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Abstract

Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide infor-

mation for patients’ susceptibility to various diseases and conditions. In addition, such analy-

sis can be used to identify aging related genes and pathways. To enable age prediction

based on scRNA-Seq data, we developed PolyEN, a new regression model which learns

continuous representation for expression over time. These representations are then used

by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled

demonstrated PolyEN’s improved performance over existing methods for age prediction.

Our results identified lung epithelial cells as the most significant predictors for non-smokers

while lung endothelial cells led to the best chronological age prediction results for smokers.

Author summary

Aging is characterized by several changes at the cellular and molecular levels. The type

and rate of these changes varies between individuals and does not always correspond to

their chronological age. Determining the ‘molecular age’ of an individual can therefore

provide critical information about their susceptibility to various diseases and enable better

treatment via personalized medicine. With accumulated data profiling the gene expres-

sions for human lungs at various ages, we have developed machine learning methods to

learn the individual molecular age. As we show, the transcriptome in an individual lung

allows our method to accurately predict chronological age of the donor. We identified dif-

ferent cell types that correlate well with aging and showed that these cells consistently dis-

play aging artifacts across individuals and datasets. Specifically, we found that lung

epithelial cells provide the best aging predictions for non-smokers and endothelial/

smooth muscle cells as the best aging predictor for smokers. Our approach further

revealed important apoptotic genes involved in the aging process of lung tissue.
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Introduction

The ability to predict chronological age based on the gene expressions in different cells or tis-

sues is important for understanding the complex nature of aging and for personalized medi-

cine. The aging process has been studied for several decades and is characterized, molecularly,

by accumulated errors at various levels of regulation. Age-related molecular damage accumu-

lation is associated with induction of cellular senescence [1]. At the gene level, transcription

error rate increases during cell senescence, leading to disease phenotypes [2]. Additionally,

telomere shortening [3] and epigenetic regulation [4] are also well-known molecular mecha-

nisms modulating the cellular senescence processes. Particularly, epigenetic regulation is evi-

denced by strong correlation between DNA methylation changes and longevity of a wide

range of organisms [5]. At the cellular level, cell senescence is usually coupled with cell cycle

arrest, characterized by stagnation in the G1 phase of the cell cycle [6,7]. Cell communication

is also known to be involved in this process. For example, the senescence-associated secretory

phenotype (SASP) proteins secreted by cells can bind to surface receptors of surrounding cells

and promote senescence in those cells [8]. Various cytokines have also been suggested for play-

ing a key role in promoting senescence through cell-cell interactions [9].

During aging, lung tissue undergoes substantial transcriptomic changes and phenotypic

changes [10–12]. Previous studies have also reported associations between aging and lung dis-

eases such as idiopathic pulmonary fibrosis (IPF) [13], chronic obstructive pulmonary disease

(COPD) [14], and the recent worldwide outbreak of COVID-19 [15]. Individuals of higher

chronological age are usually at higher risk of developing these diseases or suffering from a

higher mortality rate. Determining the ‘molecular age’ of an individual can therefore provide

critical information of their susceptibility to various diseases and conditions and improve per-

sonalized treatment. A number of regression-based aging “clocks” trained on DNA methyla-

tion or plasma protein levels have been described in the literature [16–18]. These clocks

accurately predict chronological age but cannot determine organ or tissue specific conditions.

Transcriptomics-based age signatures provide both a set of genes (and / or cell types) associ-

ated with the aging process and the ability to explicitly associate molecular age with an individ-

ual. Several methods were developed to predict individual age from transcriptomic signatures.

Fleischer et al applied an ensemble LDA (linear discriminant analysis) model to human dermal

fibroblast cells for age prediction [19]. RAPToR is another tool that reconstructs an aging

model using Independent Component Analysis (ICA) or Principal Component Analysis

(PCA) followed by a generalized additive model [20]. However, these methods have mainly

been applied to bulk data and do not utilize the actual distribution of genes within a tissue /

organ. Such distribution may be very important for determining the age given the changing

fraction of senescent cells. Recently, Buckley et al. described aging clocks trained on single-cell

transcriptomic data from murine brain tissue [21] and Yu et al presented an aging status classi-

fication model for binarized single cell data [22]. These studies either utilized simple linear

regression models that do not account for nonlinear expression changes, or the model does

not directly predict chronological ages for individuals [22].

To overcome these issues, we developed a novel framework, PolyEN (polynomial elastic

net) for modeling and predicting chronological age from single cell transcriptomics aging

data. Specifically, we model gene expression over time as a continuous curve and learn a distri-

bution for each point on the curve. We next combine curves using an elastic net regression

model to select features and predict the chronological age using cell type specific data. We

used the Human Lung Cell Atlas (HLCA), a recent collection of large-scale lung single cell

datasets that includes lung samples from more than 100 healthy and diseased donors [23] to

test our method and compare it to existing methods. As we show, our method outperformed
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all previous methods when tested with HLCA data. We have also performed additional large-

scale validation by applying the method to a new Nuclear-Seq dataset we profiled from human

lungs. The results show that a number of cell types and genes are consistently identified as sig-

nificant across the different datasets, indicating that they can serve as accurate and robust lung

aging signatures.

Materials and methods

Ethics statement

Human lungs were collected following local hospital (UZ Leuven) ethical committee approval

(ML6385) and informed patient consent. According to Belgian legislation, declined donor

lungs can be used for research purposes.

Nuclear-seq data profiling

Explanted lungs from organ donors unsuitable for transplantation were collected from Uni-

versity Hospitals Leuven, as previously described [24]. Lungs were sliced in 2 cm thickness

from apex to base in the transverse plane while kept frozen, with systematic sampling of cylin-

drical tissue cores (1�4 cm diameter). Three tissue cores per lung were randomly selected from

the upper, middle, and lower regions of the lung. Samples were then divided into 5 slices

which were used for downstream processing and analyses.

Methylation data processing

Whole methylome data was performed on one slice of each sample. Samples were obtained

from the same set of donors we used to generate Nuclear-Seq data. Bulk RNA-Seq Methylation

was assessed using the Infinium Human Methylation 450K Bead Chip (Illumina, Inc). A total

of 865918 CpGs were present in the dataset. At each CpG site, methylation was reported as a β
value, which is the proportion of signal obtained from the methylated beads over the sum of

signals from all beads. β values ranged from 0 (no methylation) to 1 (full methylation). Pre-

processing was performed per the manufacturer’s protocol. Data was normalized to internal

controls. Signals corresponding to probes with a detection p-value >0.05 were excluded from

further analysis.

Data preprocessing

Nuclear-seq data was filtered to remove low quality nuclei, defined as having low UMI counts

or having mitochondrial gene contamination, and multiplets at the subject level. Data was

then integrated using Seurat and clustered by Louvain clustering. We retrieved HLCA dataset

from cellxgene website: https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-

935c-db10d30de293 [23]. The downloaded data object contains log-normalized expressions

which were used for all analyses. We further used the following additional datasets: 1) Disease

and control group for the IPF cell atlas dataset [25]; 2) Carraro basal cell dataset from Gene

Expression Omnibus (GEO) with accession number GSE143706 [26]. Following the standard

single cell data processing scanpy protocol (https://scanpy-tutorials.readthedocs.io/en/latest/

pbmc3k.html), we used the raw counts from the control and disease group of IPF cell atlas,

Carraro, and Nuclear-Seq datasets and performed log normalization with size factor = 10000.

Cell type transfer and data integration

Cell type transfer. To ensure consistency in cell type assignments, we transferred the

HLCA cell types to all other datasets using scArches pipeline available at https://github.com/
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theislab/scarches [27]. scArches maps a query dataset to a reference dataset by adding new

batch nodes to its neural network trained on the reference dataset and performing transfer

learning that retrains the model on the query dataset. We used the default parameters and

default reference model (which is the HLCA dataset itself) of the scArches pipeline for model

training and cell type transfer. HLCA provides five levels (ann level) of cell types in which

higher levels indicate more refined subpopulations of cells.

Cell type annotation for Nuclear-Seq data. We performed manual cell type annotation

for Nuclear-seq data. Nuclear-seq UMI count matrix was clustered by Louvain clustering and

markers for each cluster were determined. Cell types were annotated based on known canoni-

cal markers from previously published single cell data. While some canonical markers for cell

types in single cell analysis do not translate to single nuclear analysis (e.g. AGER for AT1

cells), other markers exist to define these cell types (e.g. RTKN1 for AT1 cells).

Data integration. To integrate IPF cell atlas control data and Carraro control data with

HLCA data, we performed data integration using the mnnpy pipeline available at https://

github.com/chriscainx/mnnpy. mnnpy integrates different single cell datasets using mutual

nearest neighbors [28]. The query dataset is then integrated into the reference dataset by multi-

plying with a correction vector (See S1 Text for more details).

Model training and testing

Feature extraction as polynomials. Since age is a function of an individual and not a

function of cell, any method for predicting aging needs to combine information from all cells

(or at least all cells of the same type for cell-type-specific predictions). Compared to existing

methods, our method utilizes the following steps to combine information from all cells. First,

we included the expression variances since previous studies have shown that older individuals

have more variable gene expression, even for the same cell types [29–31]. Second, we used

polynomials to combine measurements across time. Such modeling allows for ‘smoothing’ of

the individual time points (ages) which helps in reducing overfitting, especially when dealing

with heterogenous data from several different individuals. Some genes exhibit expression

changes more than other genes as part of the aging process [32]. To model aging over time, we

assumed that genes involved in aging can be represented by 1st and 2nd degree polynomials.

This assumption can identify genes that are monotonically increasing or decreasing with age

as well as genes that participate in a subset of the aging process and then decrease in expression

(we also tested the use of a 3rd degree polynomial but did not observe improvements). Specifi-

cally, we computed linear and quadratic polynomials for both the mean and the variance of

each gene over all donors for each cell type and use these as inputs to a supervised regression

model for age prediction. The resulted column-wise concatenated feature matrix is summa-

rized below:

fu1; . . . un; v1; . . . vn; u
�2

1
; . . . u�2n ; v

�2

1
; . . . v�2n g

Where ui; vi; u�2i ; v
�2
i are column vectors that represent polynomials for ith gene. Specifi-

cally, ui represents ith gene’s donor-level mean expressions for a particular cell type and vi rep-

resents ith gene’s donor-level expression variance for a particular cell type. u�2i and v�2i
represents second degree features (element-wise product) for ui and vi respectively. n is equal

to number of input genes.

Expression means and variances were computed for each donor and each cell type sepa-

rately. A complete input matrix for a particular cell type is a n by m matrix where n represents

number of donors and m represents total number of polynomial features. We used a number

of different lists from the literature to select a subset of the genes to fit as follows: 1) Fridman
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senescence marker gene list [6]; 2) SASP2 senescence marker gene list [8]; 3) SenMayo senes-

cence marker gene list [33]; 4) CellAge senescence marker list [34]; 5) The union of the above

senescence markers; 6) AgeAnno differentially expressed genes for alveolar cell, B cell, endo-

thelial lymphatic cell, epithelial cell, fibroblasts cell, mast cell, myeloid cell and T cell [35]; 7)

All expressed genes in HLCA dataset. These marker genes can be found in S1 File. Since the

number of genes in several of these lists is large (on the order of several hundreds or thou-

sands) and training sample sizes are relatively small (10~20 donors), we further tested whether

using PCA could improve performance. We transformed the original gene dimensions into

PCA space which preserves the top 10 principal components (PCs), then feature computation

described above was performed on the top 10 PCs (n = 10 in this case).

Model training and hyperparameter tunning. We used elastic net [36] to perform model

training. The objective function is defined by the following equation:

min
w

1

2n
kXw � yk2

2
þ arkwk

1
þ
að1 � rÞ

2
kwk2

2

Where X2Rn×m is the input polynomial feature matrix, y2Rn is the donor age vector and

w2Rm is the vector of learned parameters. We tuned two hyperparameters α and ρ on the

entire training set. These parameters control the L1 regularization strength and the ratio

between L1 and L2 regularization. Specifically, α was searched within the set {0.001, 0.01, 0.1,

1, 10, 100} and ρ was searched within the continuous interval [0.1,1.0]. We used python pack-

age hyperopt to perform the optimal hyperparameter search. Hyperopt performs a sequential

model-based optimization which sequentially approximates the optimal hyperparameter set

by a surrogate model [37]. We set maximum number of evaluations as 30 for Hyperopt based

tunning.

Model testing. We adopted two testing methods in this study: 1) leave-one-out (LOO)

test, which means training on all donors but leave one donor out for testing and repeating this

for all donors. 2) cross-dataset (CD) test, for which we trained a model on several datasets and

tested the trained model on hold-out datasets. LOO test was performed for HLCA dataset and

the Nuclear-Seq dataset. For CD test, we adopted different training and testing partitions for

smoker donors and non-smoker donors. For smoker donors, we used donors from the study

“Banovich_Kropski_2020” [38] in HLCA as training data and all other donors in HLCA as

well as smoker donors from the control group of IPF and Carraro dataset for testing. For non-

smoker donors, we used all non-smoker donors in HLCA dataset except for the study “Bano-

vich_Kropski_2020” as training data, and all non-smoker donors in the study “Banovich_K-

ropski_2020” as well as all non-smoker donors from Carraro and IPF control data as test data.

For convenience, we use the following shorthand terminology to refer to the combined data-

sets described above throughout this study: HLCA_sub1 (non-smoker training set), C1 (non-

smoker testing set), HLCA_sub2 (smoker training set), and C2 (smoker testing set). To keep

the genes consistent between the training and testing set for CD tests, we only used genes

expressed in both sets (after preprocessing steps described in the section Preprocessing). We

used R2 score to evaluate the model performance in LOO and CD test (See S1 Text for more

details).

Comparison to other methods. Data used by all methods were preprocessed in the same

way as described in previous sections. For the baseline linear regression with L1 regularization,

we tuned the regularization strength α using the same method and search space we used for

PolyEN. For the Fleischer et al method [19], we used class_size = 20, subset_fold = 5, subset_-

min = 5 following the guide as introduced in https://github.com/jasongfleischer/Predicting-

age-from-the-transcriptome-of-human-dermal-fibroblasts. For RAPToR, we used the default

parameters and settings for the training function ge_im().
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Feature importance and feature p-values. To rank the importance of the genes selected

by the model, we used a feature attribution method, called shapley additive explanations

(SHAP) [39]. The SHAP value represents how much impact a change in the input can have on

the output compared to using a set of reference examples as inputs (See S1 Text for more

details).

Age prediction based on methylation data. To calculate epigenetic aging clock, methyla-

tion data was uploaded to https://dnamage.clockfoundation.org. This provided an output

comprised of the Horvath, Hannum, and GrimAge epigenetic clocks for each sample which

were used for comparative analysis.

GO analysis

We used GSEApy package [40] to perform Gene Set Enrichment Analysis (GSEA) to all input

genes for each cell type. GSEA can identify significantly enriched functional terms given a list

of ranked genes. In this study, we used aggregated SHAP scores as ranking metric for the

genes.

Results

Overview of the analyses and datasets

We developed, tested, and validated methods for predicting chronological age from large sin-

gle cell transcriptomics datasets. Fig 1 presents the overview of our computational prediction

method and the study design. Our method relies on a continuous model for the means and

variances of the gene expressions in different cell types over time. To learn such a model, we fit

different polynomials to means and variances extracted from the gene expressions. Next, we

used the polynomial features learned by this process to train a regression model for predicting

chronological age. The genes we used are either sets of senescence marker genes or all

expressed genes in each dataset. We used either the original gene dimensions or PCA-trans-

formed dimensions (Materials and Methods). We repeated these steps for each cell type and

tested each cell type using a leave-one-out (LOO) test or cross-dataset (CD) test (Materials and

Methods). We also used a method for feature ranking to identify the most informative genes,

[39] and assigned empirical p-values to genes using a permutation-based approach (Materials

and Methods).

We applied our framework to several different single cell lung datasets. These included the

largest lung cell dataset that is currently available (Human Lung Cell Atlas, HLCA) [23] HLCA

contains over 500000 cells from over 100 donors. After preprocessing (see Materials and Meth-

ods), we obtained 143576 cells and 26975 genes from 39 smoker donors, and 179314 cells and

27115 genes from 39 non-smoker donors (see Table 1). Additionally, for CD test, we retrieved

control group donors from the idiopathic pulmonary fibrosis (IPF) cell atlas study [25], and

control group donors from a study of IPF lung basal cells [26], which we will further refer to as

the Carraro dataset. After preprocessing, for the IPF control dataset, we obtained 22378 cells

and 33931 genes from 8 smoker donors, and 62469 cells and 48231 genes from 23 non-smoker

donors (Table 1). For the Carraro dataset, we obtained 12700 cells and 17300 genes from 4

smoker donors, and 4258 cells and 16365 genes from 2 non-smoker donors. To further test

agreement of model predictions between datasets, we also partitioned the HLCA dataset by

studies (see Materials and Methods). Lastly, we also performed the same workflow to a new

dataset we profiled using Nuclear-Seq dataset, which contains 46765 cells and 32551 genes

from 3 smoker donors, and 384680 cells and 39756 genes from 21 non-smoker donors after

the preprocessing steps. See S1 Text for discussion on the age distribution similarities and dif-

ferences between the different datasets.
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Cell type mapping and dataset integration

To keep the cell types consistent between training and testing dataset, we mapped cell types

defined in HLCA to all other datasets using scArches pipeline [27] (see Materials and Meth-

ods). The hierarchical five-level cell types in HLCA can enable aging modeling at different

granularity of cell populations, and identification of best marker genes at the corresponding

resolution. The joint cell embeddings of Carraro dataset, the IPF control dataset, and HLCA

show that in both smoker and non-smoker group, the cell type transfer was successful (Fig 2A,

left) with uncertainty threshold of 0.2 (Table 2). However, the cell type transfer was not as

Fig 1. The flowchart of the analysis. A. Polynomial features were extracted for each cell type and features were aggregated

at donor level. Regression models were trained based on the extracted polynomial features, either at original gene space or at

the PCA-transformed space. B. Training and testing strategy, we adopted LOO test and CD test to evaluate the model

performance (see Materials and Methods). C. Cell type mapping and dataset integration. D. SHAP-based ranking and

empirical p-value for genes selected in each cell type.

https://doi.org/10.1371/journal.pcbi.1012632.g001

Table 1. Number of cells, genes for each dataset after preprocessing steps.

Group Type HLCA IPF Carraro Nuclear-Seq

Smoker Genes 26975 33931 17300 32551

Cells 143576 22378 12700 46765

Donors 39 8 4 3

Non-smoker Genes 27115 48231 16365 39756

Cells 179314 62469 4258 384680

Donors 39 23 2 21

https://doi.org/10.1371/journal.pcbi.1012632.t001
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Fig 2. Cell type mapping, dataset integration, comparison of gene types and cell types. A. Joint cell embeddings of query datasets (IPF, Carraro,

Nuclear-Seq) and reference dataset (HLCA) after cell type transfer performed by scArches. Plots were generated by the 30 dimensions of latent

representations transformed from the original gene space. B. Joint cell embeddings of query datasets (IPF, Carraro) and reference dataset (HLCA) after

dataset integration performed by mnnpy. Plots were generated based on the intersection of HVGs between the reference and the query datasets. C. The

mean R2 scores for the comparison of all tested methods. R2 scores shown in the plot are from the top 10 cell types with highest R2 scores for each method.
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successful for the Nuclear-Seq dataset (Discussion, Fig 2A, right and Table 2). Compared to

IPF cell atlas control data and the Carraro dataset, we observed higher percentages of unanno-

tated cells at all five levels in Nuclear-Seq dataset. We therefore resorted to manual cell type

annotation for Nuclear-Seq dataset (see Materials and Methods).

To overcome batch effect between training and testing datasets, we performed unsuper-

vised dataset integration in the original gene dimensions. We used HLCA as reference dataset

and other datasets as query datasets. For this task we used the mnnpy package [28] and the

intersection of highly variable genes (HVGs) between the reference and the query dataset as

“anchors” to compute the correction vectors for integration. The integration results shown in

Fig 1B indicate that the Carraro dataset and IPF control are well integrated with the HLCA

dataset.

Comparison of PolyEN to baseline and prior methods

We applied PolyEN to the HLCA data and have also compared the results to those obtained by

baseline and prior methods. We used both LOO and CD cross-validation. Specifically, for each

cell type, we compared our model to a baseline model for which only mean expressions of all

expressed genes and linear regression (LR) model with L1 regularization are used. Addition-

ally, we included another baseline, elastic net model, using the same inputs but without vari-

ances and second-degree features. We also compared to two previously published methods

that utilized transcriptomics data, Fleischer et al [19], and RAPToR [20]. Results as presented

in Fig 2C and Fig B in S1 Text show that PolyEN significantly outperformed all other methods

for the nonsmoker group (Fig 2C, Mann Whitney U test). For example, p-value for compari-

son of PolyEN with LR across the datasets is 7.477 × 10−4; When compared to the Fleischer

et al method the p-value is 2.2 × 10−24; and 4.99 × 10-9for the comparison to RAPToR. For the

(much smaller) smoker group, PolyEN has again performed significantly better than all other

methods except for baselineEN in the LOO test on HLCA dataset. For the CD test, PolyEN

results are also better than the other methods except for baselineEN though the differences are

not significant.

P-value annotation legend: ns (not significant): p-value� 0.05; *: 0.01< p-value� 0.05; **: 0.001< p-value� 0.01; ***: 0.0001< p-value� 0.001; ****: p-

value� 0.00001. D. The rankings of different types of gene markers for the top cell types. The rankings were computed for each cell type separately. For

each cell type, we selected for gene type’s best PCA setting as determined by highest R2 score. We used this R2 score as the representative R2 score of that

gene type for the given cell type. We then ranked the different gene types by these representative R2 scores. The resulted rankings (from 1 to 6) for the top

10 cell types are presented in the plots. These cell types are extracted from the top 10 cell types as shown in Figs 3 and. 4. E,F. Predicted donor ages VS true

donor age for the top cell types. For each cell type, we selected its best gene type and PCA setting as determined by highest R2 score. The corresponding

best gene type and PCA setting is labeled in each plot.

https://doi.org/10.1371/journal.pcbi.1012632.g002

Table 2. Percentage of unannotated cells for each HLCA-defined cell type level.

Group Level IPF + Carraro Nuclear-Seq

Smoker 1 0.13% 16.08%

2 1.1% 28.51%

3 18.73% 41.82%

4 34.74% 49.73%

5 38.65% 49.95%

Non-smoker 1 0.24% 14.8%

2 1.39% 24.87%

3 16.94% 39.42%

4 33.86% 45.85%

5 40.11% 45.96%

https://doi.org/10.1371/journal.pcbi.1012632.t002
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Basal cells accurately predict donor age for non-smokers

Next, we explored the top cell types with highest R2 scores from the PolyEN pipeline. For the

LOO test in HLCA dataset, we obtained R2 scores for 48 cell types from all five levels, of which

9 cell types achieved mean R2 score greater than 0.5. The top 9 cell types include “Basal resting”

(level 4, mean R2 = 0.789, baseline R2 = 0.392), “Basal” (level 3, mean R2 = 0.783, baseline R2 =

-0.233), “Suprabasal” (level 4, mean R2 = 0.762, baseline R2 = 0.265), “EC venous systemic”

(level 4, mean R2 = 0.649, baseline R2 = 0.154), “Club (non-nasal)” (level 5, mean R2 = 0.606,

baseline R2 = 0.661), “Club” (level 4, mean R2 = 0.595, baseline R2 = 0.661), “Lymphatic EC

mature” (level 3, mean R2 = 0.564, baseline R2 = -1.860), “Lymphatic EC” (level 2, mean R2 =

0.556, baseline R2 = -1.744), “EC general capillary” (level 4, mean R2 = 0.544, baseline R2 =

0.193). We noticed that level 4 cell types are more abundant in the top 9 cell types (5 out of 9)

compared to other levels, suggesting refined cell types are generally more predictive of donor

age than coarse cell types. We found the union of senescence and aging markers generally per-

formed better than any single type of senescence / aging marker list in HLCA and Nuclear-Seq

LOO test (Fig 2D). Interestingly, we found that “all expressed” genes is the best performing

marker list for several top cell types for both HLCA and Nuclear-Seq LOO test and the HLCA

CD test results in Fig 2D. This suggests that aging marker lists derived from the cellular senes-

cence events may not fully capture the aging regulatory activities at organ or donor level. Addi-

tionally, our evaluation results based on LOO test indicate that AgeAnno marker list indeed

achieved better R2 scores than other marker lists in both HLCA and Nuclear-seq dataset,

though the performance based on CD test was not better than other marker lists and AgeAnno

markers are only available to a few cell types: alveolar cell, B cell, endothelial lymphatic cell,

epithelial cell, fibroblasts cell, mast cell, myeloid cell and T cell (Fig J in S1 Text).

Our results indicate that a number of epithelial subtypes and endothelial subtypes are the

most predictive cell types for non-smoker ages in HLCA dataset as mentioned above (Fig 3).

Specifically, the three basal-related cell types are the top three ranked cell types. We next per-

formed a CD test to validate whether basal cells are indeed predictive of donor aging state

across different studies. Since basal cells are relatively less abundant among the donors in

HLCA dataset (16 donors, Fig 3), we constructed a test dataset which combines 3 donors from

HLCA dataset, 2 donors from the Carraro dataset, and 2 donors from IPF control dataset (see

Materials and Methods). These donors all have sufficient basal cells for feature extraction and

modeling and are all from independent studies not used for training. For this comparison we

found “Basal” (mean R2 = 0.306), “Club” (mean R2 = 0.448), and “Club (non-nasal)” (mean R2

= 0.449) cells as the top performing cell types. These cell types have higher R2 scores than other

cell types and they all produced mean R2 scores greater than 0.3 (Figs 2D, 3, and Fig C in S1

Text). Finally, we performed LOO test on Nuclear-Seq dataset which again identified basal

cells as one of the top cell types with mean R2 score = 0.356, validating their ability for accu-

rately predicting age (Figs 2D, 3, and Fig C in S1 Text).

Additionally, we also tested the performance of polyEN when all cell types are combined to

train a meta regressor. We concatenated gene expressions of all cell types in a column-wise

manner and performed LOO test following the same steps as we did for single cell types. Each

gene / cell type combination was used as a potential feature. We performed PCA on the

concatenated matrix and selected the first 20 principal components as inputs to polyEN. Even

though the method had access to top genes across all cell types, we did not find an improved

performance compared to PolyEN models trained on single cell types (Fig F in S1 Text) likely

due to overfitting. The marker list with highest R2 for Nuclear-Seq dataset under LOO test is

SenMayo (mean of R2 = 0.253 vs. all other marker lists for all available cell types combined in
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Nuclear-Seq data) and for HLCA the best marker list is all expressed genes (mean of R2 =

0.118 vs all other marker lists for all available cell types at ann level 1).

Smooth muscle cells and venous endothelial cells accurately predict donor

age for smokers

We repeated the same procedure for donors of smoker group in all datasets except for the

Nuclear-Seq dataset which does not include enough smoker donors (3 donors, see Table 1).

Fig 3. R2 scores from LOO test and CD test for non-smoker donors and comparison between transcriptome predicted ages and methylation predicted

ages. A R2 scores for non-smoker donors tested with LOO test and CD test. Each row represents the corresponding best type of gene marker from a cell type.

The bar in each row represents mean and standard deviation of R2 score from five runs. Left: R2 scores from the LOO test in HLCA dataset; middle: R2 scores

from the CD test which used a subset of HLCA for training and a subset of HLCA and other datasets for testing (Materials and Methods); right: LOO test in

Nuclear-Seq dataset. The rows with no bars shown indicate R2 scores equal to or smaller than zero. See S2 File for more information on the corresponding

senescence markers and number of donors used in each row. B Comparison between transcriptomic ages and methylation ages. Transcriptomic ages were

predicted by polyEN and methylation ages were predicted as described in Materials and Methods. “true” represents true chronological donor age and “pred”

represents transcriptomic ages predicted by polyEN. “hor1” is methylation ages predicted by Horvath1 method; “hor2” is methylation ages predicted by

Horvath2 method and “han” is methylation ages predicted by Hannum method. polyEN was applied to the cell types and marker gene lists shown in A for

Nuclear-seq.

https://doi.org/10.1371/journal.pcbi.1012632.g003
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For these donors we found there are four cell types that achieved R2 scores greater than 0.5 in

LOO test for HLCA dataset (Figs 4, 2F, and Fig E in S1 Text). These cell types include “Smooth

muscle” (mean R2 = 0.745, baseline R2 = 0.223), “EC venous systemic” (mean R2 = 0.650, base-

line R2 = 0.391), “CD4 T cells” (mean R2 = 0.549, baseline R2 = 0.151), “EC arterial” (mean R2

= 0.521, baseline R2 = -0.876), in which all but “EC venous systemic” achieved better R2 with

PolyEN models compared to all other methods. Prior work has shown that endothelial cells

are involved in alveolar inflammation in COPD, a pulmonary disease usually caused by smok-

ing [41]. The prominent role of endothelial cells in the smoker group during aging may suggest

an increased risk of pulmonary disease. Next, we focused on constructing training and testing

dataset to test smooth muscle cells in CD test. We included all donors from one study in

HLCA which includes 5 donors with sufficient smooth muscle cells and all other donors in

HLCA as test data. Cross datasets analysis of smooth muscle cells led to a high mean R2 score

(R2 = 0.465 in Figs 4 and 2F). We also observed that EC venous systemic cells achieved results

comparable to smooth muscle cells, with mean R2 score equal to 0.65 from LOO test and mean

of R2 score equal to 0.682 from CD test (Figs 4, 2E, and Fig E in S1 Text).

Unlike the non-smokers, for the smokers, the best performing list was the union of senes-

cence and aging markers (Fig 2D, LOO test in HLCA dataset). For the CD test, all expressed

genes yielded slightly better results. Overall, the results in both non-smokers and smokers

show that more genes can lead to better age predictions. Perhaps higher coverage of genes can

capture the subtle changes of polynomials that marginally contribute to aging prediction.

Fig 4. R2 scores from LOO test and CD test for smoker donors. Each row represents the corresponding best type of

gene marker from a cell type. The bar in each row represents mean and standard deviation of R2 score from five runs.

Left: R2 scores from the LOO test in HLCA dataset; middle: R2 scores from the CD test which used a subset of HLCA

for training and a subset of HLCA and other datasets for testing (Materials and Methods). The rows with no bars

shown indicate R2 scores equal to or smaller than zero. See S2 File for more information on the corresponding

senescence markers and number of donors used in each row.

https://doi.org/10.1371/journal.pcbi.1012632.g004
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Smokers are predicted to be older when using non-smoker models

We tested the use of non-smoker models to predict chronological age for smokers based on

their lung scRNA-Seq expression levels. We trained two different types of non-smoker models

1) using healthy non-smoker donors from the HLCA dataset and 2) using non-smoker donors

with IPF disease from the IPF cell atlas (see Materials and Methods). We then used these mod-

els to predict the smoker chronological age in each respective dataset. The results showed that

the model-predicted age distribution and the real age distribution are more consistent for

healthy donors (Figs 5D and Fig H in S1 Text). However, for both datasets we observed an

overall trend of greater predicted ages for smokers which may indicate that smoking increases

the rate of lung aging in both healthy and diseased individuals (Fig H in S1 Text and [42]).

Correlation between age prediction and methylation evidence

As mentioned in the Introduction, methylation was shown to be a strong predictor of aging

[5]. We thus performed additional profiling and analysis of the Nuclear-seq data to calculate

ages based on methylation data of each donor (See Materials and Methods). The Horvath,

Hannum, and GrimAge epigenetic clocks were then compared to predictions based on our

methods for various cell types identified in Nuclear-seq data (Fig 3A). While we observed posi-

tive correlations between predicted ages and real chronological ages for cell types shown in Fig

3A, transcriptomic ages predicted by polyEN are much more correlated with chronological

ages when compared to methylation-based predictions, regardless of the epigenetic clock

method being used (Fig 3B). This indicates that at least for lung cells, expression is a better age

predictor than methylation. We also have explored pseudo-bulk expressions using PolyEN as

an age predictor. For Nuclear-Seq data, we computed average expressions across all cells and

performed training and testing following the same steps. Fig I in S1 Text showed that for the

two top performing senescence marker lists “Union” and “CellAge”, pseudo-bulk expression

leads to a small improvement as compared to bulk methylation. This suggests that even with-

out cell type information, transcriptome signatures may provide useful information about

chronological ages, if marker gene list was chosen properly.

Apoptotic genes revealed by importance scores

As mentioned above we used both senescence marker genes and all expressed genes as features

for predicting chronological age. Senescence marker genes were obtained from previous publi-

cations [6,8,33,34] based on senescence cellular states and therefore may not fully capture the

full regulatory programs related to aging at organ or donor level. As discussed above, we found

that higher gene coverage usually led to better results in both smoker and non-smoker group

(Fig 2D).

Interestingly, for the three top ranked basal-related cell types, the best gene type is consis-

tently all expressed genes rather than any single type of senescence marker list. This may sug-

gest that current senescence marker lists may miss some key genes related to aging in basal

cells. To identify potential basal specific marker genes that might not be captured by senes-

cence marker lists, we next performed gene set enrichment analysis (GSEA) for genes in these

cell types. We first ranked genes by their SHAP scores (Methods) and assigned empirical p-val-

ues based on randomization tests. We then used the rankings as inputs to GSEA. Scores and p-

values can be found in S3 and S4 Files and the full GSEA results for the basal related cell types

can be found in S5 File. We found that genes selected in basal and basal resting cells are associ-

ated with cell cycle regulation, mitochondrial activities, mitotic regulation, and apoptotic sig-

naling. These included categories such as GO:0001844 (p-value = 0.0, protein insertion into

mitochondrial membrane involved in apoptotic signaling pathway), GO:0090266 (p-
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value = 0.0, regulation of mitotic cell cycle spindle assembly checkpoint), and GO:0033074 (p-

value = 0.0, regulation of mitotic sister chromatid), (Fig 5A and S5 File). 8 genes were identi-

fied as leading-edge genes for the significant GO terms enriched in the three basal-related cell

types (PMAIP1, DUSP1, CD74, DNAJB1, ANXA1, CRIP1, KDF1, RHOB). Of these, to date

Fig 5. Top significant GO terms from GSEA and polynomial features for basal-related cell types. A Visualization of the polynomial features for RHOB and

PMAIP1/Noxa in basal, basal resting and suprabasal cells of the nonsmoker group. Values visualized in the plots are polynomial features computed based on

the log-normalized gene expressions. B The top five significant GO terms from GSEA for basal and basal resting cells of the nonsmoker group. C The common

genes with significant SHAP scores among the three basal related cell types; top table: genes identified from all expressed genes; bottom table: genes identified

from the union of senescence marker lists. D The distribution of predicted ages VS real ages for IPF disease donors. Models were trained using the non-smoker

donors of IPF disease and tested using the smoker donors of IPF disease. x axis denotes the age and y axis denotes the density.

https://doi.org/10.1371/journal.pcbi.1012632.g005
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only RHOB was listed as a senescence marker gene, suggesting that the top genes selected in

the three basal-related cell types are not well captured by current senescence marker lists.

Among these genes, PMAIP1 appeared as a leading-edge gene in GSEA results for both basal

and basal resting cells and was also selected as a significant gene for suprabasal cells. PMAIP1
encodes Noxa, a known apoptosis activator which targets the mitochondrial Bcl2-regulated

apoptosis pathway [43,44]. Overexpressed PMAIP1 is preferentially localized to mitochondria.

This is confirmed by our Nuclear-Seq dataset in which PMAIP1 has a significantly lower score

since Nuclear-Seq does not capture well mitochondria expression.

We also examined the differences between first-order versus second-order polynomial fea-

tures. For each gene we computed the SHAP-based importance scores respectively for the four

features (first-order, second-order expression means, and first-order, second order expression

variances). We then used the top-ranked genes (Fig K in S1 Text) and calculated the weight of

each type of feature in each gene. The results as visualized in Fig K in S1 Text show that for

top-ranked genes, both types of features (first and second order) are needed. Many top-ranked

genes show distinctive differences between the first-order and second-order features, suggest-

ing that using higher-order features can capture additional knowledge about age related genes.

We also explored if SHAP-based ranking captured important genes by biasing towards

highly expressed genes. To answer this question, we ranked genes by mean expressions in the

three basal cell types shown in Fig 5. We observed very low overlap between the top-ranked

gene sets from both methods. This shows that SHAP-based method has no strong bias towards

highly expressed genes (Fig L in S1 Text).

We further compared the functions of gene ranking generated from SHAP-based method

and gene ranking generated from model coefficients-based method. We performed GSEA

analysis for the two gene rankings following the same steps that generate Fig 5B. Results for

basal cell genes (Fig M in S1 Text) showed that SHAP-selected genes are enriched for more rel-

evant categories compared to coefficient selected genes.

Additionally, we also explored the temporal expression patterns of the three basal-related

cell types (See RESULTS section in S1 Text for more details)

Discussions

We developed a new framework for age prediction from single cell RNA-Seq data. Unlike

prior methods, our method utilizes both the average expression and the distribution informa-

tion of gene expressions for age prediction. Application of the method to a large cohort of lung

single cell data indicates that it can accurately predict the correct age and improves upon prior

methods. Application to a new Nuclear-Seq dataset identifies novel cell types and genes pre-

dicted to be involved in the aging process.

Our results indicate that for lung, epithelial and endothelial cell types are more predictive of

donor age than other cell types. This is consistent with previous studies that characterized

senescent cell types in the lung [45–48]; We also observed a two-module pattern in basal

related cell types. Previous studies reported three peaks of human plasma proteomics activities

at ages of 34, 60, and 78 [32]. Our visualized polynomial features confirmed that the expression

activities indeed go through substantial changes after age 34 (Figs 5A and 6). To explore this

feature for individual genes, we further examined how the polynomial features of the PMAIP1
and RHOB gene in basal related cells correlate to aging state. We selected the two genes

because PMAIP1 was identified as leading-edge gene by GSEA in both basal and basal resting

cells, and RHOB is a common top gene as shown in Fig 5C. The temporal patterns of PMAIP1
show a distinct two-module structure in which the polynomial features of PMAIP1 drastically

increased at and after age 41, suggesting elevated mitochondrial-targeting apoptotic
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regulations (Fig 5A). However, since basal related cells are relatively less abundant in the

HLCA dataset, the donor age coverage does not fully reveal the exact activation age of apopto-

tic signaling. Thus, we cannot rule out that up-regulation may occurred earlier than age 40, as

previously reported [32]. We observed a similar pattern for RHOB (Fig 5A).

The observed difference between the Nuclear-seq dataset and the HLCA dataset in Fig 2A

can be explained by the fact that we profiled biobank frozen samples using Nuclear-Seq data

whereas most of the HLCA data was profiled from fresh tissues. The difference may also be

due to different gene profiles present in the nucleus compared versus those in the cytoplasm.

We further explored the transcriptomic difference between Nuclear-Seq data and the HLCA

data. We identified the top-ranked marker genes of basal cells from the HLCA dataset and

compared the expressions of these genes in Nuclear-Seq basal cells and HLCA basal cells. The

results show there is a significant disparity between the two datasets (Fig N in S1 Text), sug-

gesting that the cytoplasmic contents may have different molecular signatures compared to the

nuclei for the same cell types.

Fig 6. Polynomial features for genes with significant SHAP scores identified in basal, basal resting and suprabasal cells of nonsmokers. A.

Visualization of the polynomial features for all expressed genes. We selected only the genes assigned with significant empirical p-values for each cell type

(See Materials and Methods). B. Visualization of the polynomial features for union of senescence markers. We selected only the genes assigned with

significant empirical p-values (See Materials and Methods). Each row represents one gene and genes were sorted by row-wise sum.

https://doi.org/10.1371/journal.pcbi.1012632.g006
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While our method performs well, it still suffers from a few limitations. While PolyEN

improved on all prior methods when predicting aging for the larger ‘smokers’ group, Elastic-

Net performed better for the much smaller non-smoker set. This may imply challenges related

to overfitting or to smoothing when dealing with a small and highly variable dataset (Fig H in

S1 Text and [42]). Another issue is the use of individual cell types. A more complex model that

captures aging from multiple cell types would be an important follow-up work. In addition,

our model does not utilize any regulatory information and therefore may miss interactions

that play an important role in aging.

In addition, we observed that cross-dataset validation did not achieve results comparable to

leave-one-out cross validation. This is partly due to relatively small sample sizes for each cell

type (See S2 File). When we further split the HLCA data into training and test sets, there are

only limited donors available for each cell type in both training and testing sets, making cross-

dataset evaluations very challenging. With more samples and further developments in meth-

ods, we may be able to see improved performance for cross-dataset benchmark.

Our analysis code is available at https://github.com/alexQiSong/lung_aging_analysis and

we also provide a python script (https://github.com/alexQiSong/polyEN) to easily train and

test polyEN model for any new single cell lung data. We hope that further refinement of these

models will continue to shed light on this important prediction task.
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