RNA cargo 
of MSC-EVs (Figure 2).73 Other studies demonstrated that 
MSC-EV regenerative effects are secondary to some of the 
same miRNAs, such as miR-223/142 (inhibition of the 
NLRP3 inflammasome, immunomodulatory effects on den-
dritic cells) or let-7c (promotes cerebral angiogenesis).86-88

As the EVs cargo also contains other bioactive molecules, 
further research has evaluated their potential role in mediating 
regenerative effects of AFSC- and MSC-EVs. Proteomic 
analysis of the AFSC-EV cargo revealed the presence of 
proteins involved in miRNA stabilization and EV struc-
ture and function.24,73 Several studies have found functional 
proteins within MSC-EVs that have immunomodulatory and 

regenerative effects, including Programmed death-ligand 1 
(PD-L1), Galectin-1, TGF-beta, VEGF, Neprilysin, or Platelet-
derived growth factor D (PDGF-D).89 Further research will 
determine if other EV cargo compounds, such as lipids or 
other non-coding RNA species contribute to the observed re-
generative effects.

Towards clinical translation, 2 studies tested the effects 
of EVs derived from human AFSCs isolated with good 
manufacturing practices (GMP) on human alveolar epithe-
lial cells (A549), human fetal pulmonary alveolar epithelial 
cells (HPAEpiC), and human fetal lung explants.73,74 In these 
models, normal lung cells and tissue were stressed with either 
nitrofen or NSC23766, which are inhibitors of the retinoic 
acid pathway. Administration of human AFSC-EVs restored 
primary lung cell proliferation and viability, as well as lung 
branching morphogenesis.73,74 Moreover, using both human 
and rat models of pulmonary hypoplasia, Khalaj et al. re-
ported that the administration of AFSC-EVs also rescued 
autophagy, an important biological process involved in cell 
homeostasis and lung development.74 Further, Zhaorigetu et 
al tested human-derived MSC-EVs on nitrofen-injured human 
pulmonary artery endothelial cells and reported improved en-
dothelial cell dysfunction and viability.71

Anti-inflammatory effects of AFSC-EVs
To better understand AFSC-EV effects on the hypoplastic lung 
at a cellular and molecular level, Antounians et al conducted 
transcriptomics analysis and compared control fetal lungs, 
hypoplastic lungs secondary to CDH treated with saline, and 
hypoplastic lungs secondary to CDH treated with AFSC-
EVs.24 When experimental CDH lungs were treated with 
AFSC-EVs, single nucleus RNA-sequencing, flowcytometry, 
and immunofluorescence confirmed dampened multilineage 
inflammatory signaling and rescued macrophage density.24 
As macrophages may be the drivers of this multilineage 

Figure 2. Selected miRNAs differentially expressed within AFSC-EVs compared to MSC-EVs (adapted from Antounians et al. Sci Transl Med 2021).
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inflammatory signature and arrested fetal lung development, 
the authors antagonized macrophage survival, proliferation, 
and function via inhibition of the colony stimulating factor 
1 receptor (Csf1r) that is expressed by all macrophages. 
Remarkably, Csf1r inhibition resulted in less severe pulmo-
nary hypoplasia.24 These data suggested that AFSC-EVs hold 
anti-inflammatory and regenerative properties on CDH fetal 
hypoplastic lungs (Figure 3). This is in line with studies in 
other experimental disease models, such as necrotizing en-
terocolitis, where administration of AFSCs, AFSC condi-
tioned medium, or AFSC-EVs downregulated inflammatory 
responses, decreased apoptosis, reduced intestinal epithelial 
cell damage, improved survival, and increased epithelial pro-
liferation and stem cell activity.62,90-94 Further studies using 
novel spatial biology techniques will enable the creation of 
a more comprehensive cellular map of events that contribute 
to organ injury and illustrate how AFSC-EVs exert anti- 
inflammatory effects and promote regeneration.95

Similarly, MSCs and their EVs have shown anti- 
inflammatory effects in bronchopulmonary dysplasia (BPD), 
a neonatal disease characterized by extensive lung inflam-
mation and macrophage involvement.96 In these studies, 
administration of MSCs and their EVs improved lung 
alveolarization and downregulated inflammatory processes 
by immunomodulating pro-inflammatory “M1-like” into re-
parative “M2-like” macrophages.97,98

Further proof of AFSC-EV anti-inflammatory properties 
is their effects on the brain of fetuses with CDH, which is 
known to have a neuroinflammatory signature with loss of 
progenitor cells, neurons, and oligodendrocytes.99 In an in 
vivo rat model of CDH, intra-amniotically injected AFSC-EVs 
reached the fetal brain, attenuated Tnfa and Il1b expression, 
and reduced activated microglia density in the sub-granular 

zone, which is the neurogenic niche of the brain.75 This is 
in line with a recent study that reported how AFSC-EVs are 
able to decrease the expression of pro-inflammatory markers 
in dendritic cells, leading to the suppression of autoimmune 
responses in a mouse model of multiple sclerosis.100

Challenges inherent to the translation of 
AFSC-EVs to clinical application
Given the promising preclinical results obtained with fetal 
AFSC-EV administration in various experimental models, 
evaluating this promising novel therapeutic approach in clin-
ical practice is necessary. Although the field of EV therapeutics 
is noticeably young, there are already several applications that 
are being tested or have been tested in human patients with 
numerous medical conditions. This includes 18 clinical trials 
registered on ClinicalTrials.gov that are recruiting patients to 
be treated with EV therapies for conditions, such as acute res-
piratory distress syndrome (ARDS), burn wounds, or inflam-
matory bowel diseases (Table 2). Moreover, the first safety 
and efficacy trials reporting EVs as therapeutic strategies in 
human patients with malignant neoplastic, respiratory, and 
neurodegenerative diseases have been published.123 Although 
these studies had significant heterogeneity, serious ad-
verse effects were rarely reported.124 Despite the promising 
advances in the translation of EVs to the clinical realm, there 
are still challenges that need to be addressed and overcome 
before AFSC-EVs can be administered to fetuses with pulmo-
nary hypoplasia. This is in part due to common challenges 
that EV therapeutics are associated with and in part to the 
type of diseases being addressed (Figure 4).

Ideally, to ensure a standardized clinical application, 
administered EVs should carry a homogeneous cargo content 

Figure 3. Effects of antenatal AFSC-EV administration on hypoplastic lungs secondary to CDH.
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to eliminate or at least reduce batch-to-batch variability. The 
EV cargo might be influenced by various factors, including the 
composition of the parental cell medium, the parental cell cul-
ture system (2D vs 3D systems), parental cell preconditioning 
with factors such as cytokines or hypoxia, EV isolation and 
purification techniques, as well as EV storage conditions.125,126 
Some of these challenges may provide opportunities to im-
prove EV quality and to tailor them for different therapeutic 
applications. A way to minimize EV cargo variability is by 
immortalizing parental cells. This approach has been reported 
in several studies, which have confirmed that immortalized 
cell lines reduce cargo heterogeneity and batch-to-batch var-
iability, with improvement of manufacturing costs and op-
timization of therapeutic efficiency.127-130 The most practical 
solution would involve biobanking AFSCs from the amniotic 
fluid of healthy pregnancies, separating AFSC-EVs in a GMP 
fashion, and utilizing them as a heterologous therapy. Since 
no standardization exists for the isolation and purification of 
EVs, several techniques based on differential sedimentation, 
solubility, and size-exclusion separation have been reported 
for AFSC-EVs.79 In a study comparing AFSC-EV isolation 
techniques, ultracentrifugation was one of the modalities that 
separated the small-size EVs that were effective in preventing 
lung epithelial cell death.79 Interestingly, most clinical studies 
investigating the therapeutic effects of EVs in human trials 
use ultracentrifugation to isolate EVs.123 Another challenge 
for EV therapeutics relates to the type of storage strategies.131 
A systematic review of the literature revealed that tempera-
ture and repeated freeze-thaw cycles may influence EV con-
centration and purity leading to fused and artifactual EVs.131 
Achieving a significant clinical effect often necessitates large 
doses of EVs, far surpassing the yield of natural vesicles 
produced by cells. Thus, there is a critical need for reliable and 
scalable approaches to generate clinical-grade EVs. However, 
those methods must be cost-effective as pharmaceutical EV 
derivation in a financially feasible manner is challenging.132

Besides EV-specific issues to address, there are also challenges 
related to the type of disease that needs to be treated. This is 
particularly true in regenerative fetal medicine, as none of the 
ongoing trials recruiting patients include study subjects under 
the age of 18 (Table 2). The main challenges are related to EV 
dose and frequency, route of administration, and safety for 
the fetus and the mother (Figure 4). In particular, establishing 
the optimal EV dosing and route of administration may be 
challenging due to the limited understanding of EV pharma-
cokinetics and pharmacodynamics.133 In rodent models of 
CDH, the dose of AFSC-EVs to be administered was estab-
lished based on dose-response experiments that determined a 
therapeutic dosage of 7.6 × 109 EVs in 100 µL of saline per 
rat fetus.24,73,74 However, studies in large animal models are 
needed to establish the therapeutic dose for human fetuses 
with CDH. In experimental rat and rabbit in vivo models of 
CDH, one single dose administration was enough to obtain 
the desired effects on fetal lungs.24,73,74 As EVs have a relatively 
short half-life and bioactivity, studies in large animals will also 
have to address whether a single dose is enough to rescue lung 
development.134,135 Even though some studies in humans used 
single doses of therapeutic EVs, the majority of trials applied 
multiple dosages.123 The optimal route of administration to 
deliver AFSC-EVs in fetuses with pulmonary hypoplasia sec-
ondary to CDH remains unknown. Experimental studies in 
rats and rabbits have shown promise with both intra-amniotic 
and intra-tracheal injections of AFSC-EVs. On the one hand, T
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pregnant mothers carrying fetuses with CDH typically un-
dergo amniocentesis, hence AFSC-EVs could be administered 
via this route at the same time.136 On the other hand, the intra-
tracheal route is likely the most practical, as babies with se-
vere pulmonary hypoplasia may undergo FETO. Advantages 
of this route include the topical application, thus reaching the 
fetal lung directly, and the low invasiveness of a single proce-
dure that combines FETO and AFSC-EVs. If multiple doses 
are needed, serial amnioinfusion or fetal intravenous adminis-
tration could be considered. Serial amnioinfusion is a therapy 
that has been tested in fetuses with intrauterine renal failure 
or severe renal anomalies.137,138 A prospective, nonrandomized 
clinical trial reported that serial amnioinfusion decreased fetal 
mortality but was associated with preterm delivery.138 On the 
other hand, a recent study reported a case of in-utero enzyme-
replacement therapy for infantile-onset Pompe’s disease with 
multiple infusions through the umbilical vein between 24 
and 34 weeks of gestation.139 This study demonstrated that 
repeated intravenous injections are feasible as an alternative 
access to the fetus. Lastly, there is also a possibility that AFSC-
EVs can be injected directly into the mother with bioengineered 
AFSC-EVs customized to target the fetal lung. As no homing 
mechanism has been described for EVs, research groups have 
been working on ways to engineer the EVs by modifying sur-
face ligands and receptors.140 Nonetheless, to the best of our 
knowledge there is no experience on surface modification of 
AFSC-EVs reported in the literature to date. One must con-
sider the potential side effects of EV therapy not only to the 
fetus but also to the mother. As EVs can cross the blood-brain 
and placental barrier, careful pharmacodynamic and pharma-
cokinetic studies should be conducted to exclude off-target 
effects.141,142

Pharmacokinetically, bioluminescence biodistribution 
studies of labeled AFSC-EVs in the rat model of CDH revealed 
uptake of AFSC-EVs to the fetal lung, brain, liver, and kidney 

when administered intra-amniotically.24 When administered 
intravenously, labeled AFSC-EVs were detected in fetal organs 
as well, but to a lesser extent. Pharmacodynamically, the ex-
perimental effects of AFSC-EVs on fetal lung growth, matura-
tion, vascularization, and inflammation have been thoroughly 
tested and reported.16,24,33,45,73-77 Preliminary results have 
shown anti-inflammatory effects on fetal rat brains secondary 
to CDH and further studies are underway to exclude detri-
mental effects on fetal liver and kidney development, as those 
organs can be affected by maternal and prenatal drug admin-
istration such as steroids.143,144

Despite these imminent challenges, the field of EV-based 
research is moving fast to adopt EVs as therapeutics agents, 
as proven by numerous studies and ongoing trials (Table 2). 
Undoubtedly, there are several advantages to using EVs as a 
therapy for several diseases. This includes EVs as a cell-free 
therapy that bypasses the challenges of cell-based therapies, 
such as immunogenicity, potential teratogenicity, and cell re-
producibility.145 EVs are naturally secreted by all cells and 
regarded as relatively stable and capable of remaining in the 
circulatory system for extended periods compared to other 
synthetic drug delivery systems such as liposomes.146 The het-
erogenous cargo can also be advantageous, especially to treat 
diseases caused by the imbalance of multiple pathways, such 
as CDH. Despite decades of research, the pathophysiology 
of CDH and pulmonary hypoplasia remains elusive, and ge-
netic factors are only responsible in approximately 30% of 
patients.22,147 With a multitude of bioactive molecules within 
their cargo, EVs may target different dysregulated signaling 
pathways and overcome the limitations of single-drug therapy.

Conclusions
Fetal pulmonary hypoplasia is characterized by the disrup-
tion of multiple signaling pathways that lead to impaired 

Figure 4. Challenges inherent to the translation of AFSC-EVs to clinical application.
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lung growth, epithelial and mesenchymal maturation, and 
vascularization. A novel antenatal treatment strategy such as 
AFSC-EVs holds great regenerative potential as their benefi-
cial effects are attributed to the release of several bioactive 
molecules including miRNAs that modulate several signaling 
pathways responsible for lung development. Moreover, CDH 
fetal lungs have a multilineage inflammatory profile, which 
is an ideal target for AFSC-EV anti-inflammatory properties. 
Despite the exciting results in different animal models, several 
steps must be undertaken before this treatment strategy can 
be translated into clinical practice for babies with pulmonary 
hypoplasia. This includes the employment of large animal 
models, such as the lamb, which allows to investigate of the 
optimal dose and route of administration, as well as potential 
side-effects for the fetus and the mother.
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