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ABSTRACT

Background and Objectives: Operating rooms (ORs) are
critical for hospital revenue and cost management, with uti-
lization efficiency directly affecting financial outcomes.
Traditional surgical scheduling often results in suboptimal
OR use. We aim to build a machine learning (ML) model to

predict incision times for robotic-assisted hysterectomies,
enhancing scheduling accuracy and hospital finances.

Methods: A retrospective study was conducted using data
from robotic-assisted hysterectomy cases performed between
January 2017 and April 2021 across 3 hospitals within a large
academic health system. Cases were filtered for surgeries
performed by high-volume surgeons and those with an inci-
sion time of under 3 hours (n5 2,702). Features influencing
incision time were extracted from electronic medical records
and used to train 5 ML models (linear ridge regression, ran-
dom forest, XGBoost, CatBoost, and explainable boosting
machine [EBM]). Model performance was evaluated using a
dynamic monthly update process and novel metrics such as
wait-time blocks and excess-time blocks.

Results: The EBM model was selected for its superior per-
formance compared to the other models. The model
reduced the number of excess-time blocks from1,113 to 905
(P< .001, 95%CI [–329 to –89]), translating to approximately
52-hours over the 51-month study period. The model pre-
dictedmore surgerieswithin a 15% range of the true incision
time compared to traditional methods. Influential features
included surgeon experience, number of additional proce-
dures, bodymass index (BMI), and uterine size.

Conclusion: The ML model enhanced the prediction of
incision times for robotic-assisted hysterectomies, provid-
ing a potential solution to reduce OR underutilization
and increase surgical throughput and hospital revenue.

Key Words: Efficiency, Gynecologic surgical proce-
dures, Hysterectomy, Machine learning, Operative
time, Organizational.

INTRODUCTION

Surgical departments strive for efficient utilization of oper-
ating rooms (ORs), which are the primary contributors to
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both revenue and cost for most hospitals. ORs can cost
between $21.80 and $133.12 per minute, depending on
case complexity. Cost reduction strategies, such as reduc-
ing 7 minutes per case over 250 cases, can yield up to
$100,000 in savings.1 Recent studies indicate that OR utili-
zation is well below achievable targets at most hospitals.2

Improving incision time predictions can remedy utiliza-
tion deficits and allow for more accurate surgical schedul-
ing. In addition to increasing throughput and reducing
costs, optimized scheduling practices can facilitate better
resource allocation, decreased patient wait-time, and
boosts in both patient and staff satisfaction.1,3,4

Machine learning (ML), a form of advanced predictive analytics,
employs statistical techniques to equip computer systems with
the ability to identify patterns from available data variables, oth-
erwise known as features, to make predictions on outcomes of
interest.3,5,6 One study found a ML model significantly increased
the number of accurately booked cases from 148 to 219 (34.9%
to 51.7%, P < .001). Other studies have demonstrated that ML
models can also optimize OR resource use as well as wait-time
for surgeons, OR staff, and patients.3,5,7,8

Few studies on ML models for predicting operative time
have focused on robotic-assisted (RA) gynecologic sur-
gery.3,9 RA surgery may result in higher costs than traditional
laparoscopy due to the initial purchase price and ongoing
maintenance expenses.10 A large cohort study showed that
the total costs associated with RA hysterectomies were
approximately $2,189 more per case than for its laparo-
scopic counterpart.8 Studies external to gynecology show
similar trends when comparing procedures performed
robotically versus laparoscopically.10–13 As robotic surgery
becomes increasingly more prevalent, boosting OR effi-
ciency becomes a paramount avenue through which surgi-
cal services can potentially offset these associated costs. ML
models present an opportunity to achieve this optimization
and cost reduction, especially when tailored to procedure-
and patient-specific features, which have been established
to influence incision times.3,14,15 For instance, in the setting
of a hysterectomy, large uteri and adhesions from pelvic
inflammatory disease (PID) or cesarean delivery are associ-
ated with longer incision times.16,17 This study aimed to de-
velop and leverage an operation-specific ML model to more
accurately predict incision times for RA hysterectomies.

METHODS

Study Population

RA hysterectomy cases performed across 3 hospitals
within a large, academic health system between January

2017 and April 2021 were identified (n5 3,058). Cases
were filtered to include only those performed by surgeons
who completed more than 50 cases within the study pe-
riod, and with an incision time of less than 3 hours for a
total of 2,702 cases included, to be split across training,
validation, and test sets. This decision was based on the
observation that 90% of hysterectomies in our sample
were less than 3 hours long, and cases less than 3 hours
are more representative of an uncomplicated RA hyster-
ectomy operation.1,18 All data for cases were extracted
from the available electronic medical record (EMR). This
study was reviewed and approved by the Institutional
Review Board (IRB). This study received a Waiver of
Authorization/Informed Consent from the NYU Langone
IRB, as the study presents no more than minimal risk of
harm to subjects.

ML Target Prediction

The ML models were trained to predict total incision time
for RA hysterectomies. To clarify, the total time for a surgi-
cal case consists of preparation time, incision time, and
wrap-up time. Incision time, defined as skin closure time
minus initial incision time (in minutes), was selected as it
is most influenced by patient, operational, and surgeon
features compared to preparation time and wrap-up time.

Feature Definition and Extraction

To identify the features for the model, a team of gyneco-
logical surgeons and researchers conducted a literature
review and compiled a list of characteristics (features)
expected to influence total incision time (Table 1). Three
categories of features were developed: patient-specific
features (e.g., body mass index [BMI], age, etc.), surgeon-
specific features (e.g., surgeon speed, surgeon, median
incision time of most recent surgeries, etc.), and opera-
tional features (e.g., number of additional procedures, the
presence of trainees in the OR, etc.).

Many of the features of interest were manually extracted
from the EMR. Structured data fields existed for some of
the characteristics such as age and BMI. Other variables,
such as uterine size, presence of trainees during the oper-
ation, surgical history, and previous diagnosis history had
to be manually searched for within the EMR (i.e. within
the imaging report or the provider’s history of present ill-
ness note). Continuous features, such as age and BMI,
were normalized. Categorical features, such as the operat-
ing surgeon and patient diagnosis, were encoded as a 1-
hot vector.
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For some cases, a natural language processing (NLP) pro-
gram was used to help extract data from the EMR. The
NLP program ingests clinical notes and identifies select
target phrases consistent with the presence of that fea-
ture.19 The team worked to identify and code these target
and skip phrases into an open-source NLP program. For
all cases, manual chart extraction was performed to
review and validate NLP performance, and the code was
updated after each review (i.e., target and skip phrases
were updated accordingly to circumvent false positives
and further enhance the program’s ability to identify data
of interest).

Model Descriptions

A total of 5 ML models were evaluated, including linear
ridge regression (LR), random forest (RF), XGBoost
(XGB), CatBoost (CB), and explainable boosting machine
(EBM). The LR model assumes a linear relationship between
the features and the predicted outcome. It incorporates L2
regularization to prevent overfitting by constraining the

impact of certain features, which allows for fewer contribut-
ing features to have near-zero coefficients (less features
would have minimal influence). Additionally, no feature is
entirely disregarded, as their coefficients never reach zero.
In RF models, several “predictor trees” are utilized collec-
tively. Each predictor tree’s decisions depend on a randomly
selected subset of features (vectors) chosen independently
for each tree. This random selection ensures that every pre-
dictor tree offers a distinct perspective while adhering to the
same guidelines as all the trees in the “forest”.20 XGB model
is a “tree-boosting” system that uses an ensemble method,
such that each predictor tree is added to the ensemble
sequentially, and their predictions are combined to improve
the overall performance and predictive power of the
model.21 Similarly, the CB model is a type of gradient boost-
ing algorithm designed to effectively manage categorical
features. It implements a novel technique for computing
“leaf values” to minimize overfitting, a phenomenon where
the model learns too much from the training data, leading to
poor performance on new data.22 Lastly, the EBM model is
tree-based, and uses a special method called cyclic gradient

Table 1.
List of Features Used for Model Building, Variable Type, and Description

Features Description

Patient Characteristics

Age (Continuous) Patient age at the time of surgery

Body mass index (BMI) (continuous) Patient BMI at the time of surgery

Malignancy (Boolean) Presence of gynecologic malignancy at the time of surgery determined by
whether surgeon was an oncologist

MRI reported pelvic adhesive disease (Boolean) Presence of pelvic adhesive disease confirmed by MRI

MRI reported uterine size (continuous) Size of uterus estimated by MRI (calculated using the standard ellipsoid formula:
pi/6 � the 3 dimensions)26

Prior open abdominal procedure (Boolean) Patient history of open abdominal surgery

Prior myomectomy (Boolean) Patient history of a previous myomectomy

Surgeon-Specific Characteristics

Surgeon speed (continuous) Median of last 30 surgeries/uterine size

Surgeon (categorical) The primary surgeon

Diagnosis (categorical) Indication for hysterectomy

Median of the last 30 incision time (continuous) Median of the last 30 incision times by surgeon and by specific procedure

Median of the last 10 incision times (continuous) Median of the last 10 incision times by surgeon and by specific procedure

Median of the last 5 incision times (continuous) Patient history of a previous myomectomy

Operational Characteristics

Presence of trainees (Boolean) Presence of residents or fellows in OR

Presence of physician assistants (Boolean) Presence of physician assistants in OR

Number of additional procedures (continuous) Number of additional procedures performed during the hysterectomy case
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boosting. This is designed to detect and understand how dif-
ferent features interact with each other to make predic-
tions.23 Based on the preliminary performances of the 5
evaluated models, 1 model would be selected as our final
model.

Model Development, Validation, and Testing

Our dataset spanned from January 2017 to April 2021.
Initially, we observed that creating a single ML model for
this entire timeframe led to inconsistent model perform-
ance. This inconsistency depended on how we divided
the dataset into training, validation, and test sets. For
instance, 1 presumed factor contributing to this variability
is the occurrence of events that may have impacted the
training dataset but not necessarily the validation or test
sets. The COVID-19 pandemic serves as a notable exam-
ple of such an event. To obtain more consistent model
performance, we updated our approach by revising the 5
evaluated models monthly using an ensemble learning
method. Each month, we trained the models with all pre-
ceding months’ data and validated it with the current
month’s data, the latter was split into a validation dataset
and a test dataset. The validation set was used to fine-
tune and select the best model based on the primary out-
come, and the performance of the selected model on the
test set was reported. For example, cases from January
2017 were used to train the February 2017 model, and
February 2017 cases were subsequently divided into val-
idation and test sets. Similarly, in March 2017, the model
utilized data from January and February 2017 for train-
ing, while March’s cases were divided for validation and
then testing. Our dynamic monthly update process only
utilizes up to 18months of prior data, prioritizing the
most recent information and trends. Ultimately, this
approach yielded 51 dynamic models from February
2017 to April 2021, progressively incorporating the latest
data for consistent model performance and accuracy.

Model Evaluation

Model performance was evaluated with a combination of
standard and novel metrics. Standard metrics included the
following: the percentage of surgeries predicted within a
15% range of the true time in either direction, and the av-
erage difference (in minutes) between the true incision
time and the model-estimated incision time. Additionally,
2 evaluative metrics were created: wait-time blocks and
excess-time blocks. Since ORs in the participating hospi-
tals schedule surgeries in 15-minute increments, we
define wait-time blocks as the 15-minute blocks of time

that an upcoming case must wait before starting. They are
a consequence of underestimating the duration of the pre-
ceding case (i.e. the earlier case took longer than antici-
pated). Conversely, excess-time blocks are the 15-minute
time blocks in which an OR is vacant because an earlier
case took less time than anticipated, which is a conse-
quence of overestimating the duration of a preceding
case. While our study hypothesized a decrease in both
wait-time and excess-time blocks, the primary outcome of
interest is the reduction in excess-time blocks due to its
impact on increasing OR utilization. For all outcome
measurements, model performance was compared to
baseline (BL), which we defined as the median incision
time calculated from the most recent 30 procedures per-
formed by the operating surgeon. This BL measurement
reflects a standard practice used across many institutions
and incorporated into the software of commercial surgical
scheduling systems offered by EMR vendors (e.g., Cerner,
Epic, etc.). These systems leverage surgeon-specific his-
torical data to predict incision times.24

RESULTS

Demographic Characteristics

During the study period, a total of 3,058 cases of robotic
hysterectomy were identified (n5 3,058). As described,
cases were filtered based on surgeon caseloads and aver-
age incision times, resulting in 2,702 cases included in the
final model. The median age of the cohort was 53 years,
with 576 cases (21%) being over the age of 65. Of the total
cohort, 1,126 cases (42%) have a BMI greater than 30.
Trainees were present during 1,995 cases (74% of the
operations). The median incision time for the operating
surgeon’s last 30 procedures was approximately 2 hours
(122minutes). Further details about the cohort can be
found in Table 2.

Model Selection and Performance

The performances of the 5 tested ML models are com-
pared in Table 3. These results were derived from the
combination of validation datasets across the 51-month
time span during which the monthly dynamic models
were developed (n5 1,333). For all the models, the per-
centage of incision time predictions that fell within a 15%
range of the true incision time (in minutes) increased
when compared to BL predictions. Similarly, all model
predictions had a smaller average time deviation from the
true incision time, compared to BL. A decrease in wait-
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time blocks (less incision time underestimation) and
excess-time blocks (less incision time overestimation) was
also observed for all models. We chose the EBM as our
final model because it demonstrated the highest reduction
(21% decrease) in excess-time blocks compared to the
other models evaluated.

Using the combined 51-month test dataset, the EBM
model demonstrated a reduction in excess-time blocks,
decreasing from 1,113 to 905 (a decrease of 208 blocks,

P < .001), as outlined in Table 4. Considering each time
block as 15-minutes, the reduction of 208 excess-time
blocks translates to approximately 52 hours.

DISCUSSION

Considering the potential implications for surgical sched-
uling, our primary outcome measurement focused on
reducing excess-time blocks compared to the BL. The ra-
tionale behind this is to minimize the underutilization of
ORs, allowing for more cases to be performed and subse-
quently boosting hospital revenue through increased sur-
gical throughput. Based on our findings, the EBM model
successfully reduced the number of excess-time blocks
compared to BL, highlighting the model’s accuracy in pre-
dicting incision times. If deployed into practice, our devel-
oped ML model can create potential opportunities to
schedule additional OR procedures, increasing surgical
throughput and revenue.

Excess-time blocks, often the result of overestimation
from traditional scheduling practices, represent a critical
measure of the operational impact of improved incision
time predictions using ML models. On the contrary,
operational complications are a major factor contributing
to an increase the number of wait-time blocks. Despite
accounting for various features influencing incision time
with the assistance of ML, complications remain difficult
to predict, thus making them less suitable as a primary
outcome.

From our test data set of the EBM model, we observed
that BL predictions resulted in more wait-time blocks than
excess-time blocks (Table 4), suggesting an underestima-
tion of the true incision time. This trend was also seen
with the model predictions.

Additional Insights for Robotic Hysterectomy
Incision Time Prediction

The EBM model can provide explanations for its predic-
tions, revealing how the model itself operates (model
level) and how its predictions relate to a patient’s case
data (patient level). Figure 1 shows the relative impor-
tance of the features we examined in predicting robotic
hysterectomy incision time. The most influential features
were the median time of a surgeon’s most recent opera-
tions (of the last 5, 10, and 30 cases), the operating sur-
geon themselves, the number of the other procedures
being performed (procedures other than the robotic hys-
terectomy), BMI, and uterine size. We noticed that

Table 2.
Demographics and Descriptive for Variables Used in the

Models

Features Descriptives

Median age 53

Age> 65 576 (21.3%)

BMI> 30 1126 (41.7%)

Malignancy 1441 (53.3%)

Presence of trainees (i.e. residents, medical
students)

1995 (73.8%)

Presence of physician assistants 2130 (78.8%)

Prior open abdominal procedure 630 (23.3%)

Prior myomectomy 185 (6.8%)

MRI-reported pelvic adhesive disease 204 (7.6%)

MRI-reported uterine size in CC (median) 431.5 (27%)

More than 1 procedure 57%

Number of additional procedures (median) 2

Surgeon (n) 17

Endometrial hyperplasia 748 (27.7%)

Abnormal uterine bleeding 692 (25.6%)

Leiomyoma 415 (15.4%)

Adenomyosis 277 (10.3%)

Pelvic organ prolapse 127 (4.7%)

Median of the last 30 incision time (in minutes) 122

Median of the last 10 incision time (in minutes) 121

Median of the last 5 incision time (in minutes) 118

Day of the Week

Monday 398 (14.7%)

Tuesday 528 (19.5%)

Wednesday 439 (16.2%)

Thursday 1,047 (38.7%)

Friday 279 (10.3%)

Saturday 8 (0.2%)

Sunday 3 (0.01%)
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patients requiring multiple procedures tended to lead to
longer incision time predictions, as shown in Figure 2.
Collectively, these results provide insight into the opti-
mization of scheduling. For instance, our model yielded
more accurate predictions for cases with multiple pro-
cedures compared to standard scheduling practices,

which treat each procedure as independent and simply
sum their predicted times. Additionally, there was a
positive, nonlinear relationship between uterus size
and incision time prediction. Although it is well-estab-
lished that a larger uterus size correlates to a longer
incision time, our model analysis revealed more

Table 3.
Performance of the Dynamic Models in the Validation Datasets Combined Across 51 Months (n5 1,333)

Metric BL EBM (vs BL) LR (vs BL) RF (vs BL) XGB (vs BL) CB (vs BL)

Percent of prediction within 15% of true time 31.88 35.78 (112%) 36.83 (116%) 34.58 (18%) 35.56 (112%) 35.71 (112%)

Average deviation from true time (in minutes) 39.61 34.11 (�14%) 33.35 (�16%) 35.17 (�11%) 34.41 (�13%) 34.19 (�14%)

Number of wait-time blocks 2437 2174 (�11%) 2098 (�14%) 2237 (�8%) 2190 (�10%) 2176 (�11%)

Number of excess-time blocks 1080 850 (�21%) 867 (�20%) 899 (�17%) 887 (�18%) 867 (�20%)

BL, retrospective baseline; EBM, explainable boosting machine; LR, linear regression; RF, random forest; XGB, XGBoost; CB, CatBoost.

Table 4.
EBM Model Performance in Test Dataset (n5 1,316)

Metric BL Model Model vs BL 95% CI P valuea

Percent of prediction within 15% of true time 35.94 33.89 �2.1 (�5.8 to 1.7) .29

Average deviation from true time (in minutes) 24.5 23.1 �1.4 (�3.4 to 1.4) .33

Number of wait-time blocks 2,310 2,210 �100 (�429 to 119.4) .07

Number of excess-time blocks 1,113 905 �208 (�329 to –89) <.001

BL, baseline. P values for the difference in percentages were obtained using the x 2 test. The other rows were via the Wilcoxon test.
Confidence intervals were obtained by bootstrapping.

Figure 1. Feature importance in EBM model and mean absolute score. The ordered importance of features incorporated into the final
explainable boosting machine (EBM) model are depicted. Surgeon names have been removed from the summary table.
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implications regarding this association. In both litera-
ture and billing practice, the threshold for a larger
uterus is 250 g, but our data indicates that the most no-
table change occurs when the uterus size exceeds 343
g.25,26 Our model predicted that uterus sizes greater
than 343 g would result in longer incision times com-
pared to smaller sizes (Figure 3). While further investi-
gation is needed to fully interpret this threshold, our

results highlight the potential for policy revisions that
may better reflect surgical practice.

The benefits of utilizing ML to optimize surgical schedul-
ing extend beyond hospital finances, surgeon scheduling,
and patient experiences. More accurate predictions of
incision times for robotic hysterectomies can also enhance
the efficiency of OR staff allocation, a critical component

Figure 2. Function of number of other procedures. Demonstrates influence of other procedures in addition to robotic hysterectomy on case
time. Score refers to the relative impact on the model prediction; grey blocks indicate error bars. Density refers to the number of cases falling within
the specified range.

Figure 3. Function of uterine size. Demonstrates influence of uterine size on case time. Score refers to the relative impact on the model prediction;
grey blocks indicate error bars. Density refers to the number of cases falling within the specified range.
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of successful robotic surgery. Effective scheduling allows
for better synchronization between surgeons and other
OR staff members, ensuring that the entire surgical team is
prepared for subsequent cases without unnecessary
delays or idle time.27

Additionally, accurate scheduling has a substantial impact
on the well-being and job satisfaction of OR nurses. For
instance, when surgeries run longer than expected, nurses
often face unplanned overtime or extended shifts, leading
to fatigue, stress, and lower job satisfaction.28 Ensuring
precise scheduling through ML can alleviate these chal-
lenges, contributing to improved staff morale, better
work-life balance, and a more efficient workflow for all
members of the operating team. Proper planning and allo-
cation of nursing staff are essential not only for seamless
operations of robotic surgeries, but also for maintaining a
healthy and motivated OR team, which ultimately
coincides with more optimal patient care and surgical
outcomes.

Limitations

Manual chart review was necessary to pinpoint and
extract specific features, such as uterine size, which could
not be easily extracted by NLP programs, unlike features
with discrete values within the EMR such as age or BMI.
Instances where uterine size was not explicitly listed,
required manual calculations using the provided dimen-
sions, while in some cases, uterine-related data was
entirely absent from the EMR. Given the impact of uterine
size on incision time in our model, future efforts should
focus on standardizing how this data is listed within EMRs
to facilitate a more efficient extraction of variables,
whether through NLP programs or manual review. This
standardization is especially important for developing
similarly structured predictive models that are reliant on
EMR data for feature extraction.29–31

Moreover, a notable limitation is the exclusion of
robotic hysterectomy cases lasting over 3 hours from
the dataset utilized for training, validating, and testing
our ML model. Numerous factors, such as intraopera-
tive complications, may contribute to prolonged case
time, which neither a scheduling team nor our model
could reliably anticipate. Further evaluation should
involve testing the ML model’s capacity to predict cases
surpassing the 3-hour threshold. These results may pro-
vide further insight into the value of our model’s algo-
rithm in forecasting incision times for unforeseen case
scenarios, despite initial dataset constraints.

While our model was trained on data from a single cohort
of patients and surgeons, utilizing input features specific
to our institution, its deployment to external settings is
limited by the inherent nature of ML. Nevertheless, our
study contributes valuable insights to the literature and
highlights the potential of ML models in predicting
operating times, thereby advocating for the develop-
ment of operation-specific models across various insti-
tutions.3,5,8,29 By providing a structured approach and
methodology, our study offers guidance for other insti-
tutions to adopt and adapt in their own research and
integration endeavors.

CONCLUSION

To our understanding, this is the first study to successfully
develop a procedure-specific ML model for prediction of
RA hysterectomy incision times. Our analysis demon-
strated that the ML model substantially outperformed the
BL standard by reducing the number of excess-time
blocks, potentially translating to the ability to schedule
additional procedures, increasing surgical throughput and
revenue. We also created 2 novel evaluative metrics, wait-
time blocks and excess-time blocks, based on the opera-
tional practices of scheduling teams at the institution stud-
ied. These metrics facilitate the accurate quantification of
model benefits and the associated operational changes in
throughput and revenue. The use of these time blocks to
evaluate the model’s performance is important for the
next aspect of this work, the deployment into hospital
operations and scheduling. Future applications aim to
replace BL practices with ML model predictions to con-
struct surgical schedules, while still analyzing changes
based on outcomes of interest. Given the improvement of
incision time predictions with our model, we believe
implementing a ML program as an OR optimization strat-
egy has promising implications for cost savings, hospital
earnings, and improved patient experiences.

References:

1. Shippert RD. A study of time-dependent operating room
fees and how to save $100 000 by using time-saving products.
Am J Cosmet Surg. 2005;22(1):25–34.

2. Doebbeling BN, Burton MM, Wiebke EA, et al. Optimizing
perioperative decision making: improved information for clinical
workflow planning. AMIA Annu Symp Proc. 2012;2012:154–163.

3. Zhao B, Waterman RS, Urman RD, Gabriel RA. A machine
learning approach to predicting case duration for robot-assisted
surgery. J Med Syst. 2019;43(2):32.

Predicting Robotic Hysterectomy Incision Time: Optimizing Surgical Scheduling with Machine Learning, Shah V et al.

October–December 2024 Volume 28 Issue 4 e2024.00040 8 JSLS www.SLS.org



4. Macario A. What does one minute of operating room time
cost? J Clin Anesth. 2010;22(4):233–236.

5. Jiao Y, Sharma A, Ben Abdallah A, Maddox TM, Kannampallil
T. Probabilistic forecasting of surgical case duration using machine
learning: model development and validation. J Am Med Inform
Assoc. 2020;27(12):1885–1893.

6. Blum AL, Langley P. Selection of relevant features and exam-
ples in machine learning. Artif Intell. 1997;97(1–2):245–271.

7. Strömblad CT, Baxter-King RG, Meisami A, et al. Effect of a
predictive model on planned surgical duration accuracy, patient
wait time, and use of presurgical resources: a randomized clini-
cal trial. JAMA Surg. 2021;156(4):315–321.

8. Bartek MA, Saxena RC, Solomon S, et al. Improving operat-
ing room efficiency: machine learning approach to predict case-
time duration. J Am Coll Surg. 2019;229(4):346–354.e3.

9. Martinez O, Martinez C, Parra CA, Rugeles S, Suarez DR.
Machine learning for surgical time prediction. Comput Methods
Programs Biomed. 2021;208:106220.

10. Barbash GI, Glied SA. New technology and health care
costs–the case of robot-assisted surgery. N Engl J Med. 2010;363
(8):701–704.

11. Baek SJ, Kim SH, Cho JS, Shin JW, Kim J. Robotic versus
conventional laparoscopic surgery for rectal cancer: a cost analy-
sis from a single institute in Korea. World J Surg. 2012;36
(11):2722–2729.

12. Ramsay C, Pickard R, Robertson C, et al. Systematic review
and economic modelling of the relative clinical benefit and cost-
effectiveness of laparoscopic surgery and robotic surgery for re-
moval of the prostate in men with localised prostate cancer.
Health Technol Assess. 2012;16(41):1–313.

13. Sarlos D, Kots L, Stevanovic N, Schaer G. Robotic hysterec-
tomy versus conventional laparoscopic hysterectomy: outcome
and cost analyses of a matched case-control study. Eur J Obstet
Gynecol Reprod Biol. 2010;150(1):92–96.

14. Traven SA, Reeves RA, Xerogeanes JW, Slone HS. Higher
BMI predicts additional surgery at the time of ACL reconstruc-
tion. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2552–
2557.

15. Consorti F, Milazzo F, Notarangelo M, Scardella L, Antonaci
A. Factors influencing the length of the incision and the operat-
ing time for total thyroidectomy. BMC Surg. 2012;12:15.

16. Hsu WC, Chang WC, Huang SC, Sheu BC, Torng PL, Chang
DY. Laparoscopic-assisted vaginal hysterectomy for patients with
extensive pelvic adhesions: a strategy to minimise conversion to
laparotomy. Aust N Z J Obstet Gynaecol. 2007;47(3):230–234.

17. Pogoda KA, Malinowski A, Majchrzak-Baczmanska D,
Wosiak A. The analysis of vaginal hysterectomy results depend-
ing on the uterine size. Ginekol Pol. 2021;92(5):339–343.

18. Roque DR, Robison K, Raker CA, Wharton GG, Frishman
GN. The accuracy of surgeons’ provided estimates for the dura-
tion of hysterectomies: a pilot study. J Minim Invasive Gynecol.
2015;22(1):57–65.

19. Swartz J, Koziatek C, Theobald J, Smith S, Iturrate E.
Creation of a simple natural language processing tool to support
an imaging utilization quality dashboard. Int J Med Inform.
2017;101:93–99.

20. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

21. Chen T, Guestrin C. XGBoost: a Scalable Tree boosting sys-
tem. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD
’16. 2016;785–794.

22. Dorogush AV, Ershov V, Gulin A. CatBoost: gradient boost-
ing with categorical features support. arXiv. 2018;181011363.
https://arxiv.org/abs/1810.11363.

23. Nori H, Jenkins S, Koch P, Caruana R. InterpretML: a uni-
fied framework for machine learning interpretability. arXiv.
2019190909223. https://arxiv.org/abs/1909.09223.

24. Hosseini N, Sir MY, Jankowski CJ, Pasupathy KS. Surgical
duration estimation via data mining and predictive modeling: a
case study. AMIA Annu Symp Proc. 2015;2015:640–648.

25. Kung FT, Chang SY. The relationship between ultrasonic
volume and actual weight of pathologic uterus. Gynecol Obstet
Invest. 1996;42(1):35–38.

26. Uppal S, Shahin MS, Rathbun JA, Goff BA. Since surgery
isn’t getting any easier, why is reimbursement going down? An
update from the SGO taskforce on coding and reimbursement.
Gynecol Oncol. 2017;144(2):235–237.

27. Shi Y, Mahdian S, Blanchet J, Glynn P, Shin AY, Scheinker
D. Surgical scheduling via optimization and machine learning
with long-tailed data: health care management science, in press.
Health Care Manag Sci. 2023;26(4):692–718.

28. Watanabe M, Yamauchi K. The effect of quality of overtime
work on nurses’ mental health and work engagement. J Nurs
Manag. 2018;26(6):679–688.

29. Zhang D, Yin C, Zeng J, Yuan X, Zhang P. Combining struc-
tured and unstructured data for predictive models: a deep learn-
ing approach. BMC Med Inform Decis Mak. 2020;20(1):280.

30. Cantor MN, Thorpe L. Integrating data on social determi-
nants of health into electronic health records. Health Aff
(Millwood). 2018;37(4):585–590.

31. Hemingway H, Asselbergs FW, Danesh J, et al. Innovative
Medicines Initiative 2nd programme, Big Data for Better
Outcomes, BigData@Heart Consortium of 20 academic and
industry partners including ESC. Big data from electronic health
records for early and late translational cardiovascular research:
challenges and potential. Eur Heart J. 2018;39(16):1481–1495.

JSLS: Over 1.5 Million Annual Downloads Since 2019

October–December 2024 Volume 28 Issue 4 e2024.00040 9 JSLS www.SLS.org

https://arxiv.org/abs/1810.11363
https://arxiv.org/abs/1909.09223

