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Abstract

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several
conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no ef-
fective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis),
maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to
postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during
normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver
a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the
administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs
in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-
inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs).
Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experi-
mental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from
the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges
related to stem cell-based therapies in fetal medicine.
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therapy to the bedside.

Lung underdevelopment is associated with high mortality and severe complications in survivors. The hallmark of this disease regardless
of the underlying cause is characterized by impaired lung growth, maturation, and vessel formation. The optimal therapy is one that
addresses all aspects of lung development before birth. Extracellular vesicles (EVs) are droplets released by all cells for communication
purposes. Herein, we describe how antenatal administration of stem cell-derived EVs rescues lung development in experimental models
via the release of factors that are missing in underdeveloped lungs. Moreover, we discuss the steps necessary to take this promising

Pathogenesis of pulmonary hypoplasia

Lung development is a finely orchestrated process whereby
fetal pulmonary buds grow and mature throughout gesta-
tion until early childhood.! This process requires specialized
cell populations, such as airway epithelial, mesenchymal,
endothelial, and immune cells, and is articulated through 5
stages (embryonic, pseudoglandular, canalicular, saccular, and
alveolar).!® (Figure 1) Patterning and coordination of these
cell populations with mature epithelial airway cells in close
proximity to capillaries surrounded by mesenchyme, ulti-
mately leads to the establishment of the main function of the
organ, that is gas exchange.*’ During the embryonic stage,
the primitive lung bud, expressing NKX2.1, separates from
the primitive esophageal bud, expressing SOX2, a process that
occurs from 4 to 8 weeks in human fetuses.**” Subsequently,
during the pseudoglandular stage lasting until the 16th

week of gestation, the epithelial lung bud invades the mes-
enchyme, where extensive, dichotomous proliferation occurs
in a process referred to as branching morphogenesis.* This
process is dependent on various signaling pathways, such as
fibroblast growth factors (FGF), vascular endothelial growth
factor (VEGF), WNT, and transforming growth factor beta
(TGFB) signaling. FGF10 is a guiding cue for the proliferating
epithelium, which is further promoted by VEGF expression
leading to the development of supportive vascular tissue that
supplies branching epithelial tips.®!® WNT-signaling activates
NKX2.1 expression and enables the primordial lung bud to
sprout. TGFB-signaling controls cell differentiation, prolif-
eration, and motility, and its abnormal expression results in
lung branching morphogenesis defects.'"'* During the can-
alicular stage that spans from 17 to 27 weeks of gestation
in humans, distal epithelial airway cells mature with two
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Figure 1. Stages of lung development in rats and humans.

distinct cell types: alveolar type I (ATI) and alveolar type II
cells: ATI cells make most of distal airway epithelial cells and
are responsible for postnatal gas-exchange; ATII cells process
lipoproteins to later secrete surfactant and are precursors of
ATT cells, postnatally.*'>' During this developmental stage,
physical forces related to fetal breathing movements and
transpulmonary pressure are also critical to initiate and main-
tain lung branching morphogenesis and epithelial cell plas-
ticity.'”'® During the saccular and alveolar stages, ATII cells
accelerate producing surfactant, the mesenchyme thins out,
and the capillary bed expands extensively to prepare the fetus
for gas exchange and postnatal adaptation.!??°

When lung developmental processes are altered, the fetal
lung tissue fails to properly mature and grow. This could
lead to alterations to localized areas of the lung giving rise to
lesions such as pulmonary sequestration and congenital pul-
monary airway malformation, or it could involve the whole
lung that becomes hypoplastic (pulmonary hypoplasia).**
Although these events are rare, pulmonary hypoplasia is
detected in up to 20% of perinatal autopsy studies.?! In
fact, pulmonary hypoplasia can be present as a result of sev-
eral conditions, including congenital diaphragmatic hernia
(CDH) and oligohydramnios. CDH is a rare birth defect
characterized by incomplete closure of the diaphragm and
herniation of fetal abdominal organs into the thoracic cavity
leading to arrested development of the lungs that become
hypoplastic.?>?* Compared to normal, CDH hypoplastic
lungs have fewer branches and alveoli (decreased growth),
undifferentiated epithelium and mesenchyme (impaired mat-
uration), and fewer and muscularized lung vessels (vascular
remodeling) leading to postnatal pulmonary hypertension.??
There is emerging evidence that arrested lung development
may be driven by inflammatory processes in the fetal lung
with macrophage enrichment.?#2¢

On the other hand, oligohydramnios is defined as
decreased amniotic fluid volume, often caused by leakage

through ruptured membranes that results in fetal pulmo-
nary hypoplasia. The phenotypical changes observed in
oligohydramnios lungs are similar to those also seen in CDH.
Both conditions have decreased lung dimensions and impaired
lung branching morphogenesis, altered epithelial and mesen-
chymal cell differentiation with fewer ATI or myofibroblast
progenitor cells, and impaired vascularization.!>!%2733 For
both CDH and oligohydramnios fetuses, the pathogenesis
of pulmonary hypoplasia remains elusive. Nonetheless, it is
known that the amniotic fluid itself contains growth factors,
proteins, lipids, RNA species among other bioactive molecules
that also contribute to normal lung development.3*

Role of microRNAs in regulating lung
development

Among all factors implicated in normal lung development,
special consideration has been given to microRNAs (miRNAs)
in the last decade. miRNAs are small non-coding RNAs that
consist of ~22 nucleotides.> They downregulate gene expres-
sion by binding to messenger RNAs and causing their degra-
dation or by inhibiting translation.’* miRNAs are recognized
to play a critical role in organogenesis, including fetal lung
development, where they regulate key signaling molecules
like FGE, TGFB, and WNT. There are several miRNAs and
miRNA clusters (a group of miRNA genes that are processed
from a single primary transcript) that regulate processes of
lung growth, maturation, and vascularization. The miR17~92
cluster consists of polycistronic miRNA genes encoding 15
miRNAs that control FGF-10-mediated branching morpho-
genesis, lung epithelial cell proliferation, differentiation, and
apoptosis.’”#! Targeted deletion of the miR17~92 cluster in
transgenic mice causes fatal bilateral pulmonary hypoplasia
and ventral septal defect.*! This miRNA cluster has also
been reported to be downregulated in human preterm babies
that develop bronchopulmonary dysplasia, a severe form of



chronic lung disease that typically affects neonates that are
born prematurely.* Moreover, miR-200 and miR-93-5p con-
trol branching morphogenesis and epithelial plasticity during
human fetal lung development via modulation of TGFB.#*
miR-200b deficient transgenic mice have features of pulmo-
nary hypoplasia, including dysregulated epithelial cell differ-
entiation and thicker alveolar walls.*® In addition, miR-142
is involved in WNT signaling during lung development as it
has been reported to regulate proliferation of mesenchymal
progenitor cells.*’

There has been growing evidence that experimental CDH
and human fetuses with pulmonary hypoplasia secondary
to CDH have missing or dysregulated miRNA expression.
In studies investigating fetuses with CDH treated with a
fetoscopic procedure called fetoscopic endotracheal occlu-
sion (FETO), researchers reported differential expression of
miR-379-5p, miR-889-3p, miR-223-3p, miR-503-5p, miR-
200b, and miR-10 between survivors and non-survivors.*$*
Moreover, tracheal fluid of patients undergoing FETO showed
upregulation of some of the miR17~92 cluster (miR-16,
miR-17, miR-18, miR-19b, and miR-20a) compared to age-
matched controls.’® A study investigating the expression of
circulating miRNAs in blood samples drawn within 24 hours
after birth reported differential expression levels of miRNAs
let-7b/c, miR-1307-3p, miR-185-3p, miR-8084, miR-331-3p,
and miR-210-3p between CDH babies that either died or
developed chronic lung disease up to 28 days after birth
compared to survivors that did not develop lung disease.’!
Examination of fetal CDH lung autopsy specimens indicated
dysregulated miR-449a patterning and over-expression of
its downstream target N-MYC that is known to be associ-
ated with human CDH.’?5% Lastly, miRNA dysregulation has
also been reported in experimental CDH. This includes the
dysregulation of miR-130a-5p with impaired Foxa2 expres-
sion leading to impaired lung branching in the rat model of
CDH.** Another study reported a marked decrease in miR-33,
a miRNA that regulates epithelial-mesenchymal interactions,
Whnt signaling pathways, and macrophage immuno-metabolic
response.>5

Use of amniotic fluid stem cells extracellular
vesicles as a regenerative therapy

Since miRNAs are pivotal during lung organogenesis,
addressing the missing or dysregulated miRNA levels in fetal
hypoplastic lungs could be a strategy to foster normal lung de-
velopment. Extracellular vesicles (EVs), lipid-bound particles
secreted by cells, transport a diverse array of miRNAs and play
crucial roles in intercellular communication and signaling,
both in normal physiological conditions and during patho-
logical states.’”’® EVs transport genetic material like miRNAs
and bioactive proteins to target cells, activating biological
responses.” Due to this ability, EVs are being explored as ther-
apeutic agents for conditions characterized by deficiencies or
dysregulation in multiple molecules and pathways.* These in-
clude a variety of conditions such as bronchopulmonary dys-
plasia, retinopathy of prematurity, necrotizing enterocolitis,
or perinatal brain injury, as well as myocardial infarction.®®-¢3

There is consensus that the ideal therapy for pulmonary
hypoplasia would be delivered antenatally and would ad-
dress all aspects of impaired lung development, that is im-
paired lung growth and branching morphogenesis, altered
epithelial and mesenchymal cell maturation, and impaired
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vascularization with vascular remodeling. To this end, EVs
derived from amniotic fluid stem cells (AFSCs) and mesen-
chymal stromal cells (MSCs) have shown promise. AFSCs
have been reported to exhibit significant capacity to repair
lung injury and induce lung growth in experimental models
of CDH.®*% This is due to their ability to differentiate into
lung cell lineages and promote alveolar wound healing, ep-
ithelial cell differentiation, and lung homeostasis via para-
crine signaling.®® In a fetal rat model of CDH, Pederiva et al
demonstrated that AFSC administration rescued lung growth
back to normal levels.®” Using the same model of CDH, Di
Bernardo et al proved similar benefits with branching mor-
phogenesis and lung epithelial maturation following admin-
istration of AFSC conditioned medium.*® Tzanetakis et al
demonstrated that administering AFSCs to primary epithelial
cells extracted from rat fetal hypoplastic lungs restored their
tissue balance. This was achieved by reducing the cellular
endoplasmic reticulum stress response and apoptosis while
enhancing both cell proliferation and migration capabilities.®®
Moreover, DeKoninck et al reported that intratracheal AFSC
administration using the fetal rabbit CDH model acceler-
ated the beneficial effects of tracheal occlusion in rescuing
branching morphogenesis and alveolarization.”

As the EV cargo reflects the molecular profile of their pa-
rental cells, AFSC and MSC-EVs have been tested in several
in-vitro, ex-vivo, and in-vivo rodent and human disease models
of pulmonary hypoplasia (Table 1)!®24337-7% In these models,
the authors reported that antenatal administration of AFSC-
EVs restores growth, maturation, and vascularization in fetal
hypoplastic lungs secondary to CDH.!%33737%77 These bene-
ficial effects were obtained not only in the pseudoglandular
stage of lung development but also during the canalicular and
saccular stages that are translationally relevant timepoints for
potential antenatal CDH therapy.'® The effects of AFSC-EVs
on lung growth were evidenced by the increased number of
airspaces and restoration of key factors involved in branching
morphogenesis, such as Fgf10, Vegfa, Flt1, and Kdr.”
Restoration of lung maturation in hypoplastic CDH lungs
was indicated by increased lung differentiation of epithelial
(ATI, ATIL, club, ciliated epithelial, and pulmonary neuro-
endocrine cells) and mesenchymal cells (lipofibroblasts).!¢73
Some of these effects were also observed during the alveolar
stage of lung development, as shown in the surgical model of
CDH in fetal rabbits, where alveolar formation in this spe-
cies occurs prenatally.”? Lung vascular regeneration following
AFSC-EV administration was characterized by restoration
of vascular density, expression of key angiogenic markers,
such as Vegfa, Vegfrl, and Vegfr2, and attenuation of pul-
monary vascular remodeling.>* Beyond structural and mo-
lecular improvements, Figueira et al also demonstrated that
intra-amniotic administration of AFSC-EVs in fetal rats with
CDH improved lung mechanics, as evidenced by the improve-
ment in lung resistance, elastance, and compliance, as well as
reduced lung collagen deposition.”

MSCs and their EVs (MSC-EVs) have also been reported to
exhibit regenerative potentials when administered in utero to
fetal hypoplastic lungs secondary to CDH (Table 1).667!,72,80-84
In particular, MSC-EV administration has been reported to
exert beneficial effects on the endothelium of fetal hypoplastic
lungs.”"7* In this study, the authors showed that administration
of MSC-EVs led to decreased reactive oxygen species produc-
tion in vitro using stressed human pulmonary artery endothe-
lial cells. Similarly, in vivo administration of MSC-EVs in an
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Figure 2. Selected miRNAs differentially expressed within AFSC-EVs compared to MSC-EVs (adapted from Antounians et al. Sci Transl Med 2021).

experimental rodent model of CDH improved contractility of
the pulmonary artery and decreased the medial wall thickness
suggesting improved vascular remodeling.”"7?

The AFSC-EV mechanism of action is classically ascribed to
the release of the EV cargo content.’® Experimental studies on
CDH fetal hypoplastic lungs reported that AFSC-EV effects
were found to be atleast in part due to the release of small RNA
species contained in the EV cargo.”>”* The authors detected
fluorescently labeled RNA cargo in the lung parenchyma and
observed that administration of AFSC-EVs whose RNA cargo
was enzymatically digested did not rescue lung development.”
The role of the RNA cargo was further confirmed by miRNA
inhibition studies, where AFSCs transfected with antagomirs
against miR-17 and -20a produced EVs that were not able
to improve branching morphogenesis in rat fetal hypoplastic
lungs.”* Small RNA sequencing analysis showed that the
AFSC-EV cargo was highly enriched with miRNAs respon-
sible for mediating the expression of genes involved in lung
development, such as the miR17 ~ 92 family cluster, miR-200,
miR-379-5p, miR-223-3p, miR-503-5p, miR-93-5p, miR-10,
let-7b/c, miR-185-3p, miR-331-3p, miR-210-3p, miR-449a,
miR-130a-5p, or miR-33.45:48:49,51.52.54.55,59.7385  Interestingly,
Antounians et al found that some of these miRNAs were
differentially expressed when compared to the RNA cargo
of MSC-EVs (Figure 2).” Other studies demonstrated that
MSC-EV regenerative effects are secondary to some of the
same miRNAs, such as miR-223/142 (inhibition of the
NLRP3 inflammasome, immunomodulatory effects on den-
dritic cells) or let-7¢ (promotes cerebral angiogenesis).’$

As the EVs cargo also contains other bioactive molecules,
further research has evaluated their potential role in mediating
regenerative effects of AFSC- and MSC-EVs. Proteomic
analysis of the AFSC-EV cargo revealed the presence of
proteins involved in miRNA stabilization and EV struc-
ture and function.?*” Several studies have found functional
proteins within MSC-EVs that have immunomodulatory and

regenerative effects, including Programmed death-ligand 1
(PD-L1), Galectin-1, TGF-beta, VEGF, Neprilysin, or Platelet-
derived growth factor D (PDGF-D).** Further research will
determine if other EV cargo compounds, such as lipids or
other non-coding RNA species contribute to the observed re-
generative effects.

Towards clinical translation, 2 studies tested the effects
of EVs derived from human AFSCs isolated with good
manufacturing practices (GMP) on human alveolar epithe-
lial cells (A549), human fetal pulmonary alveolar epithelial
cells (HPAEpiC), and human fetal lung explants.”>7* In these
models, normal lung cells and tissue were stressed with either
nitrofen or NSC23766, which are inhibitors of the retinoic
acid pathway. Administration of human AFSC-EVs restored
primary lung cell proliferation and viability, as well as lung
branching morphogenesis.”>”* Moreover, using both human
and rat models of pulmonary hypoplasia, Khalaj et al. re-
ported that the administration of AFSC-EVs also rescued
autophagy, an important biological process involved in cell
homeostasis and lung development.”* Further, Zhaorigetu et
al tested human-derived MSC-EVs on nitrofen-injured human
pulmonary artery endothelial cells and reported improved en-
dothelial cell dysfunction and viability.”*

Anti-inflammatory effects of AFSC-EVs

To better understand AFSC-EV effects on the hypoplastic lung
at a cellular and molecular level, Antounians et al conducted
transcriptomics analysis and compared control fetal lungs,
hypoplastic lungs secondary to CDH treated with saline, and
hypoplastic lungs secondary to CDH treated with AFSC-
EVs.>* When experimental CDH lungs were treated with
AFSC-EVs, single nucleus RNA-sequencing, flowcytometry,
and immunofluorescence confirmed dampened multilineage
inflammatory signaling and rescued macrophage density.?*
As macrophages may be the drivers of this multilineage
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Figure 3. Effects of antenatal AFSC-EV administration on hypoplastic lungs secondary to CDH.

inflammatory signature and arrested fetal lung development,
the authors antagonized macrophage survival, proliferation,
and function via inhibition of the colony stimulating factor
1 receptor (Csflr) that is expressed by all macrophages.
Remarkably, Csflr inhibition resulted in less severe pulmo-
nary hypoplasia.”* These data suggested that AFSC-EVs hold
anti-inflammatory and regenerative properties on CDH fetal
hypoplastic lungs (Figure 3). This is in line with studies in
other experimental disease models, such as necrotizing en-
terocolitis, where administration of AFSCs, AFSC condi-
tioned medium, or AFSC-EVs downregulated inflammatory
responses, decreased apoptosis, reduced intestinal epithelial
cell damage, improved survival, and increased epithelial pro-
liferation and stem cell activity.®>*** Further studies using
novel spatial biology techniques will enable the creation of
a more comprehensive cellular map of events that contribute
to organ injury and illustrate how AFSC-EVs exert anti-
inflammatory effects and promote regeneration.”

Similarly, MSCs and their EVs have shown anti-
inflammatory effects in bronchopulmonary dysplasia (BPD),
a neonatal disease characterized by extensive lung inflam-
mation and macrophage involvement.”® In these studies,
administration of MSCs and their EVs improved lung
alveolarization and downregulated inflammatory processes
by immunomodulating pro-inflammatory “M1-like” into re-
parative “M2-like” macrophages.””**

Further proof of AFSC-EV anti-inflammatory properties
is their effects on the brain of fetuses with CDH, which is
known to have a neuroinflammatory signature with loss of
progenitor cells, neurons, and oligodendrocytes.”” In an in
vivo rat model of CDH, intra-amniotically injected AFSC-EVs
reached the fetal brain, attenuated Tnfa and 1115 expression,
and reduced activated microglia density in the sub-granular

zone, which is the neurogenic niche of the brain.” This is
in line with a recent study that reported how AFSC-EVs are
able to decrease the expression of pro-inflammatory markers
in dendritic cells, leading to the suppression of autoimmune
responses in a mouse model of multiple sclerosis.!®

Challenges inherent to the translation of
AFSC-EVs to clinical application

Given the promising preclinical results obtained with fetal
AFSC-EV administration in various experimental models,
evaluating this promising novel therapeutic approach in clin-
ical practice is necessary. Although the field of EV therapeutics
is noticeably young, there are already several applications that
are being tested or have been tested in human patients with
numerous medical conditions. This includes 18 clinical trials
registered on ClinicalTrials.gov that are recruiting patients to
be treated with EV therapies for conditions, such as acute res-
piratory distress syndrome (ARDS), burn wounds, or inflam-
matory bowel diseases (Table 2). Moreover, the first safety
and efficacy trials reporting EVs as therapeutic strategies in
human patients with malignant neoplastic, respiratory, and
neurodegenerative diseases have been published.!?* Although
these studies had significant heterogeneity, serious ad-
verse effects were rarely reported.'”* Despite the promising
advances in the translation of EVs to the clinical realm, there
are still challenges that need to be addressed and overcome
before AFSC-EVs can be administered to fetuses with pulmo-
nary hypoplasia. This is in part due to common challenges
that EV therapeutics are associated with and in part to the
type of diseases being addressed (Figure 4).

Ideally, to ensure a standardized clinical application,
administered EVs should carry a homogeneous cargo content
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Table 2. Continued

Clinical Trials ID

Description

Title

NCT05127122

EVs derived from allogeneic bone marrow mesenchymal stem cell (MSC)'%*

Bone marrow mesenchymal stem cell-derived
extracellular vesicles infusion treatment for

ARDS (EXIT-ARDS)!"

Safety and efficacy phase I/II trial to assess iv administration of bone marrow-derived MSC-EVs for ARDS

NCT05774509

Phase I/II trial assessing safety and efficacy of EV enriched secretome obtained from cardiovascular progenitor
cells for non-ischemic dilated cardiomyopathy

Treatment of non-ischemic cardiomyopathies by
intravenous extracellular vesicles of cardiovas-
cular progenitor cells (SECRET-HF)'2

NCT06002841

Phase I/II safety and efficacy trial (randomized, double-blind, placebo-controlled) evaluating MSC-EVs in patients

with ARDS secondary to COVID-19 or other etiologies

Extracellular vesicles from mesenchymal cells in
the treatment of acute respiratory failure'?!

NCT05078385

Phase I/II trial to assess safety and efficacy of topical, allogenic MSC-EV administration to deep second-degree

burn wounds

Safety of extracellular vesicles for burn

wounds'2?
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to eliminate or at least reduce batch-to-batch variability. The
EV cargo might be influenced by various factors, including the
composition of the parental cell medium, the parental cell cul-
ture system (2D vs 3D systems), parental cell preconditioning
with factors such as cytokines or hypoxia, EV isolation and
purification techniques, as well as EV storage conditions.!?%!2¢
Some of these challenges may provide opportunities to im-
prove EV quality and to tailor them for different therapeutic
applications. A way to minimize EV cargo variability is by
immortalizing parental cells. This approach has been reported
in several studies, which have confirmed that immortalized
cell lines reduce cargo heterogeneity and batch-to-batch var-
iability, with improvement of manufacturing costs and op-
timization of therapeutic efficiency.!?”13° The most practical
solution would involve biobanking AFSCs from the amniotic
fluid of healthy pregnancies, separating AFSC-EVs in a GMP
fashion, and utilizing them as a heterologous therapy. Since
no standardization exists for the isolation and purification of
EVs, several techniques based on differential sedimentation,
solubility, and size-exclusion separation have been reported
for AFSC-EVs.”” In a study comparing AFSC-EV isolation
techniques, ultracentrifugation was one of the modalities that
separated the small-size EVs that were effective in preventing
lung epithelial cell death.” Interestingly, most clinical studies
investigating the therapeutic effects of EVs in human trials
use ultracentrifugation to isolate EVs.!?* Another challenge
for EV therapeutics relates to the type of storage strategies.'>!
A systematic review of the literature revealed that tempera-
ture and repeated freeze-thaw cycles may influence EV con-
centration and purity leading to fused and artifactual EVs.'3!
Achieving a significant clinical effect often necessitates large
doses of EVs, far surpassing the yield of natural vesicles
produced by cells. Thus, there is a critical need for reliable and
scalable approaches to generate clinical-grade EVs. However,
those methods must be cost-effective as pharmaceutical EV
derivation in a financially feasible manner is challenging.'>
Besides EV-specific issues to address, there are also challenges
related to the type of disease that needs to be treated. This is
particularly true in regenerative fetal medicine, as none of the
ongoing trials recruiting patients include study subjects under
the age of 18 (Table 2). The main challenges are related to EV
dose and frequency, route of administration, and safety for
the fetus and the mother (Figure 4). In particular, establishing
the optimal EV dosing and route of administration may be
challenging due to the limited understanding of EV pharma-
cokinetics and pharmacodynamics.'?? In rodent models of
CDH, the dose of AFSC-EVs to be administered was estab-
lished based on dose-response experiments that determined a
therapeutic dosage of 7.6 x 10° EVs in 100 pL of saline per
rat fetus.?*”>7* However, studies in large animal models are
needed to establish the therapeutic dose for human fetuses
with CDH. In experimental rat and rabbit in vivo models of
CDH, one single dose administration was enough to obtain
the desired effects on fetal lungs.>*”>7* As EVs have a relatively
short half-life and bioactivity, studies in large animals will also
have to address whether a single dose is enough to rescue lung
development.'3*!3 Even though some studies in humans used
single doses of therapeutic EVs, the majority of trials applied
multiple dosages.'”® The optimal route of administration to
deliver AFSC-EVs in fetuses with pulmonary hypoplasia sec-
ondary to CDH remains unknown. Experimental studies in
rats and rabbits have shown promise with both intra-amniotic
and intra-tracheal injections of AFSC-EVs. On the one hand,
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Figure 4. Challenges inherent to the translation of AFSC-EVs to clinical application.

pregnant mothers carrying fetuses with CDH typically un-
dergo amniocentesis, hence AFSC-EVs could be administered
via this route at the same time.'*® On the other hand, the intra-
tracheal route is likely the most practical, as babies with se-
vere pulmonary hypoplasia may undergo FETO. Advantages
of this route include the topical application, thus reaching the
fetal lung directly, and the low invasiveness of a single proce-
dure that combines FETO and AFSC-EVs. If multiple doses
are needed, serial amnioinfusion or fetal intravenous adminis-
tration could be considered. Serial amnioinfusion is a therapy
that has been tested in fetuses with intrauterine renal failure
or severe renal anomalies.!3”!38 A prospective, nonrandomized
clinical trial reported that serial amnioinfusion decreased fetal
mortality but was associated with preterm delivery.'3® On the
other hand, a recent study reported a case of in-utero enzyme-
replacement therapy for infantile-onset Pompe’s disease with
multiple infusions through the umbilical vein between 24
and 34 weeks of gestation.!® This study demonstrated that
repeated intravenous injections are feasible as an alternative
access to the fetus. Lastly, there is also a possibility that AFSC-
EVs can be injected directly into the mother with bioengineered
AFSC-EVs customized to target the fetal lung. As no homing
mechanism has been described for EVs, research groups have
been working on ways to engineer the EVs by modifying sur-
face ligands and receptors.'* Nonetheless, to the best of our
knowledge there is no experience on surface modification of
AFSC-EVs reported in the literature to date. One must con-
sider the potential side effects of EV therapy not only to the
fetus but also to the mother. As EVs can cross the blood-brain
and placental barrier, careful pharmacodynamic and pharma-
cokinetic studies should be conducted to exclude off-target
effects.!41:142

Pharmacokinetically,  bioluminescence  biodistribution
studies of labeled AFSC-EVs in the rat model of CDH revealed
uptake of AFSC-EVs to the fetal lung, brain, liver, and kidney

when administered intra-amniotically.?* When administered
intravenously, labeled AFSC-EVs were detected in fetal organs
as well, but to a lesser extent. Pharmacodynamically, the ex-
perimental effects of AFSC-EVs on fetal lung growth, matura-
tion, vascularization, and inflammation have been thoroughly
tested and reported.'®?*33457377 Preliminary results have
shown anti-inflammatory effects on fetal rat brains secondary
to CDH and further studies are underway to exclude detri-
mental effects on fetal liver and kidney development, as those
organs can be affected by maternal and prenatal drug admin-
istration such as steroids.!#3!44

Despite these imminent challenges, the field of EV-based
research is moving fast to adopt EVs as therapeutics agents,
as proven by numerous studies and ongoing trials (Table 2).
Undoubtedly, there are several advantages to using EVs as a
therapy for several diseases. This includes EVs as a cell-free
therapy that bypasses the challenges of cell-based therapies,
such as immunogenicity, potential teratogenicity, and cell re-
producibility.'* EVs are naturally secreted by all cells and
regarded as relatively stable and capable of remaining in the
circulatory system for extended periods compared to other
synthetic drug delivery systems such as liposomes.!'*® The het-
erogenous cargo can also be advantageous, especially to treat
diseases caused by the imbalance of multiple pathways, such
as CDH. Despite decades of research, the pathophysiology
of CDH and pulmonary hypoplasia remains elusive, and ge-
netic factors are only responsible in approximately 30% of
patients.?»'*” With a multitude of bioactive molecules within
their cargo, EVs may target different dysregulated signaling
pathways and overcome the limitations of single-drug therapy.

Conclusions

Fetal pulmonary hypoplasia is characterized by the disrup-
tion of multiple signaling pathways that lead to impaired
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lung growth, epithelial and mesenchymal maturation, and
vascularization. A novel antenatal treatment strategy such as
AFSC-EVs holds great regenerative potential as their benefi-
cial effects are attributed to the release of several bioactive
molecules including miRNAs that modulate several signaling
pathways responsible for lung development. Moreover, CDH
fetal lungs have a multilineage inflammatory profile, which
is an ideal target for AFSC-EV anti-inflammatory properties.
Despite the exciting results in different animal models, several
steps must be undertaken before this treatment strategy can
be translated into clinical practice for babies with pulmonary
hypoplasia. This includes the employment of large animal
models, such as the lamb, which allows to investigate of the
optimal dose and route of administration, as well as potential
side-effects for the fetus and the mother.
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