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C A N C E R

Biologically relevant integration of transcriptomics 
profiles from cancer cell lines, patient-derived 
xenografts, and clinical tumors using deep learning
Slavica Dimitrieva1*, Rens Janssens1, Gang Li1, Artur Szalata1, Rajaraman Gopalakrishnan2, 
Chintan Parmar2, Audrey Kauffmann1†, Eric Y. Durand1†

Cell lines and patient-derived xenografts are essential to cancer research; however, the results derived from such 
models often lack clinical translatability, as they do not fully recapitulate the complex cancer biology. Identifying 
preclinical models that sufficiently resemble the biological characteristics of clinical tumors across different can-
cers is critically important. Here, we developed MOBER, Multi-Origin Batch Effect Remover method, to simultane-
ously extract biologically meaningful embeddings while removing confounder information. Applying MOBER on 
932 cancer cell lines, 434 patient-derived tumor xenografts, and 11,159 clinical tumors, we identified preclinical 
models with greatest transcriptional fidelity to clinical tumors and models that are transcriptionally unrepresenta-
tive of their respective clinical tumors. MOBER allows for transformation of transcriptional profiles of preclinical 
models to resemble the ones of clinical tumors and, therefore, can be used to improve the clinical translation of 
insights gained from preclinical models. MOBER is a versatile batch effect removal method applicable to diverse 
transcriptomic datasets, enabling integration of multiple datasets simultaneously.

INTRODUCTION
Cancer cell lines and patient-derived tumor xenograft (PTX) models 
continue to play a critical role in preclinical cancer research and drug 
discovery (1–3). Thousands of cancer models have been established 
and propagated in vitro and in vivo in different laboratories, where 
they have been extensively used in preclinical settings to study the 
biology of cancer (4, 5), to explore the vulnerabilities of cancer cells 
(6, 7), to identify new biomarkers (8), and to test the efficacy of anti-
cancer compounds (2, 9). Enormous knowledge in cancer biology 
has been derived from the various experiments conducted on cancer 
models. Still, many findings from preclinical cancer research are not 
reproducible in clinical trials (10, 11), and oncology drugs have the 
highest failure rate compared to compounds used in other disease 
areas (12). One of the major reasons to this lack of translatability is 
that the cancer models are not perfect, and because of their propaga-
tion and differences in growing conditions, they have altered over 
time, and it is not known how well they represent the biology of the 
tumors from which they were derived. In addition, many cancer 
models lack accurate clinical annotations and histopathological clas-
sification that are crucial for their utility in cancer research (13). For 
greater clinical translatability, identification of models that suffi-
ciently resemble the biological characteristics and drug responses of 
patient tumors is of critical importance.

Large collections of molecular data from patient tumors and can-
cer models have been generated across different cancer types. The 
Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) (2) contains 
molecular profiles of around 1000 cancer cell lines, which are exten-
sively used as preclinical models for various tumor types in drug 
discovery studies. In addition, gene expression profiles of >400 PTX 

models are available via the Novartis Institutes for Biomedical Re-
search Patient-derived Tumor Xenograft Encyclopedia (9). Com-
prehensive molecular characterization of primary and metastatic 
tumors along with clinical data from >11,000 patients are available 
from the The Cancer Genome Atlas (TCGA) (14), MET500 (15), 
and Count Me In (CMI) (16) projects. These efforts provide a pow-
erful opportunity to unravel the systematic differences between can-
cer cell lines, xenograft models, and patient tumors and to identify 
the cancer models that sufficiently recapitulate the biology of patient 
tumors without relying on clinical annotations.

Gene expression profiling accurately reproduces histopathologi-
cal classification of tumors and is a useful technique for resolving 
tumor subtypes (17–20). However, large-scale integration of molec-
ular data from cancer cell lines, xenograft models, and patient tu-
mors is challenging due to the mixture of intrinsic biological signals 
and technical artifacts. One key challenge is that gene expression 
measurements from bulk patient biopsy samples are confounded by 
the presence of human stromal and immune cell populations that are 
not present in cancer models. In addition, large public datasets can 
be confounded by hidden technical variables, even when they come 
from the same source type [e.g., RNA sequencing (RNA-seq) from 
different patient cohorts]. Existing approaches for removing batch 
effects do not account for other systematic differences between can-
cer models or patient tumors or assume that the cell line and tumor 
datasets have the same subtype composition (21, 22). Previous stud-
ies analyzing the differences between cell lines and patient tumors 
based on transcriptomics profiles have primarily focused on selected 
cancer types (23–25). Existing global analysis with the Celligner 
method (19), which leverages a computational approach developed 
for batch correction of single-cell RNA-seq data, has compared can-
cer cell lines and patient tumors. However, this method is limited to 
aligning only two datasets simultaneously, and the Celligner align-
ment does not consider PTXs.

In recent years, a multitude of studies have used deep learning 
techniques to transcriptomics data analysis. Particularly, the focus has 
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been on single-cell RNA-seq data, where different autoencoder-based 
architectures have been proposed and successfully used for data har-
monization and mitigating confounding technical effects (26–29). In-
spired by these results, we applied deep learning techniques to explore 
the fidelity of preclinical models as representatives of patient tumors.

Here, we developed a deep learning–based method, MOBER 
(Multi-Origin Batch Effect Remover), that performs biologically rel-
evant integration of pan-cancer gene expression profiles from can-
cer cell lines, PTXs, and patient tumors simultaneously. MOBER 
can be used to guide the selection of cell lines and patient-derived 
xenografts and identify models that more closely resemble patient 
tumors. We applied it to integrate transcriptomics data from 932 
cancer cell lines, 434 PTXs, and 11,159 patient tumors from TCGA, 
MET500, and CMI, without relying on cancer type labels. We devel-
oped a web application that provides a valuable resource to help re-
searchers select preclinical models with greatest transcriptional 
fidelity to clinical tumors. MOBER can be broadly applied as a batch 
effect removal tool for any transcriptomics datasets, and we made 
the method available as an open-source Python package.

RESULTS
The MOBER method
MOBER is an adversarial conditional variational autoencoder (VAE) 
that generates biologically informative gene expression embeddings 
robust to confounders (Fig. 1). MOBER consists of two neural net-
works (see Materials and Methods for more details). The first is a 
conditional VAE (30, 31) that is optimized to generate embeddings 
that can reconstruct the original input. The second is an adversarial 
neural network (aNN) (32) that takes the embedding generated by 
the VAE as an input and tries to predict the origin of the input data. 
The VAE consists of an encoder that takes as an input a gene expres-
sion profile of a sample and encodes it as a distribution into a low 
dimensional latent space and a decoder that takes an embedding 
sampled from that distribution and the origin sample labels to re-
construct the gene expression profile from it. The goal is to learn an 

embedding space that encodes as much information as possible on 
the input samples while not encoding any information on the origin 
of the sample. To achieve this, we train the VAE and aNN simultane-
ously. The VAE tries to successfully reconstruct the data while also 
preventing the aNN from accurately predicting the data source. This 
way, during training, the VAE and the aNN will converge and reach 
an equilibrium, such that the VAE will generate an embedding space 
that is optimally successful at input reconstruction and the aNN will 
only randomly predict the origin of the input data from this embed-
ding. In other words, the VAE will converge to generating an embed-
ding that contains no information about the origin of the input data, 
while the aNN will converge to a random prediction performance. 
During the MOBER training process, we use one-hot representation 
of the origin of the input samples (either TCGA, CCLE, PTX, 
MET500, or CMI) and provide that information to the decoder. This 
enables the VAE to decode the data embeddings conditionally and 
reconstruct the expression data as if the sample was coming from 
another source type. To project a transcriptomics profile from one 
origin (e.g., preclinical) into another (e.g., clinical), after the model is 
trained, we can pass that transcriptomics profile through the VAE 
and simply change the one-hot vector informing on the sample ori-
gin to the desired one (e.g., CCLE to TCGA to decode cell lines as if 
they were TCGA tumors).

Global pan-cancer alignment of transcriptional profiles from 
cancer cell lines, PTXs, and patient tumors
We analyzed the transcriptomics profiles from 932 CCLE cell lines, 
434 PTXs, 10,550 patient tumors from TCGA, 406 metastatic tu-
mors from MET500 (33), and 203 breast tumors from CMI (16). 
Integrating these datasets by performing dimensionality reduction 
with two-dimensional Uniform Manifold Approximation and Pro-
jection (UMAP) reveals a clear separation of samples based on their 
origin (Fig. 2A). As expected, there is a global separation between 
cell lines, xenografts, and patient tumors. In addition, there are still 
strong batch effects between CMI, TCGA, and MET500 datasets, 
despite these samples all being derived from patient biopsies.

Fig. 1. MOBER architecture. MOBeR consists of two neural networks: one conditional variational autoencoder (vAe) and one source discriminator neural network that is 
trained in adversarial fashion. the encoder takes as an input a gene expression profile and encodes it into a latent space, and the decoder takes a sampling from the latent 
space and reconstructs the gene expression profile from it. the source discriminator adversary neural network takes the sampling from the latent space and tries to 
pre-dict the origin of the input data. Parts of this figure were created with BioRender.com.

http://BioRender.com
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Aligning the CCLE, PTX, TCGA, MET500, and CMI datasets 
with MOBER resulted in a well-integrated dataset of transcriptional 
profiles from cell lines, xenografts, and patient tumors that have 
been corrected for multiple sources of systematic dataset-specific 
differences. The UMAP plots using the MOBER-aligned data (Fig. 2, 
B and C) reveal a map of cancer transcriptional profiles where cell 
lines, xenografts, and patient tumor samples are largely intermixed, 
while the biological differences across known cancer types are still 
preserved (Fig. 2C). The strong batch effects between cell lines, xe-
nografts, and patient tumors were not addressed by applying other 

widely used batch correction methods, such as ComBat (21, 22), 
Harmony (34), Batch Mean Centering (35), and the Regress_Out 
algorithm as implemented in scanpy (fig. S1) (36). Comparisons us-
ing simulated data further highlight the superiority of MOBER in 
data integration, particularly in presence of strong batch effects (see 
Supplementary Text and figs. S2 to S7).

As illustrated in Fig. 2B, MOBER removes the systematic differ-
ences between patient tumors and cancer models, as well as the 
technical artifacts present in patient tumors coming from different 
sources (CMI, MET500, and TCGA), producing an integrated 

Fig. 2. Global pan-cancer alignment of preclinical and clinical transcriptomes. (A) Integration of transcriptional profiles from models and patient tumors by perform-
ing Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction, each dot is a sample. (B) Integration of transcriptional profiles from models and 
patient tumors using MOBER, the color corresponds to the sample origin. (C) MOBER alignment, where each tumor sample is colored on the basis of cancer indication. (D) The 
proportion of cancer cell lines that are classified as each tumor type using MOBER-aligned data. (E) The proportion of PTXs that are classified as each tumor type using 
MOBER-aligned data. The x axis on (D) and (E) shows the TCGA tumor types, and the y axis shows the CCLE annotation label (D) and PTX annotation label (E), accordingly.
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cancer expression space with clear clusters composed of mixture of 
cell lines, xenografts, and patient tumor samples. Figure 2C shows 
that the aligned expression profiles largely cluster together by dis-
ease type, although MOBER does the alignment in a completely un-
supervised manner, without relying on any sample annotations such 
as disease type. We quantified this by classifying the most similar 
tumor type for each cell line and xenograft model, based on its near-
est neighbors among the TCGA tumor samples (see Materials and 
Methods). We found that, for 73% of the PTX models, the inferred 
disease type matches the annotated PTX tumor type, while this 
number goes down to 53% for CCLE models.

A key advantage of MOBER is that it does not assume that any 
two datasets are necessarily similar to each other, and it does not rely 
on clinical annotations of individual tumor samples, independently 
of whether they come from patient biopsies or preclinical models. 
As a result, the MOBER-aligned expression data can be used to 
identify which preclinical models have the greatest transcriptional 
fidelity to clinical tumors and which models are transcriptionally 
unrepresentative of their respective clinical tumors. Although a high 
proportion of preclinical models clusters with tumors of the same 
cancer type, not all cell lines and xenograft models align well with 
patient tumor samples. Figure 2 (D and E) shows that a significant 
proportion of cancer models (both PTXs and CCLEs), derived from 
skin, colorectal, and breast cancer, are faithful representatives of pa-
tient tumors, while many models derived from liver, esophagus, and 
bile duct tend to align with other cancer types. This observation is in 
agreement with Celligner results on cancer cell lines (19). PTX 
models derived from brain tumors align very well with brain cancer 
patient biopsies; however, brain cell line models cluster closely to 
soft tissue patient tumors, but not to clinical brain tumors. This is in 
line with previous studies that show that in vitro medium conditions 
cause genomic alterations in brain cell lines that were not present in 
the original tumors, thus altering their phenotypes (37, 38).

Metastatic tumors from the MET500 dataset tend to cluster together 
with their corresponding primary tumors from TCGA, although the 
tissue of biopsy of MET500 tumors is different from the primary site 
(fig. S8). In 63% of MET500 samples, the inferred disease type matches 
the annotated primary tumor type. We note that, for 88 samples from 
the MET500 dataset, the primary site annotation is missing (such sam-
ples are shown in black squares in fig. S8). However, the majority of 
these samples align nicely within TCGA clusters, indicating that the 
unsupervised pan-cancer alignment with MOBER can be used to infer 
the primary site for tumors of unknown origin when the transcrip-
tomics profiles are available.

Another key feature of MOBER is that it allows for populations 
that are only present in one dataset to be aligned correctly in an 
unsupervised manner. For example, the CMI dataset contains only 
transcriptional profiles of patient biopsies with metastatic breast 
cancer. MOBER integrated this dataset very nicely with the other 
breast patient tumors from TCGA and MET500, as well as breast 
cancer cell lines and xenograft models (Fig. 2B).

Preservation of biological subtype relationships in the 
MOBER alignment
We next sought to determine whether the MOBER alignment keeps 
known biological differences between more granular cancer sub-
types. Focusing on the breast cancer samples, we determined subtype 
annotations with the PAM50 method (see Materials and Methods). 
Figure 3A shows that breast cancer patient biopsies, breast cell lines, 
and xenograft models primarily cluster together by breast cancer 
subtype [LumA, LumB, normal, human epidermal growth factor re-
ceptor 2 (HER2)–enriched, or basal], with only a few PTX basal sub-
type models clustering elsewhere (see also fig. S9).

MOBER is fully interpretable by design, which allows us to study 
the changes in the transcriptomics profiles of preclinical models after 
their in silico transformation to clinical tumors. In this respect, we 

Fig. 3. Alignment of breast cancer subtypes. (A) UMAP two-dimensional projection of the MOBER-alignment highlighting breast tumor samples: LumA (green), LumB 
(orange), normal (purple), HER2-enriched (blue), and basal (red). All other non–breast tumor samples are in gray. (B) Genes that were most significantly up-regulated in 
silico after the alignment of breast cancer cell lines to breast cancer patient biopsies (x axis), along with top enriched biological pathways involving the 100 most up-
regulated genes (y axis). (C) Expression values (log2 counts per million) of a selected gene, Lumican (LUM), in breast cancer patient tumors (blue), breast cancer cell lines 
before the alignment (bright red), breast cancer cell lines after the MOBER alignment (dark red), breast xenograft models before the alignment (yellow), and breast xeno-
graft models after the MOBER alignment (orange).
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examined the genes that were significantly changed when breast can-
cer cell lines were aligned to patient biopsies. Figure 3B shows the 
genes that were most significantly up-regulated after the alignment, 
along with enriched biological pathways involving these genes. Al-
most all top enriched biological pathways (e.g., extracellular matrix 
organization, collagen fibril organization, and connective tissue de-
velopment) are related to the high presence of stromal tumor micro-
environment in breast cancer patient biopsies, which is missing in cell 
lines (see also fig. S9). Figure 3C illustrates the changes in the expres-
sion values of a selected gene, Lumican (LUM), in preclinical models 
before and after their in silico transformation. Lumican is involved in 
extracellular matrix organization and connective tissue development 
processes (among others) and is highly expressed in stromal compo-
nents in breast cancer patient biopsies, while it has a low expression in 
preclinical models as they are missing the human stromal compo-
nent. After transforming the breast preclinical models to resemble 
breast patient biopsies, we see that the LUM expression was increased 
in the transformed data. Similarly, when transforming blood cancer 
cell lines to patient biopsies, the most significantly up-regulated genes 
after the alignment are related to the presence of human immune 
components in blood cancer patient biopsies that are missing in cell 
lines (fig. S10, B and C). Together, these results highlight that, during 

the projection of preclinical models to clinical biopsies, MOBER does 
not correct genes at random. Instead, it up-regulates in silico the 
genes that are expressed in the human tumor microenvironment, 
which is present in clinical biopsies but missing in preclinical models, 
while still preserving the key biological information on tumor sub-
types at a very granular level.

Information transfer between cell line and patient 
tumor datasets
Next, we demonstrate how the MOBER-transformed gene expres-
sion profiles of preclinical models into clinical tumors can be used in 
other studies where we seek to translate preclinical biomarkers to 
patients. The Broad Institute recently published a large metastasis 
map dataset (MetMap) (15), determining the metastatic potential of 
~500 human cancer cell lines, thus enabling the metastatic patterns 
of cell lines to be associated with their genomic features. Here, we 
sought to identify transcriptomics features that are associated with 
high or low metastatic potential in human cancer cell lines. We built 
machine learning (ML) models that take as input gene expression 
profiles of cancer cell lines and try to predict their average metastatic 
potential toward five different organs, as provided by the MetMap 
dataset (Fig. 4A; see Materials and Methods). Next, we used the 

Fig. 4. Associating biomarkers of high/low metastatic potential in human cancer cell lines from MetMap and translating them to patients. (A) Using gene expres-
sion profiles of cancer cell lines and their experimentally derived metastatic potential scores from the MetMap dataset, we built machine learning (ML) models to predict 
the metastatic potential of cell lines based on expression data. Then, we translated these models trained on cell lines to patients, trying to predict the metastatic potential 
of TCGA patient tumors using patients’ transcriptomes. Patients whose tumors are predicted to have higher metastatic potential are expected to have worse survival and 
a more advanced stage of the disease. (B and C) The association of the predicted metastatic potential with patients’ survival and disease stage when ML models are trained 
on original cell line expression profiles from the CCLE. (B) Difference in survival of TCGA patient tumors for which we predict very high metastatic potential (top 25%, blue) 
versus low metastatic potential (bottom 25%, orange) with ML models trained on original cell line expression profiles. P values are derived from the log-rank test, and 
shaded areas indicate 90% of confidence intervals. (C) Predicted metastatic potential of TCGA tumors for different clinical stages. No correlation is observed. (D and E) The 
same as (B) and (C) but with ML models trained on MOBER-transformed cell line expression profiles to resemble TCGA patients. These models translate better to patient 
tumors, as evidenced by the improved survival stratification and significant positive correlation between the predicted metastatic potential and disease stage (Spear-
man’s r = 0.90, P = 0.037)
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models trained on cell line expression data to predict the metastatic 
potential scores of patient tumors from TCGA. We examined wheth-
er there is a difference in the survival between patients for which we 
predict high metastatic potential versus low metastatic potential. In 
addition, we determined whether there is any correlation between 
the predicted metastatic scores and the clinical stage of patient tu-
mors. Using the ML models that are trained on original gene expres-
sion profiles of CCLE cell lines, we see that there is a significant 
difference in the survival of TCGA patient tumors for which we pre-
dict very high metastatic potential (top 25%) versus low metastatic 
potential (bottom 25%) (P = 1.1 × 10−16) (Fig. 4B). However, there is 
no significant association with clinical stage of TCGA patient tumors 
(Fig. 4C, P value of Spearman’s correlation is 0.1). Then, we built new 
ML models that can predict the metastatic potential scores, but, this 
time, we trained them on gene expression profiles of cell lines that 
are transformed with MOBER to resemble TCGA tumors. Applying 
these ML models on TCGA patient tumors, we achieve more signifi-
cant survival stratification of TCGA patient tumors for which we 
predict very high metastatic potential (top 25%) versus low meta-
static potential (bottom 25%) (P = 6.2× 10−29) (Fig. 4D). In addition, 
we note that such models predict higher metastatic potential of the 
late-stage tumors, compared to early-stage tumors (Fig. 4E, Spear-
man’s correlation r = 0.90, P = 0.037). The same analyses performed 
separately for each disease type confirm the improved translatability 
of the ML models when they are trained on MOBER-transformed 
cell line transcriptomes to resemble patient tumors (fig. S11). The 
ML models that we used here might be too simple to faithfully infer 
the metastatic potential of tumors; however, our results demonstrate 
the utility of using the MOBER-transformed gene expression profiles 
in finding biomarkers that are better translatable to patients.

DISCUSSION
Preclinical cancer research critically relies on in vitro and in vivo tu-
mor models, such as cell lines and PTXs. However, because of the 
differences in the growing conditions and the absence of the human 
stromal microenvironment, these models are often not predictive of 
the drug response in clinical tumors and do not follow the same 
pathways of drug resistance (10, 39). Therefore, the identification of 
the best models for a given cancer type, without relying on annotated 
disease labels, is critically important. To address this, we developed 
MOBER, a deep learning–based method that performs biologically 
relevant integration of transcriptional profiles from various preclini-
cal models and clinical tumors. MOBER can be used to guide the 
selection of cancer cell lines and patient-derived xenografts and 
identify models that more closely resemble clinical tumors. We inte-
grated gene expression data from 932 cancer cell lines, 434 PTXs, 
and 11,159 clinical tumors simultaneously and demonstrate that 
MOBER can conserve the inherent biological signals while removing 
confounder information.

We identified pronounced differences across cancer models in 
how well they recapitulate the transcriptional profiles of their corre-
sponding tumors in patients. Certain cancer types, such as the ones in 
skin, breast, colorectal, kidney, and uterus, exhibit greater transcrip-
tional similarity between models and patients, while models of can-
cers of the bile duct, liver, and esophagus have transcriptional profiles 
that are unlike their patient tumors. There are also notable differences 
between CCLE and PTX as cancer model systems. While brain and 
soft tissue CCLEs appear to have diverged from their corresponding 

patient tumors, brain and soft tissue PTX models have high transcrip-
tional fidelity. Notably, among the PTX models, urinary tract xeno-
grafts attain greatest transcriptional similarity to corresponding 
patient tumors; however, many of the urinary tract CCLEs have drift-
ed away from their labeled tumors. As pointed in previous studies 
(19, 40), many CCLEs are not classified as their annotated labels. We 
report that PTX models, on average, show greater transcriptional 
similarity to patient tumors, as compared to their CCLE counterparts. 
This could suggest that the lack of immune component is not the 
main CCLE confounder, but CCLEs likely undergo transcriptional 
divergence due to the culture condition, high number of passages, and 
genetic instability (41, 42). In addition, cancer models (both PTXs 
and CCLEs) could be misannotated because of inaccurate assignment 
based on unclear anatomical features or mismatch during sampling 
(40, 43). Our pan-cancer global alignment with MOBER could be 
used to identify cancers that are underserved by adequate preclinical 
models and to determine the primary site label for models and clinical 
tumors where such annotation is missing.

MOBER is interpretable by design, therefore allowing drug hunt-
ers to better understand the underlying biological differences be-
tween models and patients that are responsible for the observed lack 
of clinical translatability. The observed differences vary across dis-
ease types, emphasizing the importance of using unsupervised non-
linear approach that enables identification of disease-type-specific 
variations.

As a batch effect removal method, MOBER offers several advan-
tages compared to previously published methods (19, 21, 44): It (i) 
supports integration of multiple datasets simultaneously, (ii) en-
ables transformation of one dataset into another, and (iii) does not 
make any assumption on the datasets composition. We demonstrate 
that MOBER can remove batch effects between gene expression da-
tasets even when the cell population representation across datasets 
is different.

We note that, when transforming preclinical models to resemble 
clinical tumors, MOBER corrects not only for hidden technical dif-
ferences but also for differences due to the absence of the tumor 
microenvironment in preclinical models. While this correction is 
crucial for aligning preclinical models with clinical tumors and 
identification of outlier models, this may not be desirable in studies 
aimed at investigating the inherent biological disparities between 
models and patient tumors. With the in silico addition of the tumor 
microenvironment to cell lines, some components that are inherent 
to cell culture (e.g., extracellular matrix genes in stromal reach tu-
mors) would be affected. However, the differences in these cell com-
ponents between the different cell lines are still maintained after 
their in silico transformation to clinical tumors, as evidenced by the 
meaningful alignment of disease types and subtypes in a completely 
unsupervised way.

To facilitate the use of MOBER, we made the source code avail-
able at https://github.com/Novartis/MOBER and developed an in-
teractive web app available at https://mober.pythonanywhere.com 
to allow users to explore the MOBER aligned expression profiles 
coming from cancer models and clinical tumors. In addition, the 
web app enables the identification of preclinical models that best 
represent the transcriptional features of a tumor type or even a par-
ticular tumor subtype of interest. Future version of MOBER that 
integrates genetic and epigenetic features of models and patient tu-
mors could potentially enable even more detailed analysis between 
models and patients.

https://github.com/Novartis/MOBER 
https://mober.pythonanywhere.com
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MATERIALS AND METHODS
The MOBER method and model training details
Each gene expression profile of a sample i is a vector xi with length 
equal to the total number of genes. The input gene expression data x 
is run through a VAE that uses variational inference to reconstruct 
the original data in a conditional manner. The encoder estimates the 
probability density function of the input expression data Q(z∣x). 
Then, a latent vector z is sampled from Q(z∣x). The decoder decodes 
z into an output, learning the parameters of the distribution P(x∣z). 
The loss function is then given by

where x and z indicate the gene expression data and latent space, 
respectively; Q and P are the estimated probability distributions; E 
denotes an expectation value; KL is the Kullback-Leibler (45) diver-
gence; and w is a weight parameter that determines the importance 
given to the Kullback-Leibler divergence in the VAE loss function. 
The first term in the loss function is the reconstruction error (i.e., 
expected negative log-likelihood of the data sample), and the second 
term is the Kullback-Leibler divergence between the encoder’s dis-
tribution Q(z∣x) and P(z). In addition to the input expression data, 
we provide to the decoder an information about the origin of the 
input sample (in our case CCLE, PTX, TCGA, MET500, or CMI) 
transformed into a one-hot encoding vector s, that consists of 0’s in 
all cells and a single 1 in a cell used to uniquely identify the input 
source. This allows for reconstruction of the latent vector z by the 
decoder in a conditional manner, and it enables projection of one 
dataset into another.

In addition to training the VAE, we simultaneously train an aNN 
that acts as a source discriminator. It takes as an input an embed-
ding vector z sampled from the latent space, and tries to predict 
the source label of the input data (s). This is a multi-class fully 
connected neural network with negative log-likelihood loss function 
as given by

The joint loss is computed as

where λ is a coefficient that determines the weight that the model 
gives to the adversarial loss.

In our study, the encoder, decoder, and aNN are designed as ful-
ly connected neural networks each with three layers. Each layer of 
the encoder (and decoder respectively) consisted of 256, 128, and 64 
nodes each. We used Scaled Exponential Linear Unit (46) activation 
function between two hidden layers, except the last decoder layer, 
where we applied Rectified Linear activation Unit (47). The last aNN 
layer had five hidden nodes corresponding to the number of data 
source classes and softmax activation.

We implemented MOBER using PyTorch (48). We set the 
minibatch size to 1600 and trained it with Adam optimizer (49) 
using a learning rate of 1 × 10−3. The weight for the KL loss of the 
VAE was set to 11 × 10−6, and the weight for the source adversary 
loss was set to 11 × 10−2. The best hyperparameter set from nu-
merous possibilities was chosen from a grid search that mini-
mized the joint loss and maximized the clustering performance of 
models to patients.

Datasets
The RNA-seq gene expression counts for TCGA samples were down-
loaded from the TCGA portal (https://tcga-data.nci.nih.gov/tcga) 
(14) and the CMI gene expression counts from the Genomic Data 
Commons portal (50), and CCLE (2), PTX (9), and MET500 (33) data 
were obtained from the corresponding publications. All gene expres-
sion data were normalized with Trimmed Mean of M-values (TMM) 
method using EdgeR (51) and then transformed to log2 counts per 
million using the edgeR function “cpm,” with a pseudocount of 1 add-
ed. Gene expression data were subset to 17,167 protein-coding genes 
that were present in all datasets. The MetMap (15) dataset was down-
loaded from the DepMap portal (https://depmap.org/metmap). We 
excluded the indications that have less than five samples.

Alignment evaluation
We projected each sample from the CCLE, PTX, CMI, and MET500 
datasets to TCGA, by changing the one-hot encoded source infor-
mation and setting it to TCGA. Then, we decoded the expression 
data with MOBER.

To evaluate the alignment of preclinical samples to TCGA sam-
ples, for each CCLE and PTX sample, we identified the 25 TCGA 
nearest neighbors in 70-dimensional principal components analysis 
space. Each preclinical sample was classified as a tumor type by 
identifying the most frequently occurring tumor type within these 
25 nearest neighbors.

The identification of breast cancer molecular subtypes was done 
using the PAM50 classifier as implemented in the geneFu R package 
(52). The identification of differentially expressed genes comparing 
the transcriptional profiles before and after their transformation to 
patient tumors was done with Seurat v3.6 (53) using the t-test meth-
od. Pathway enrichment analysis was done for the top 100 most dif-
ferentially expressed genes ordered by their fold change and with an 
adjusted P value of <0.01 using the clusterProfiler (54) package.

Analyses of metastatic potential using MetMap data
We trained random forest models to predict the metastatic potential 
scores using gene expression values as input, using the scikit-learn 
(55) Python package (0.23.2). The hyperparameters were optimized 
with grid search strategy using threefold cross validations. Then, the 
final model was trained using the optimized hyperparameters. The 
hyperparameter optimized in the model is “max_features.” One 
thousand trees were used, and all other hyperparameters were set 
as default.

Two different models were trained, using either the original tran-
scriptome or the projected transcriptomes of CCLEs to TCGA pa-
tients to predict mean metastatic potential scores of cell lines across 
five organs (metp500.all5). Then, with each trained model, we pre-
dicted the metastatic potential scores for patient tumors from TCGA 
using the original transcriptome as input. For the survival analysis, 
the top 25% of samples with highest predicted scores and bottom 
25% with the lowest predicted scores were compared. The Kaplan-
Meier survival analysis (56) was done with the lifelines (57) Python 
package v0.25.4.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S11

LossVAE= −Ez∼Q(z∣x)
[

log P(x∣z)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reconstruction error

+ wKL ∗KL[Q(z∣x) ∥P(z)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

regularization

LossaNN = −EQ(z∣x)
[

logp(s∣z)
]

LossMOBER = LossVAE − λ ∗ LossaNN

https://tcga-data.nci.nih.gov/tcga
https://depmap.org/metmap
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