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Abstract

The denitrifying bacterium Thauera sp. MZ1T, a common member of microbial communities

in wastewater treatment facilities, can produce different compounds from a range of carbon

(C) and nitrogen (N) sources under aerobic and anaerobic conditions. In these different con-

ditions, Thauera modifies its metabolism to produce different compounds that influence the

microbial community. In particular, Thauera sp. MZ1T produces different exopolysacchar-

ides with floc-forming properties, impacting the physical disposition of wastewater consortia

and the efficiency of nutrient assimilation by the microbial community. Under N-limiting con-

ditions, Thauera sp. MZ1T decreases its growth rate and accelerates the accumulation of

polyhydroxyalkanoate-related (PHA) compounds including polyhydroxybutyrate (PHB),

which plays a fundamental role as C and energy storage in this β-proteobacterium. How-

ever, the metabolic mechanisms employed by Thauera sp. MZ1T to assimilate and catabo-

lize many of the different C and N sources under aerobic and anaerobic conditions remain

unknown. Systems biology approaches such as genome-scale metabolic modeling have

been successfully used to unveil complex metabolic mechanisms for various microorgan-

isms. Here, we developed a comprehensive metabolic model (M-model) for Thauera sp.

MZ1T (iThauera861), consisting of 1,744 metabolites, 2,384 reactions, and 861 genes. We

validated the model experimentally using over 70 different C and N sources under both aero-

bic and anaerobic conditions. iThauera861 achieved a prediction accuracy of 95% for

growth on various C and N sources and close to 85% for assimilation of aromatic com-

pounds under denitrifying conditions. The M-model was subsequently deployed to deter-

mine the effects of substrates, oxygen presence, and the C:N ratio on the production of PHB
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and exopolysaccharides (EPS), showing the highest polymer yields are achieved with

nucleotides and amino acids under aerobic conditions. This comprehensive M-model will

help reveal the metabolic processes by which this ubiquitous species influences communi-

ties in wastewater treatment systems and natural environments.

Author summary

Thauera sp. MZ1T actively participates in the nitrogen cycle by transforming nitrite or

nitrate into molecular nitrogen. This denitrifying bacterium has been studied to unveil

the degradation of aromatic compounds in different oxygen concentrations, or under

denitrification, and dissimilatory reduction to ammonium, as well as to elucidate the pro-

duction of complex polymers like polyhydroxyalkanoates and exopolysaccharides. Con-

straint-based metabolic models are systems biology tools capable of accurately predicting

phenotypes of bacterial, archaeal, and eukaryotic organisms under multiple growth condi-

tions. The metabolic model of Thauera sp. MZ1T, iThauera861, accurately predicts

growth rates of over 70 carbon and nitrogen sources (e.g. amides, alcohol derivatives,

amines, amino acids, aromatic compounds, organic acids, nucleotides, etc.) under differ-

ent oxygen conditions. Furthermore, iThauera861 precisely simulates the effect of differ-

ent C sources and C:N ratios under aerobic and anaerobic conditions on the production

of polyhydroxybutyrate and six specific exopolysaccharides in Thauera sp. MZ1T. The

model represents the first comprehensive M-model for Thauera sp. MZ1T to date, thus

aiding the elucidation of metabolic roles in different environments of this denitrifying

bacterium.

1. Introduction

Thauera sp. MZ1T is a floc-forming Gram-negative bacterium frequently found in wet soil,

polluted freshwater, and in wastewater treatment facilities [1]. This facultative anaerobic bacte-

rium belongs to the family Rhodocyclaceae within the β-proteobacteria and performs versatile

metabolic processes that influence the environments it grows in [2]. Other members of Rhodo-
cyclaceae are similarly abundant in soil, sediments, and aquatic systems [3]. The Thauera
genus plays a crucial role in the nitrogen (N) cycle, converting inorganic N sources (ammo-

nium, nitrate, and nitrite) into molecular N (N2) through denitrification [4,5]. The Thauera
genus contains over 80 fully sequenced members (Refseq and Genbank) [6–9]. Most members

of this genus can perform denitrification [4–6] and degrade aromatic compounds in the pres-

ence or absence of oxygen [10,11]. Thauera members such as T. selenatis, T. aromatica, and

Thauera sp. MZ1T, can produce various polymers, e.g. polyhydroxyalkanoates (PHA), which

play a key role as a carbon (C) storage molecule [9,12]. These bacteria can also make exopoly-

saccharides (EPS) that are involved in floc formation in wastewater treatment systems [13–16].

Thauera sp. MZ1T in particular contains multiple specialized oxygen-sensitive enzymes for

the production of N2 and denitrification intermediates such as nitrous and nitric oxide

[1,12,15,17]. Additionally, it can perform ammonification via dissimilatory nitrate reduction

to ammonium (DNRA) using nitrite reductase under anoxic and limited N conditions, switch-

ing from oxygen to nitrate as a terminal electron acceptor [18,19]. At elevated oxygen levels,

denitrification and DNRA pathways are partially or totally repressed and the organism

switches back to aerobic respiration with oxygen as the terminal electron acceptor. In Thauera
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sp. MZ1T’s metabolism, oxygen and N compounds (like nitrate and nitrite) serve as terminal

electron acceptors under varying environmental conditions, facilitating energy generation and

enabling metabolic flexibility. This adaptability allows the bacterium to thrive in fluctuating

oxygen environments common in wastewater systems. Low N conditions also trigger the bio-

synthesis of PHA-related compounds including polyhydroxybutyrate (PHB) as an important

C storage molecule. Under high C:N ratio conditions (>5:1), Thauera sp. MZ1T produces

PHB to sequester C within intracellular granules [12,15]. This behavior is sharply elevated with

acetate as the primary C source, permitting selective PHA-related compound generation from

Thauera sp. MZ1T [1,12,15].

Thauera sp. MZ1T is metabolically highly versatile and capable of growing heterotrophi-

cally with multiple C sources under aerobic and anaerobic conditions. The bacterium can

assimilate various carbohydrates (e.g. glucose, fructose, galactose, sucrose), organic acids (e.g.

acetate, lactate, citrate, and formic acid), alcohols (methanol, ethanol, and butanol), and aro-

matic compounds (e.g. toluene, xylene, various phenolic compounds, and benzoate) [1,12,15–

18,20]. Under hypoxic or anoxic conditions, it can simultaneously denitrify and remove these

aromatic compounds through assimilation and degradation [1,12,15–17]. Furthermore, it can

assimilate important organic N compounds like urea, various amino acids (e.g. alanine, aspar-

tate, glutamine) and nucleotide-related compounds [15,16]. In wastewater systems Thauera sp

MZ1T produces abundant amounts of floc-forming EPS via four main intermediates:

dTDP-D-N-acetylfucosamine, dTDP-L-rhamnose, UDP-D-galactose, and UDP-N-acetylglu-

cosamine. These floc-forming EPS can significantly impact the structure and total biomass of

the wastewater community [13,14,21]. Thauera sp MZ1T also has the versatility to produce

EPS from inositol, but only under particular scenarios [12,16,17]. Its capability to assimilate

various C and N compounds and promote floc formation contributes to Thauera sp. MZ1T’s

abundance and importance in wastewater microbial communities [21,22].

Bioinformatics tools have been previously employed to elucidate genomic features and

identify functional genes involved in denitrification, DNRA, PHA and EPS biosynthesis, and

aromatic compound degradation to infer the metabolic potential of this versatile Thauera spe-

cies [1,12,15,16]. However, the mechanisms by which this strain regulates these capabilities in

response to specific resource conditions, and thereby influences the surrounding microbial

community and its environment are still poorly characterized. Genome-scale metabolic mod-

els (GEMs) represent a fundamental approach to explore microbial metabolic functions across

various conditions, allowing accurate predictions of metabolic trade-offs in response to spe-

cific environmental and resource constraints [23–27]. By simulating condition-specific meta-

bolic pathways, GEMs support the investigation of complex microbial processes such as

denitrification, polysaccharide production, and degradation of environmental pollutants

[23–27]. To address this, we reconstructed a GEM for Thauera sp. MZ1T (iThauera861) using

semi-automated methods. iThauera861 contains 1,744 metabolites, 2,384 reactions, and 861

genes. The initial draft model was manually refined to improve the quality of the phenotypic

predictions. Using experimental data, the model was constrained under heterotrophic condi-

tions. Over 70 C and N sources were evaluated under aerobic and anaerobic conditions to

assess the accuracy of the model. Additionally, iThauera861 was evaluated under oxygen- and

N-limiting conditions to quantify the changes in production of PHB and EPS using multiple C

substrates. The model is the first refined and validated M-model for any Thauera member and

will aid in unraveling the impact these bacteria have on the surrounding environments.

iThauera861 offers a valuable platform for studying Thauera sp. MZ1T metabolic pathways,

with applications in optimizing PHB and EPS production critical for microbial flocculation

and C storage in wastewater treatment. It enables detailed exploration of C and N utilization

strategies, enhancing our understanding of the organism’s ability to degrade diverse organic
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compounds under varying conditions. By simulating diverse environmental scenarios,

iThauera861 provides insights for improving bioreactor efficiency and advancing theoretical

studies on microbial community dynamics. This refined GEM serves as a relevant tool for

both applied and fundamental research into the roles of Thauera sp. MZ1T in wastewater

ecosystems.

2. Results

Semi-automated metabolic network reconstruction of Thauera sp. MZ1T

We employed a semi-automated approach to reconstruct the M-model of Thauera sp. MZ1T.

Semi-automated strategies have been successfully applied to build M-models for various

microorganisms [23–27] and specifically for bacteria involved in wastewater treatment

[24,25]. An initial draft model of Thauera sp. MZ1T was generated based on the functional

genome annotation retrieved from the NCBI Reference Sequence database:

GCA_000021765.1. For this we selected three well-curated and previously validated template

M-models for Gram-negative bacteria from the BiGG database [28]. The templates were

Escherichia coli K-12 substr. MG1655 (iML1515) [29], Klebsiella pneumoniae subsp. pneumo-

niae MGH 78578 (iYL1228) [30], and Pseudomonas putida KT2440 (iJN746) [31]. Protein

homology analysis utilizing BLASTp from the RAVEN Toolbox [32] between Thauera sp.

MZ1T and the three reference models were performed to determine common metabolic

resources, i.e. metabolites, reactions, and genes (Fig 1) [24–26,33–36].

We developed a semi-automated reconstruction strategy using three optimal sets of param-

eters for BLASTp. A set of 391 reactions and their GPR associations were manually curated to

use as a quality control check of the GPR associations for each template model (S1 Material).

These final BLASTp parameter criteria were applied to the reconstruction for each template

model: 1) Escherichia coli K-12 substr. MG1655 (iML1515) with e-value = 1e-5, query

length = 100 aa, and identity percentage = 35%; 2) Klebsiella pneumoniae subsp. pneumoniae

MGH 78578 (iYL1228) with e-value = 1e-5, query length = 100 aa, and identity percent-

age = 30%; and 3) Pseudomonas putida KT2440 (iJN746) with e-value = 1e-10, query

length = 120 aa, and identity percentage = 40%. These are similar to the BLASTp cutoffs deter-

mined in other semi-automated strategies for bacterial metabolic reconstruction [23–26,33].

The draft semi-automated metabolic model from the three template models contained 1,539

metabolites and 1,721 reactions distributed in three cellular compartments (cytoplasm, peri-

plasm, and extracellular space) with a total of 957 genes (including 98 genes from the template

models). This draft model showed higher proportions (>20%) of correct gene associations

and fewer template genes (<30%) compared to other semi-automatic models built with a

unique set of BLASTp parameters [24–27,35].

Model refinement: Curation and Gap-filling

The resulting draft model required detailed refinement steps in order to capture the metabolic

versatility present in Thauera sp. MZ1T. The refinement process was performed in four major

stages: 1) manual curation of the existing GPR associations in the draft model, 2) removal of

metabolites, reactions, and genes only present in the template models, 3) gap-filling of the dis-

connected metabolites and blocked reactions based on bioinformatics databases and experi-

mental evidence, and 4) addition of new metabolic pathways and GPR associations

considering unique metabolic capabilities of Thauera sp. MZ1T (See Methods).

In the first stage of the manual curation, each GPR association of the draft model was care-

fully reviewed employing the relevant bioinformatic databases for metabolic modeling such as

BiGG [28], BioCyc [37], KEGG [38], and MetaNetX [39]. A total of 85 reactions were
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incorrectly added to the draft model based on protein homology, i.e. incorrect genes assigned

to a reaction (See Methods). Close to 80% of the reactions removed in this stage were related

to transport reactions (outer and inner membrane), another19 reactions related to carbohy-

drate and lipid metabolism were removed from the model as well. Additionally, 103 existing

GPR associations were manually modified, removing 67 Thauera sp. MZ1T (TMZ) genes and

including 45 new TMZ genes into the M-model. Most of the TMZ genes removed (41 genes)

from the model were wrongly assigned to oxidoreductases and transport reactions. Only 10 of

the TMZ genes eliminated from the M-model were unique genes among the GPR associations.

The resulting curated model of the first stage was further refined to remove exogenous

metabolites, reactions, and genes from the reference organisms that are not part of Thauera sp.

MZ1T’s metabolism. A total of 98 template genes were identified and labeled from the GPR

associations to be removed. From the 98 template genes, 56 TMZ genes were identified and

Fig 1. Workflow to build the metabolic model of Thauera sp. MZ1T using a semiautomatic approach. An initial draft M-model was reconstructed using

three sets of BLASTp parameters (e-value, query length, and identity percentage) from three template models present in BiGG (Escherichia coli K-12 substr.

MG1655, Klebsiella pneumoniae subsp. pneumoniae MGH 78578, and Pseudomonas putida KT2440). NCBI reference sequence annotation (GenBank) was

employed in GPR associations. The RAVEN and COBRA toolboxes for MATLAB were employed in the reconstruction, refinement, and validation of the

model. The resulting optimized draft model and constituents of the BOF were manually curated. Protein, RNA, and DNA components of the BOF were

estimated based on the total coding sequences. Disconnected metabolites were linked to the metabolic pathways using bioinformatics databases and

experimental evidence. Four detailed metabolic modules were carefully added to the M-model to show specific metabolic capabilities of Thauera sp. MZ1T:

1) aromatic compound degradation under aerobic and anaerobic conditions, 2) N metabolism including denitrification (with nitric and nitrous oxide partial

denitrification), oxidative phosphorylation with nitrate as electron acceptor, and DNRA, 3) PHAs and PHB production, and 4) EPS precursor production.

The resulting model was validated using experimental data retrieved from the literature. The iterative model refinement process included manual curation,

gap-filling, and curation under heterotrophic conditions with different oxygen concentrations depending on the experimental environments. PHB and EPS

production was simulated using a set of 36 C sources under aerobic and anaerobic conditions to estimate the compounds with higher yields. The final model

(iThauera861), containing 1,744 metabolites, 2,384 reactions, and 861 genes, predicted growth up to 95% of accuracy for 60 C and N substrates.

https://doi.org/10.1371/journal.pcbi.1012736.g001
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mapped into the GPR associations of the model, affecting a total of 39 reactions. The remain-

ing 42 exogenous genes were eliminated from the GPR associations. The 39 reactions affected

belong to amino acid metabolism, carbohydrate degradation, cofactor and prosthetic group

biosynthesis, and inorganic compound and ion transport.

After manual verification of GPR associations and template gene removal, disconnected

metabolites and reactions of the Thauera sp. MZ1T M-model were connected to the metabolic

network by employing gap-filling strategies from the COBRA Toolbox [36] using bioinformat-

ics databases as reference (BiGG [28], BioCyc [37], KEGG [38], and MetaNetX [39]) as well as

experimental evidence from the literature [1,12,15–17,20]. From the bioinformatics databases,

52 metabolites, 84 reactions, and 39 TMZ genes were included in the GEM to ensure connec-

tivity across metabolites and subsystems. Most of the curated pathways belong to amino acid

metabolism, carbohydrate degradation, inorganic and ions transport, cofactor and prosthetic

group biosynthesis, oxidative phosphorylation, and the nucleotide salvage pathway. Addition-

ally, over 70 different growth experiments under aerobic and anaerobic conditions were

employed to interconnect and add multiple C and N sources to the M-model. Transport reac-

tions involved in the consumption of C and N sources from experimental evidence were asso-

ciated with TMZ genes using specific transporter information from NCBI [1], PATRIC [40],

and TransportDB [41].

Lastly, specific metabolic pathways were added to the M-model to accurately represent spe-

cific metabolic capabilities of Thauera sp. MZ1T. Four major pathways were added: 1) aro-

matic compounds degradation, including the aerobic and anaerobic degradation of benzene-

related compounds; 2) N metabolism considering denitrification (with nitric and nitrous

oxide partial denitrification), oxidative phosphorylation with nitrate as electron acceptor, and

DNRA; 3) PHAs and PHB production from multiple C sources, and 4) EPS precursors biosyn-

thesis. A total of 63 metabolites and 116 reactions were successfully included in the GEM dis-

tributed in 22 new specific pathways. After the four stages of the model refinement, the

number of TMZ genes increased to 861 (Fig 1).

Model properties

The final Thauera sp. MZ1T metabolic model (iThauera861) consists of 1,744 metabolites,

2,384 reactions, and 861 genes, representing 22% of all annotated coding genes of the genome

retrieved from the NCBI GenBank database. Thus, the gene coverage for iThauera861 is in the

range of other bacterial metabolic models (15–30%) [24–27,29–31,33]. iThauera861was vali-

dated using over 70 experimental growth results under aerobic and anaerobic conditions with

multiple C and N sources. iThauera861 contains all metabolites, reactions, and genes involved

in aromatic compound degradation, total and partial denitrification, DNRA, PHAs and PHB

production, and EPS precursor biosynthesis (Fig 2). The complete distribution of the meta-

bolic pathways present in the M-model is organized into 57 subsystems (including inner,

outer, and exchange transport reactions) based on the biological role of the reactions and

metabolites involved.

Most of the reactions included in iThauera861 belong to cellular transport (inner, outer,

and extracellular reactions) with 26%, amino acids and lipids metabolism (12% each), cofactor,

and prosthetic group biosynthesis (10%), cell envelope biosynthesis (7.5%), alternate C metab-

olism (6.5%), and nucleotide metabolism (including de novo synthesis and nucleotide salvage

pathways, 6%). Specific metabolic pathways of Thauera sp. MZ1T, such as aromatic com-

pounds degradation (2.6%), EPS biosynthesis (1.5%), PHA and PHB production (1.2%), and

N metabolism (0.6%) represent less than 6% of the entire metabolism represented in the M-

model. The three prokaryotic M-models used as templates during the reconstruction and
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refinement steps share 1,022 reactions with iThauera861. Over 90% of the reactions present

across the four metabolic models (the templates and iThauera861) are related to core bacterial

pathways, i.e. amino acids, alternate C metabolism, cofactor metabolism, glycolysis, gluconeo-

genesis, lipids, nucleotide metabolism, the TCA cycle, and transport reactions. Parts of the aro-

matic compound degradation, PHAs and PHB production, and N metabolism pathways were

extracted from Escherichia coli K-12 substr. MG1655 and Pseudomonas putida KT2440 models

(S2 and S3 Materials).

Accurate growth and phenotype predictions of Thauera sp. MZ1T

iThauera861 was validated employing experimental data retrieved from the literature using

several C and N sources under aerobic and anaerobic conditions, capturing most of the meta-

bolic capabilities of Thauera sp. MZ1T. Over 70 different experimental growth conditions

were examined using amides, amines, amino acids, aromatic compounds, carbohydrates,

nucleotides, and organic acids as C sources, in addition to 11 organic (amino acids, amino

compounds, and nucleotides) and inorganic (ammonium, nitrate, and nitrite) compounds as

N sources to evaluate iThauera861 accuracy [1,12,15–18,20]. Under anaerobic conditions,

nitrate was provided as the main electron acceptor instead of oxygen to guarantee energy

Fig 2. Metabolic properties of Thauera sp. MZ1T represented in iThauera861. Anaerobically (left side), iThauera861 deploys six specific pathways to degrade

aromatic compounds, as depicted inside the cell diagram (from left to right): 4-chlorobenzoic acid, benzyl alcohol, p-cresol, aniline, and phenylacetic acid. These

metabolites are converted into a common intermediate, benzoyl-CoA, and finally into acetyl-CoA and pyruvate as the main compounds to connect with global

C metabolism. In absence of oxygen, iThauera861 employs nitrate (NO3) as the main electron acceptor, converting the NO3
- into N2 through the denitrification

pathway, or ammonium (NH4
+) using DNRA. In the presence of oxygen (right side), iThauera861 contains specific enzymes to oxidize aromatic compounds

such as benzene, toluene, benzoate, and derivatives and convert them into pyruvate. Oxygen is employed as the key electron acceptor instead of NO3
-. In both

conditions, the M-model can produce PHB using acetyl-CoA as the main C precursor, with higher yields of PHB biosynthesis estimated in presence of oxygen.

iThauera861 contains six specific EPS biosynthetic reactions using dTDP-D-N-acetylfucosamine (brown), dTDP-L-rhamnose (purple), UDP-D-galactose (blue),

and UDP-N-acetylglucosamine (orange) in different proportions.

https://doi.org/10.1371/journal.pcbi.1012736.g002
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production. Additionally, PHB and EPS production was estimated through Flux Balance Anal-

ysis (FBA) and complementary COBRA Toolbox algorithms under aerobic and anaerobic con-

ditions [36,42]. The maximum yield per C molecule and C:N ratios were calculated in silico for

PHB and six variants of EPS under aerobic and anaerobic conditions in the steady-state (See

Methods). Based on the maximum yields for PHB and EPS production, we identified the main

lethal genes for 36 C sources under different oxygen levels.

Thauera sp. MZ1T aerobic metabolism has been studied mostly for wastewater or for aque-

ous environments in the presence of different C and N sources, often with a focus on evaluat-

ing its capability of degrading pollutants and producing PHAs and EPS to provide structure

and consistency to the microbial community [9,12–16,20,21,43]. Initially, we validated

iThauera861 versatility to employ different C sources from aerobic experimental conditions of

the literature [12,15–17,20]. Table 1 compares the qualitative experimental results of Thauera
sp. MZ1T growth utilizing a wide range of C and N sources against the predicted qualitative

simulations of iThauera861. We utilized GN2 Biolog plate results from Allen 2002 [16] to test

the accuracy of iThauera861 predictions using qualitative data. A total of 46 C sources resulted

in significant growth using ammonium as the sole N source under aerobic conditions (See

Methods). Six out of the 46 C sources were not mapped to the M-model due to the lack of evi-

dence about the metabolic pathways in Thauera sp. MZ1T to consume these metabolites (α-

ketovaleric acid, bromo succinic acid, liaconic acid, mono-methyl succinate, Tween 40, and

Tween 80). The remaining 40 C sources were used to predict the growth values through FBA

with available oxygen, N, phosphorus, and mineral requirements of Thauera sp. MZ1T. A

detailed list of the C sources evaluated with the experimental and simulation results are pro-

vided in S4 Material. From the 40 C sources with significant growth results, iThauera861 suc-

cessfully predicted significant growth values in 36 of the C sources under aerobic conditions

with four false negative estimations (i.e. formic acid, L-alanyl-glycine, L-carnitine, and uroca-

nic acid), and no false positive predictions. An accuracy and sensitivity of 90% with 100% posi-

tive predictions were achieved when the M-model was validated with the 40 different C

sources. Additionally, the experimental growth values were classified into three categories

based on OD600 measurements: high, medium, and low (See Methods). The growth rates of

the 36 C sources were distributed in nine high, 16 medium, and 11 low measurements. The

growth values predicted were normalized and sorted following the same three categories from

the experimental measurements (high, medium, and low). We found that iThauera861 predic-

tions quantitatively matched 30 out of 36 growth rate value classifications. Two incorrect clas-

sifications were performed per category with seven correct predictions out of nine in high

growth values, 13 out of 15 in medium growth values, and nine out of 11 in low growth values.

Table 1. Summary of the growth rates evaluated using different carbon and nitrogen sources under aerobic and anaerobic conditions.

Carbon sources Nitrogen sources oxygen true positive false negative total conditions reference

organic acids NH4
+ + 12 0 12 [16,17]

carbohydrates NH4
+ + 1 0 1 [16,17]

alcohol derivatives NH4
+ + 2 0 2 [16,17]

amino acid and derivatives NH4
+ + 15 1 16 [16,17]

nucleotide derivatives NH4
+ + 3 0 3 [16,17]

amines and amides NH4
+ + 3 0 3 [16,17]

others NH4
+ + 0 3 3 [16,17]

acetate organic and inorganic + 14 0 14 [12,15–17,20]

aromatic compounds NH4
+ + 11 1 12 [15,16,44]

aromatic compounds NH4
+ and NO3

- - 7 2 9 [15,16,44]

https://doi.org/10.1371/journal.pcbi.1012736.t001
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The six incorrect quantitative predictions are: cis-aconitic acid experimentally classified as

high but predicted as medium (underestimation), α-ketoglutamic acid experimentally classi-

fied as high but predicted as low (underestimation), L-serine experimentally classified as

medium but predicted as low (underestimation), L-histidine experimentally classified as

medium but predicted as high (overestimation), L-phenylalanine experimentally classified as

low but predicted as medium (overestimation), and L-threonine experimentally classified as

low but predicted as medium (overestimation).

Next, the distributions of reaction fluxes across the 57 subsystems in each of the 36 condi-

tions were estimated and clustered to compare the subsystem activity per condition. 49 of the

57 subsystems were active at least in one of the GN2 Biolog plate simulations. The subsystem

flux values were z-score normalized across all the experimental conditions to highlight the flux

activity changes (S5 Material). The flux distributions of the subsystems show three main C

source clusters: 1) high normalized flux activity values in most of the subsystems, including

2,3- butanediol, citric acid, D-gluconic acid, D-glucose, gulonic acid, inosine, uridine, and thy-

midine; 2) medium normalized flux activity values across the subsystems comprehending α-

ketoglutaric acid, β-hydroxybutyric acid, cis-aconitic acid, D-alanine, γ-amino butyric acid,

glycerol, L-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, L-histidine L-

leucine, L-proline, L-serine, L-threonine, pyruvic acid, succinic acid, and urocanic acid; and 3)

low normalized flux activity values in the majority of the subsystems comprising 2-amino etha-

nol, acetate, alaninamide, β-hydroxyphenylacetic acid, L-lactic acid, L-ornithine, L-phenylala-

nine, phenyl ethylamine, propionic acid, and putrescine.

Furthermore, an in silico gene essentiality analysis was performed to determine which

genes are required for the growth of Thauera sp. MZ1T under the 36 conditions identified by

the GN2 Biolog plates (see Methods). Of the 861 genes, 578 TMZ genes were labeled as non-

relevant genes (67%), 164 genes were included in the growth-reducing genes group (19%), and

the remaining 119 genes were determined as lethal genes (14%). Close to 50% of lethal genes

are concentrated in GPR associations linked to transport (inner and outer membrane) and

cofactor and prosthetic group biosynthesis. Less than 2% of these genes are distributed in ala-

nine and aspartate metabolism, chlorophyll and porphyrin metabolism, murein recycling and

tRNA charging. The growth-reducing genes cluster was filtered for genes having a negative

effect in more than 5 experimental conditions to determine which of these genes impact cer-

tain C source metabolisms.

Nitrogen uptake versatility was validated using inorganic and organic N sources from the

literature [12,15–17,20]. The N assimilation and metabolism was qualitatively tested in silico
employing three inorganic N compounds (ammonium, nitrite, and nitrate) and eleven amino

acids as organic N sources, i.e. D-alanine, L-alanine, L-asparagine, L-aspartate, L-glutamate, L-

histidine, L-leucine, L-phenylalanine, L-proline, L-serine, and L-threonine. Acetate was uti-

lized as the sole C source for each N condition in the presence of oxygen. iThauera861 accu-

rately predicted the qualitative growth of the experimental results using 14 diverse inorganic

and organic N sources (100% of accuracy for the complete set of N sources under aerobic con-

ditions). Furthermore, based on the available transport reactions identified and mapped in the

Thauera sp. MZ1T M-model, we tested 65 N compounds in silico with a predicted gene associ-

ation to identify potential N sources under aerobic conditions with acetate as the C supply

(excluding the 14 experimental growth conditions previously validated). A total of 33 N

sources were consumed, distributed in amino acids and derivatives (13 sources), nucleotides

and derivatives (12 sources), amides (4 sources), amines (3 sources), and an inorganic N com-

pound (1 source). We estimated which nutrients could be utilized by Thauera sp. MZ1T as C

and N source when the metabolite is provided without any additional C and N source. We

evaluated 73 nutrients based on N sources from the literature experiments and the transport
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reactions included in the model during the reconstruction process with acetate as the sole C

substrate. iThauera861 predicted significant growth using 40 different metabolites (24 amino

acids and derivatives, 11 nucleotides and derivatives, 3 amines, and 2 amides) under aerobic

conditions.

Metabolism of aromatic compounds in the presence and absence of oxygen

Thauera sp. MZ1T contains highly specialized enzymes involved in the degradation of aro-

matic compounds under aerobic and anaerobic conditions using organic and inorganic N

sources [45–51]. In the presence of oxygen, diverse phenol and benzene-related compounds

such as phenol, p-cresol, benzoate, 4-hydroxybenzoate and m-xylene can be aerobically metab-

olized to catechol intermediates (catechol, 4-methylcatechol or 3-methylcatechol) [45].

Through the catechol meta-cleavage pathway, the bacterium converts catechol and its deriva-

tives into pyruvate or/and acetyl-CoA, which are core metabolites highly interconnected to the

global metabolism of the Gram-negative bacterium (Fig 2). The same metabolic strategy has

been identified in other organisms involved in wastewater treatment such as Pseudomonas
putida and Rhodocyclaceae species [45–47]. To validate this strategy in our M-model, we evalu-

ated the performance of iThauera861 on 12 aromatic compounds commonly present in waste-

water derived from chemical industries [52,53]. Setting experimental growth conditions as

previously done [15,16,44], the M-model was constrained to consume a single aromatic sub-

strate, with ammonium as the sole N source, and all the essential minerals required by Thauera
sp. MZ1T provided under aerobic conditions (Table 1). iThauera861 predicted growth on 11

out of 12 aromatic compounds in presence of oxygen with 11 true positives (4-hydroxybenzo-

ate, 4-hydroxyphenylacetate, aniline, benzoate, benzyl alcohol, m-xylene, p-cresol, phenol,

phenylacetate, and toluene) and only one false negative prediction (indole). For all true posi-

tive scenarios, the mechanism utilized by the M-model for the aerobic catabolism of these aro-

matic substances involved the catechol meta-cleavage pathway, with 2,3-dioxygenase as the

initial key enzyme of this metabolic pathway. Of the 11 true positive predictions, 4-hydroxy-

benzoate as the sole C source showed the highest growth rate value (0.13 h-1), meanwhile m-

xylene resulted in the lowest growth rate (0.03 h-1). However, considering the yield per C mol-

ecule of each aromatic compound, phenol displayed the highest growth rate per C molecule

and m-xylene remained as the aromatic compound with the lowest growth rate per C

molecule.

Besides the broad metabolic capability to degrade aromatic substrates under aerobic condi-

tions, Thauera sp. MZ1T displays the metabolic versatility to consume a wide variety of these

metabolites in the absence of oxygen using nitrate as the final electron acceptor [49–51].

Instead of the catechol meta-cleavage pathway utilized under aerobic conditions, this bacte-

rium employs highly specialized metabolic strategies to consume aromatic substrates anaerobi-

cally and transform them into benzoyl-CoA as common intermediate [48,50]. In further

downstream metabolic steps, benzoyl-CoA is catabolized by hydrolases and oxidoreductases

to three molecules of acetyl-CoA, a metabolite that plays a key role as an intermediate for sev-

eral subsystems of Thauera sp. MZ1T [1,12,50]. Similar anaerobic mechanisms have been

observed in well-studied denitrifying bacteria such as Rhodopseudomonas palustris and Azoar-
cus envasii [48,50]. We implemented a total of 14 metabolites, 21 reactions, and 8 genes in the

M-model allocated to the aromatic compound metabolism subsystem for the anaerobic degra-

dation of the aromatic substrates (Fig 2). Using nine anaerobic experimental conditions from

the literature [15,16,44], iThauera861 was also validated with nine aromatic compounds under

anaerobic conditions, replacing oxygen with nitrate as the final electron acceptor (Table 1).

The model predicted seven (4-hydroxybenzoate, benzoate, benzyl alcohol, p-cresol, phenol,
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phenylacetate, and toluene) out of nine aromatic compound utilization in the absence of oxy-

gen and two false negatives (4-aminobenzoate and aniline). Of the seven true positive predic-

tions, p-cresol resulted in the highest growth rate (0.17 h-1), meanwhile phenylacetate showed

the lowest growth rate (0.09 h-1). Regarding the C effect per molecule of each aromatic com-

pound to the growth rate, phenol stood as the highest growth rate per C molecule, while phe-

nylacetate remained as the aromatic compound with the lowest growth rate per C molecule.

Furthermore, we determined the variation of metabolic fluxes across different subsystems

in iThauera861 through sampling analysis using the true positive predictions of the aromatic

compounds under aerobic (11) and anaerobic (7) conditions (See Methods). We identified the

upregulated and downregulated subsystems per aromatic C source using the p-values of the

Mann Whitney U test with acetate as substrate reference (Fig 3). Under aerobic conditions, 10

out of the 11 growth conditions upregulated more than 50% of the subsystems, while benzyl-

alcohol as substrate downregulated most of the systems. The higher values in the growth rates

and significant upregulation in several pathways supports Thauera sp MZ1T’s higher effi-

ciency in using aromatic compounds as C substrates compared to acetate, which permits an

increase in biosynthesis of amino acids, lipids, nucleotides, and secondary metabolites.

In both aerobic and anaerobic conditions, the aromatic compounds and alternate C metab-

olisms presented the highest upregulation values, followed by cofactor and prosthetic group

biosynthesis, oxidative phosphorylation, glycerophospholipid metabolism, and cell envelope

biosynthesis. Core metabolic pathways such as amino acid subsystems (arginine, glutamate,

glycine, histidine, phenylalanine, proline, serine, tryptophan, and tyrosine metabolism), TCA

cycle, glycolysis/gluconeogenesis, porphyrin and chlorophyll metabolism, carbohydrate, and

fatty acid metabolisms showed low upregulation values with p-values between 1e-1 to 1e-3.

Specific subsystems such as cysteine and methionine metabolism of the amino acids, B-ketoa-

dipate pathway, lipopolysaccharides biosynthesis, nucleotide salvage pathway, and metabolite

repair were upregulated with p-values between 1e-3 to 1e-5. The N metabolism was signifi-

cantly upregulated in anoxic conditions compared to the oxic scenarios, which is due to high

metabolic activity of the denitrification pathway in absence of oxygen.

PHB and EPS optimization under aerobic conditions

Thauera sp. MZ1T is capable of producing multiple polymers depending on the resources

available and the environmental conditions. The most relevant and best-studied polymers pro-

duced by this microorganism are PHB and EPS [8,9,12,15–17,20,21]. PHB accumulation

occurs in the cytosol of the bacterium under high C:N ratios and different oxygen concentra-

tions, allowing the microorganism to store nutrients inside the cell. EPS biosynthesis in

Thauera sp. MZ1T requires four main precursors in different proportions that work as the

scaffold for these polymers, combined with carbohydrates or/and lipids [15–17,20,54,55].

Depending on the proportion of the main precursors and the content of oligosaccharides and

lipids in the structure, the EPS can significantly change its structural properties directly

impacting floc formation and permeability of the nutrients in the environment [1,15–17,20].

Currently, there is limited understanding of the effect of EPS concentration on floc formation

and wastewater treatment. Additionally, the mechanisms, metabolic strategies, and environ-

mental conditions required for synthesizing and optimizing production of PHB and EPS in

Thauera sp. MZ1T are not well understood. Thus, we exploited the prediction capabilities of

iThauera861 to determine the impact of C source, C:N ratio, oxygen presence, and GPR asso-

ciations in the production of PHB and six different variants of EPS.

First, we evaluated iThauera861 precision to predict PHB production using Colpa 2020

experiments under aerobic N-limiting conditions [12]. We used acetate as the sole C and
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ammonium as N source with the minerals and micronutrients required for Thauera sp. MZ1T

growth (See Methods). Different acetate:ammonium ratios (a sensitivity analysis from 1:1 to

20:1 C:N ratios) were evaluated to determine the optimal C:N proportion for PHB production.

Fig 3. Heatmap containing the -log10 transformation of the Mann Whitney p-values for the up-regulated subsystems using sampling results of the optimal growth

values under aerobic and anaerobic conditions. The flux distributions for each aromatic C source were estimated through sampling analysis and the resulting values were

grouped and averaged per subsystem. Each growth condition was compared against acetate to determine the upregulated and downregulated subsystems through the

Mann Whitney U test. The p-values were plotted using -log10 transformation to identify which metabolic pathways were significantly upregulated. The eleven aerobic

experimental growth conditions are displayed on the left and the seven anaerobic denitrifying conditions are shown on the right. Abbreviations: 4abz_e, 4-aminobenzoate;

4crsol_e, p-cresol; 4hbz_e, 4-hydroxybenzoate; 4hphac_e, 4-hydroxyphenylacetate; anilIne_e, aniline; bz_e, benzoate; bzalc_e, benzyl alcohol; m_xyl_e, m-xylene; pac_e,

phenylacetic acid; phenol_e, phenol; tol_e, toluene.

https://doi.org/10.1371/journal.pcbi.1012736.g003
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Colpa in 2020 tested 10 g/L of acetate in a 10:1 C:N proportion (mol/mol) using ammonium as

the sole N source with PHB production resulting in 50% of cell dry mass. Our results showed

that C:N proportions above 5:1 using acetate and ammonium as the C and N sources allowed

PHB production without compromising the growth rate of Thauera sp. MZ1T. Lower C:N

ratios affected the growth rate or impacted the N consumption fluxes, since higher PHB pro-

duction rates directly affect the biomass formation and thus the N requirements. However,

iThauera861 does not provide optimal solutions for the maximum PHB production rate for

higher C:N ratios. Above 5:1 C:N ratios, C consumption is redirected to the PHB production,

which is only limited by the biomass growth rate. Higher C:N proportions in metabolic model-

ing without experimental constraints led to increasing PHB production rates. PHB biosynthe-

sis is usually affected by multiple parameters outside of the scope of metabolic modeling, such

as temperature, pH, regulated genes, and protein-cost production [56–58].

iThauera861 was further exploited to identify the effect of different C sources and C:N

ratios under aerobic and anaerobic conditions on the production of PHB and six specific EPSs

(see Methods) [57,59,60,61]. When oxygen is available, the highest production for the seven

polymers was obtained using inosine as the sole C source. Nucleotide compounds such as ino-

sine, thymidine, and uridine, performed as the most efficient C substrates to produce PHB and

the six variants of EPS. Other substrates such as alcohol derivatives, amides, amines, amino

acid derivatives, amino acids, and organic acids, generated lower yields across all six EPS mole-

cules except for PHB. Specifically, organic acids (acetate, propionate, and pyruvate) performed

on average as the least efficient C substrates to produce PHB and EPSs. Despite the poor pro-

ductivity of polymers from organic acids, the lowest production value was achieved by the

amine phenethylamine with less than the sixth part of the efficiency obtained with the nucleo-

tide compounds. Based on the nutrients requirements to achieve the highest yield values

under the established growth rate and polymer contributions, the C:N ratios per condition

were estimated based on C and N uptake fluxes (Fig 4A). The highest C:N ratios were achieved

with the C derived from organic acids, carbohydrates, and alcohol derivatives (compounds

without N) across the seven different polymers. Growth conditions using substrates containing

N such as amides, amines, amino acid derivatives, amino acids, nucleotide derivatives, exhib-

ited lower C:N ratio values. For C:N ratio values between 0 to 5 under aerobic conditions, the

polymers presented a similar outcome generating a unique cluster of all the yields. A different

trend was observed for C:N ratios in the range of 10–25, where the EPSs were distributed in

three main clusters: EPS1 and EPS2 located in the C:N ratios range of 10–15, EPS 3, EPS5, and

EPS6 conformed the second cluster in the C:N ratios range of 15–20, and EPS4 as the only

member of the third cluster (range of 20–25). The PHB yield values had two clear dispositions,

with a random distribution from the C:N ratios range of 0–5 and a gradual increase of the

yields for C:N ratios above 5, reaching the peak of the yield values at a C:N ratio of 25. C:N

ratios for PHB production above 25 did not increase the yield values from the C:N ratios range

of 20–25. This PHB production’s strong dependency to the C:N ratio compared to the EPS bio-

synthesis requirements has been extensively reported for different bacteria mainly under aero-

bic conditions [22,62–64]. However, no clusters were identified when the yield distributions

were analyzed considering the C:N ratio values across the different polymers under anaerobic

conditions (S6 Material). EPS3, EPS4, and PHB achieved greater yield values under aerobic

conditions, meanwhile the rest of the EPSs distributed evenly independent of the oxygen pres-

ence. A principal component analysis (PCA) was carried out to determine the impact of the C:

N ratios on the polymers and various C substrates (Fig 4C and 4D). Two main clusters were

recognized when the first two PCA scores of the C:N ratios are displayed and grouped by poly-

mer, with the first cluster conceived by the EPS compounds (left side) and PHB as a sole ele-

ment of the second cluster (right side). A similar trend is exhibited in the second PCA of the
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C:N ratios grouped by substrate group; the cluster of substrates with N in their chemical com-

position, i.e. amides, amines, amino acid derivatives, amino acids, and nucleotide derivatives

showed a substantially different pattern in the C:N ratio (left side) compared to the C com-

pounds without N such as alcohol derivatives, carbohydrates, and organic acids (right side).

The presence of N in the substrates from the first cluster reduced the requirements of an exter-

nal N supply like ammonium compared to the second cluster of C compounds. However, the

ammonium requirement as a N supply positive correlates to higher production rates for the

second cluster of C compounds.

Fig 4. Effect of the C:N ratio and different carbon sources on production of PHB and EPS. A Scatter plot depicting the production per C molecule and C:N

ratios of PHB and EPS under aerobic condition with 36 C sources. No clear tendency can be observed from 0 to 5 using the C:N ratio as reference. With C:N ratio

above 5:1 a clear increase in the yield is noticed showing the highest yields when C:N ratios are higher for PHB production. B Comparison of the yields per C

molecule in the presence and absence of oxygen. Most of the yields are concentrated in the center of the plot, meaning that the yields are remarkably similar

independently of the oxygen concentration. C PCA plot displaying the two first component scores of the C:N ratios considering the PCA coefficients of PHB and

EPS under aerobic conditions. The PCA represents 99% of the variability of the data. Two main clusters can be identified, the cluster of the EPS (left side) and the

cluster of the PHB (right side). D First two component scores of the C:N ratio PCA under aerobic conditions, considering the PCA coefficients of C sources. The

compounds were grouped by their common functional groups. Interestingly, two main clusters were recognized, the common functional groups with N (left) and

the compounds without N in their chemical composition (right).

https://doi.org/10.1371/journal.pcbi.1012736.g004
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Besides the impact of the C:N ratio to the PHB and EPS production efficiency, there has been

an interest in the reactions and genes involved in the production and efficiency of PHB and EPS

in Thauera microorganisms [1,12,15–17,20]. For PHB production, acetyl-CoA acetyltransferase,

acetoacetyl-CoA reductase, and PHA synthase were identified as key enzymes in the biosynthesis

of this polymer, reducing and even in some environments stopping the PHB accumulation and

leading to the death of the bacterium [9,12,16,17]. In Thauera sp. MZ1T, mutants have been gen-

erated deleting genes involved in the generation of the EPS precursors, polymerization, and

excretion resulting in alterations with negative effects on the cell surface organization, intercellu-

lar interactions, and floc-forming capacity [16,17]. Some of the mutants generated significantly

lower growth rates and EPS biosynthesis, and even in specific scenarios, leading to lethal out-

comes. In addition to identifying the impact of C substrate, oxygen, and C:N ratio on the pro-

duction of polymers in Thauera sp. MZ1T, we utilize iThauera861 to evaluate on a genome-scale

level the impact of the reactions and genes to the PHB and EPS production. A reaction essentially

analysis was executed to determine the effect of each reaction and its GPR association on the

growth rate using the experimental conditions of GN2 Biolog plates in two oxygen scenarios

(presence and absence). A total of 2,175 reactions were evaluated in the single-reaction deletion

analysis with almost 28% of the reactions labeled as orphan reactions (excluding pseudo reac-

tions of the GEM). The lethal reactions were classified considering three main categories: C

source, polymer produced, and oxygen presence (See Methods). Of the 2,175 reactions, 208 reac-

tions were labeled as lethal reactions in at least one polymer-producing condition under aerobic

conditions (Fig 5A). Close to 75% of the lethal reactions were associated to at least one TMZ

gene mostly distributed in transferases (20%), synthases (18%), dehydrogenases (8%), hydrolases

(8%), transporters (8%), and hydratases (6%) (S7 Material). 24 of the aerobic lethal reactions

were not found in the list of anaerobic lethal reactions, which are directly involved in the oxygen

utilization, cofactor and prosthetic group biosynthesis, purine and pyrimidine biosynthesis, cell

envelope biosynthesis, and transport reactions across the three compartments (Fig 5C). 118

lethal reactions in oxygen presence affected the seven different polymer growth conditions,

mainly impacting the nucleotide, amino acid, cell envelope and other metabolic pathways

(including the reactions involved in the production of the PHB and EPS precursors). The growth

conditions with PHB production had more unique lethal reactions (32) compared to the entire

set of growth conditions for the six diverse variants of EPS (20). Of the 208 lethal reactions under

aerobic conditions, the PHB cluster presented the highest number of lethal reactions with 172,

while the EPS6 had the lowest number of lethal reactions (144). Almost 80% of the lethal reac-

tions occurred in amino acid derivatives, amino acids, and organic acids as carbon sources.

The number of lethal reactions decreased to 199 under anaerobic conditions (28% of which

are orphan reactions) with significant changes in the subsystems affected. Only 15 of the lethal

reactions in absence of oxygen were not found in the list of aerobic lethal reactions. However,

the metabolic pathways impacted were linked to denitrification, N metabolism, folate metabo-

lism, N transport, and a few of them to the transport across the cellular compartments. The

growth conditions for EPS production showed a significantly higher number of lethal reac-

tions (19) compared to the PHB cluster (8). The subsystems distribution and enzymatic classi-

fication remained similar in both aerobic and anaerobic reactions, with also 80% of the lethal

reactions occurring in amino acids, amino acids, derivatives, and organic acids as C sources

when oxygen is absent.

3. Discussion

We have reconstructed a comprehensive GEM for an important floc-forming and denitrifying

wastewater bacterium using semiautomatic strategies. The high-quality, manually refined, and
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validated metabolic model of Thauera sp. MZ1T unravels the metabolic capabilities of Thauera
sp. MZ1T under aerobic and anaerobic conditions. Initially, the M-model was reconstructed

based on three Gram-negative bacterial reference models from BiGG [28] selected according

to their metabolic and physiological similarities (Escherichia coli K-12 substr. MG1655 [29],

Klebsiella pneumoniae subsp. pneumoniae MGH 78578 [30], and Pseudomonas putida KT2440

[31]). Unlike other semi-automatic reconstruction approaches for metabolic modeling, we

employed a reconstruction strategy considering multiple BLASTp optimal parameters depend-

ing on the number of template models. There is no clear consensus on the optimal BLASTp

criteria in the metabolic reconstruction process since the BLASTp parameter values directly

Fig 5. Reaction essentiality analysis for the production of PHB and EPSs under aerobic and anaerobic conditions using different carbon sources. A Upset

plot with 20 distinct groups of lethal reactions for PHB and six EPSs under aerobic conditions. Pie charts of the reaction subsystem distribution above each bar

from the lethal reaction groups. B Upset plot with 19 diverse groups of lethal reactions for PHB and six EPSs under anaerobic conditions. Pie charts of the

reaction subsystem distribution above each bar from the lethal reaction groups. C Percentage distribution of enzyme classification of lethal genes estimated

through single gene deletion under aerobic condition (outer plot) and the C sources affected by the lethal reactions (inner plot). D Percentage distribution of

the enzyme classification of the lethal genes estimated through single gene deletion under anaerobic condition (outer plot) and the C sources affected by the

lethal reactions (inner plot).

https://doi.org/10.1371/journal.pcbi.1012736.g005
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depend on how similar the studied microorganisms are to the reference models. However,

multiple studies have reported BLASTp cutoffs of e-value between 1e-15 and 1e-5, query

length of 50 to 150 amino acids, and identity percentage of 20–40% for bacteria [24–27], and

even for eukaryotic organisms [35]. Selecting a unique set of BLASTp parameter values can

significantly impact the number of false positive (wrong gene assignments) and false negative

(missing genes) calls in the GPR associations. In this study, we reduced the number of wrong

gene assignments by more than 20%, directly impacting the time required for manual refine-

ment. Additionally, having multiple BLASTp parameters reduced the number of genes from

the reference models by almost 30%. While the chosen parameters provided sufficient results

for the model of Thauera sp. MZ1T, further analyses will be necessary to identify the accuracy

of multiple BLASTp parameters optimization for other organisms and template models.

iThauera861 contains close to 22% of the annotated proteins assigned to GPR associations.

Compared to the metabolic genes of the template models, iThauera861 only contains a higher

percentage of metabolic genes compared to iJN746 (14%). However, the updated version of

Pseudomonas putida KT2440 M-model, iJN1463 (27%), as well as iML1515 (31%) and

iYL1228 (25%) display greater percentages of metabolic genes. Considering the updated tem-

plate model, the average percentage of metabolic genes in the reference organisms surpasses the

percentage in Thauera sp. MZ1T by almost 6%. iJN1463 and iML1515 include over 400 reac-

tions more than iThauera861, meanwhile iYL1228 contains 122 less reactions (S2 Material).

The difference among metabolic genes could be related to the lower amount of orphan reactions

identified in the template models (20% compared to almost 28% in iThauera861) and the large

number of reactions with less than three TMZ genes in the GPR associations (almost 50%

excluding the pseudo reactions of the M-model). Further analysis must be performed to deter-

mine the metabolic function of multiple hypothetical and putative proteins from the Thauera
sp. MZ1T annotation to incorporate the new findings in the GPR associations of the model. In

addition, we compared the metabolic features of iThauera861 to three extensively validated

M-Models of Gram-negative bacteria, i.e. Azotobacter vinelandii DJ, iDT1278 [26]; Nitrosomo-
nas europaea ATCC19718, iGC535 [24]; and Rhodopseudomonas palustris Bis A53, iDT1294

[25], which are involved in the degradation of aromatic compounds, play a role in nitrogen

metabolism, PHB production, or are present in wastewater or soil environments. iThauera861

contains a similar number of reactions compared to the A. vinelandii model iDT1278 (2,432),

sharing the core metabolic pathways for aerobic metabolism and a similar metabolic mecha-

nism regarding PHB production. R. palustris Bis A53’s metabolic model, which contains 2,123

metabolites and 2,721 reactions, surpasses iThauera861 by almost 350 metabolites and 400 reac-

tions. However, the Thauera sp. MZ1T M-model shares multiple subsystems and metabolic fea-

tures with iDT1294. Both M-models encompass specific reactions for the degradation of

multiple aromatic compounds in the presence and absence of oxygen, denitrification, PHB pro-

duction, and the capability to consume a wide range of C and N substrates. The significant dif-

ference in model size is related to R. palustris’ capability to perform anoxygenic photosynthesis,

nitrogen fixation, and to grow under four metabolic states (chemoautotrophy, chemoheterotro-

phy, photoautotrophy, and photoheterotrophy). iThauera861 can grow under aerobic and

anaerobic conditions, but solely heterotrophically. The largest difference in the quantity of

metabolites and reactions was observed when iThauera861 was compared against iGC535 (N.

europaea). iGC535 contains only 1,114 metabolites (36% less than iThauera861) and 1,149 reac-

tions (52% less). Additionally, N. europaea is capable of growing only on a few C and N sub-

strates under strict aerobic conditions [24]. Despite the low metabolic similarities between N.

europaea and Thauera sp. MZ1T, these microorganisms can be found in wastewater environ-

ments as part of a microbial community, interacting with other bacteria to remove most of the

C and N pollutants [65]. Thauera organisms play a key role in wastewater treatment
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contaminated with aromatic compounds, removing these toxic compounds and thus enabling

growth of N. europaea and in turn guaranteeing nitrification [12,16,17,24,56]. Different studies

have reported a negative impact of aromatic compounds such as benzene and toluene, on N.

europaea. These aromatics inhibit ammonium oxidation in N. europaea and trigger an energy

drain [66,67].

Our GEM encompasses well-detailed metabolic pathways for degradation of aromatic com-

pounds, both under aerobic and anaerobic conditions. iThauera861 comprehends the con-

sumption of aromatics through the catechol meta-cleavage pathway in the presence of oxygen

and the benzoyl degradation pathway when oxygen is not available (S8 Material). This M-

model contains more aromatic degradation pathways and metabolic mechanisms than other

well-curated models such as P. putida KT2440 (iJN746 and iJN1463) [31], R. palustris Bis A53

(iDT1294) [25], N. europaea ATCC19718 (iGC535) [24], or Geobacter metallireducens GS-15

(iAF987) [33]. iThauera861 shares most of the aerobic aromatic degradation with iJN1463, i.e.

transformation of most aromatic metabolites into catechol and further catabolization to pyru-

vate. iJN1463 exclusively contains the metabolic pathways for the aerobic consumption of

2,4,6-trinitrotoluene, o-xylene, p-xylene, vanillin, and vanillate. However, iThauera861 is the

first M-model that includes the metabolic pathway for the degradation of aniline in presence

of oxygen. Under anaerobic conditions, iThauera861 employs the benzoyl degradation path-

way, also found in iDT1294 and iAF987. However, the specific mechanism to catabolize ben-

zoyl-CoA into acetyl-CoA utilizing the exact same enzymes is shared between Thauera sp.

MZ1T and G. metallireducens GS-15 [48]. iDT1294 utilizes a slightly different metabolic path-

way still channeling metabolites into benzoyl-CoA and producing acetyl-CoA but using differ-

ent enzymes and intermediates. A similar metabolic strategy has also been characterized for

Azoarcus sp. CIB [48]. Among all these M-models, iThauera861 stands as the unique metabolic

model capable of degrading multiple aromatic compounds under aerobic and anaerobic con-

ditions. Thus, the model developed in this study enables the study of aromatic compound

metabolism under various oxygen concentrations, often encountered in wastewater systems.

Thauera sp. MZ1T’s metabolic model was carefully employed to identify the impact of dif-

ferent biological parameters involved in the production of PHB and EPSs. Three parameters

(C substrate, oxygen presence, and C:N ratio) were shown to have a significant effect on the

yield of these polymers. For example, nucleotides as C sources significantly increased the pro-

duction of PHB and EPS, while substrates lacking N in their chemical structure such as alco-

hols, carbohydrates, and organic acids, contributed significantly to polymer production. Our

results match with experimental results reported previously that found a positive correlation of

C substrates without N to the production of PHB and EPS under aerobic conditions

[54,60,61,68]. Additionally, iThauera861 predicted the C:N ratio to have a greater impact on

the PHB production independently of the C source employed in presence of oxygen than on

the other polymers produced. This has been observed previously under different experimental

conditions, where the C:N ratio impacts PHB production by Thauera sp MZ1T independent

of its EPS synthesis [12,16,17,56,57]. Different studies have linked this phenomenon to biologi-

cal parameters, since PHB biosynthesis is triggered by N-limiting conditions to generate C

storage compounds, whereas EPS production is not dependent on the available N substrate

concentrations [12,16,17,56,57]. Oxygen appears to have a lesser influence on polymer produc-

tion than C source and C:N ratio. Under aerobic conditions, iThauera861 only predicted an

increase in the production of PHB, EPS3, and EPS4. Our modeling analysis was limited to pre-

dict the biosynthesis of only six EPS variants of the wide spectrum of EPS compositions. Many

diverse EPS compositions and varying yields have been reported for Thauera sp. MZ1T, which

results in different structures that influence flocculation [16,17,20]. To date, there is not

enough data to conclusively determine which specific EPS variants and C substrates have an
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influence on the consistency of bacterial flocs [16,17,20]. Deciphering the impact of the main

metabolic parameters evaluated in the current study to produce PHB and EPSs can potentially

play a role to understand the development and quality of the wastewater microbial community

biofilms and granular sludges. The variations in PHB and EPS production identified in our

study have meaningful implications for wastewater treatment and bioremediation. Specifically,

the composition and concentration of PHB and EPS directly impact the quality of wastewater

sludge granules by affecting both the physical integrity and metabolic capabilities of the micro-

bial community. The production of PHB and specific EPS variants aids in flocculation,

enhancing the settling and compactness of biomass, which is essential for efficient wastewater

treatment. Additionally, these polymers contribute to sludge permeability, which could facili-

tate nutrient transfer and removal efficiency. This structural support provided by PHB and

EPS improves sludge stability and potentially enables more efficient operation of treatment

facilities, especially under conditions where nutrient availability fluctuates. Thus, optimizing

conditions to enhance PHB and EPS production could offer valuable strategies for improving

the quality and performance of wastewater treatment systems.

The GEM reconstructed, refined, and validated in the present study (iThauera861) provides

new insights into how key parameters, including C source, oxygen levels, and C:N ratio, influ-

ence PHB and EPS production, both essential biopolymers for floc formation in wastewater

treatment. Notably, iThauera861 confirms a positive correlation between N-deficient carbon

sources and enhanced polymer synthesis, which aligns with experimental data. Our findings

also demonstrate that while oxygen presence has limited impact, the C:N ratio plays a domi-

nant role in PHB yield. With applications extending to wastewater treatment, iThauera861

offers a predictive tool for enhancing microbial granule quality by optimizing PHB and EPS

production to improve sludge granule compactness, settling, and permeability. This metabolic

model thus advances our understanding of Thauera sp. MZ1T and its role in wastewater treat-

ment systems, providing a foundation for further environmental and bioremediation

applications.

4. Methods

4.1 Draft model generation

The genomic sequence of Thauera sp. MZ1T was obtained from the NCBI Reference Sequence

database [1] (RefSeq code: GCA_000021765.1; genome size: 4.5 Mbp, GC content: 68.3%, and

3,941 proteins). Using the COBRA and RAVEN Toolboxes [32,36] for MATLAB, a draft

model was created based on protein homology (BLASTp [69]) to three carefully selected refer-

ence models from the BiGG database, chosen to maximize Thauera sp. MZ1T’s metabolic cov-

erage while minimizing redundant reactions. The template models for Thauera sp. MZ1T

were selected based on criteria that maximized both the number and quality of homologous

GPR associations. The first template was chosen for its highest number of BLASTp hits, priori-

tizing templates with the best alignment parameters, specifically the lowest e-value and highest

query coverage and sequence identity. This ensures that the initial template is most closely

related to Thauera sp. MZ1T in terms of protein homology and metabolic capabilities. Subse-

quent templates were selected to add unique GPR associations not present in the first template,

allowing inclusion of additional metabolic reactions without redundant overlap. This

approach provided a broad, non-redundant foundation for the draft model, aligning closely

with Thauera sp. MZ1T metabolic profile while maximizing the functional completeness of

the GEM. Template models included three Gram-negative prokaryotic organisms: Escherichia
coli str. K-12 substr. MG1655 (iML1515) [29], Klebsiella pneumoniae subsp. pneumoniae

MGH 78578 (iYL1228) [30], and Pseudomonas putida KT2440 (iJN746) [31]. We performed a
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sensitivity analysis on BLASTp parameters (e-value, query length, and identity percentage)

across 144 combinations, optimizing for the best matches to Thauera sp. MZ1T while mini-

mizing false-positive GPR associations. In the context of semi-automated reconstruction pro-

cess for GEM, true positive calls consist on genes correctly assigned in a GPR association,

meanwhile a true negative refers to the genes correctly unassigned to a specific GPR associa-

tion. This included evaluating four e-values (1e-30, 1e-20, 1e-10, and 1e-5), six query lengths

(50–200 amino acids), and six identity percentages (20–50%). We employed a set of manually

curated reactions and their GPR associations to determine the true positive and negative calls,

as well as the false positive and negative predictions. The curated reactions were selected based

on the EC numbers identified in the genome annotation and subsequently mapped to BiGG

identifiers. Three optimal parameter sets emerged, yielding high-accuracy homology matches

and tailored GPR associations for each template model. Redundant reactions from multiple

templates were reconciled by selecting those with the highest BLASTp scores, producing a

foundational draft model closely aligned with Thauera sp. MZ1T metabolism.

4.2 Model refinement

Model refinement of the draft model was performed in two steps of manual curation and two

gap-filling stages: 1) manual curation of the GPR associations in the draft model added during

the initial reconstruction process, 2) removal of metabolites, reactions, and genes only present

in the three template models, 3) gap-filling of the disconnected metabolites and blocked reac-

tions based on bioinformatics databases and experimental evidence, and 4) incorporation of

new subsystems and GPR associations considering specific metabolic mechanisms of Thauera
sp. MZ1T.

4.2.1 Manual curation. In the first step of the manual curation, we identified the reactions

with exogenous proteins from the template models in the GPR associations in the initial draft

model. GPR associations with mixed TMZ and exogenous proteins were modified by remov-

ing the exogenous elements from the model. Reactions with only exogenous proteins or enzy-

matic complexes with exogenous proteins participating in the GPR associations were mapped

in Thauera sp. MZ1T metabolism using data from the most relevant bioinformatics databases

(BiGG [28], BioCyc [37], KEGG [38], and MetaNetX [39]). Exogenous proteins incorporated

during the reconstruction phase were replaced with homologous TMZ sequences, utilizing

their Enzyme Commission (EC) numbers to reference and confirm their metabolic functions.

Additionally, reactions lacking any TMZ proteins in the GPR associations were analyzed

through the BLASTp algorithm. Candidate homologous proteins from the Thauera sp. MZ1T

annotation were identified using BLASTp, comparing them against template proteins assigned

to GPR associations for the reaction in other metabolic models of microorganisms listed in the

BiGG database. The BLASTp cutoffs were an e-value� 1e-10, query coverage� 75% and iden-

tity percentage� 35%. We carried out a second step of manual curation to corroborate the

accurate assignment of the GPR associations. The proteins corresponding to each reaction in

the partially curated draft model were carefully reviewed, considering the type of metabolic

reaction, protein function, and cellular compartment. Protein complexes were accurately

adjusted from the GPR associations of the template organisms to match the specific conforma-

tions of protein complexes in Thauera sp. MZ1T. All validated metabolites, reactions, and

GPR associations were allocated in three different cellular compartments (periplasm, cyto-

plasm, and extracellular compartment). Transport reactions were added using the Trans-

portDB database [41]. Metabolite transport between compartments was curated using

BLASTp and bioinformatics databases such as KEGG and BioCyc. Metabolites with missing

chemical formulas or/and charges were curated using consensus information across KEGG,
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Metacyc, and PubChem databases. Furthermore, metabolites not included in any reaction

from the model were carefully removed ensuring the stability of the S matrix.

4.2.2 Gap filling. After the initial manual curation, gap-filling was completed in two com-

plementary stages: (1) filling gaps in metabolic pathways already present in the manually

curated draft model, and (2) integrating new metabolic pathways identified from bioinformat-

ics databases and literature evidence. This gap-filling approach has been successfully applied in

previous prokaryotic model reconstruction processes, where it yielded high accuracy in meta-

bolic prediction for microorganisms relevant to wastewater treatment and ecological environ-

ments [23–27]. A targeted semi-automated approach was adopted to selectively integrate

reactions and metabolites from databases such as BiGG, KEGG, and BioCyc, specifically

refined to align with the unique metabolic capabilities and ecological niche of Thauera sp.

MZ1T.

The first part of the gap analysis was executed to identify which metabolites remained dis-

connected in the draft M-model and which reactions were missing in the analyzed metabolic

subsystems. Initially, we determined the disconnected metabolites through dead-end analysis

algorithms from the COBRA Toolbox [36]. The dead-end compounds were categorized based

on their disconnection reason (available in one reaction, only as a substrate or as a product).

Later, the reactions required to establish suitable connections of dead-end metabolites were

identified and added to the model with their corresponding GPR associations using different

bioinformatic databases (BiGG [28], BioCyc [37], KEGG [38], and MetaNetX [39]). Gap filling

was also employed to interconnect metabolic pathways already present in the model (amino

acid metabolism, denitrification, glycolysis, oxidative phosphorylation, etc.). Finally, dead

ends were identified through BioCyc and KEGG subsystem modules and in silico synthesized

using COBRA gap filling procedures. A final examination was carried out to confirm the pro-

duction of each dead-end compound using the sink reaction strategy designed for the COBRA

Toolbox. Subsequently, we implemented a second round of gap filling to connect metabolites

from the medium compositions of different experiments under aerobic and anaerobic condi-

tions reported in the literature. Gap filling procedures identified the required reactions for the

assimilation and metabolism of over 70 C and N sources under aerobic and anaerobic condi-

tions. Uptake reactions required for the transportation of the substrates across the three com-

partments were annotated using BioCyc [37], KEGG [38], MetaNetX [39], and transporters

identified through experiments retrieved from the literature. The reactions integrated in the

gap filling process with no TMZ genes in the GPR associations were annotated as orphan reac-

tions. We validated the production of each metabolite present in the M-model using FBA to

verify the predicted internal fluxes of the reactions.

We concluded the gap filling stage by integrating new metabolic subsystems to the refined

model using semi-automated strategies. Specifically, C (aerobic and anaerobic degradation of

aromatic compounds, PHB and EPS biosynthesis), and N (denitrification, DNRA, and partial

denitrification) metabolism and their respective annotation. The new reaction and metabolite

identifiers were designated based on the BIGG database standardization; metabolites and reac-

tions with no available information in BiGG were included in the model. The new reactions

were assigned using the EC Number information (through BRENDA [70]) and bioinformatic

databases (BioCyc, KEGG, MetaNetX). Meanwhile, the new metabolites were integrated based

on specialized databases for biochemical compounds (KEGG, MetaCyc, and PubChem).

Detailed information for metabolites and reactions (charge, formula, reversibility, direction,

etc.) were obtained from well-reviewed biochemical databases (PubChem [71], UniProt [72],

ModelSEED [73], KBase [74], and MetaCyc [75]) or from experimental conditions of Thauera
sp. MZ1T or closely related Thauera members such as Thauera aromatica or Thauera ami-
noaromatica. The GPR associations of the reactions identified in other Thauera members were
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determined by protein homology to find the equivalent TMZ proteins. For Thauera sp.

MZ1T-specific features, like pathways for aromatic compound degradation under aerobic and

anaerobic conditions, literature information using experimental evidence was employed to

build these specific metabolic subsystems. The functionalities of all reactions were validated

using FBA through the model to predict in silico growth (biomass production). Reactions

added in the last stage of gap filling were evaluated by setting specific constraints in the M-

model and performing simulations to measure the internal reaction flux distributions. The

remaining reactions with exogenous genes in the GPR associations of the model after the gap-

filling stage (incorrectly assigned reactions) were identified and analyzed through Flux Balance

Analysis (FBA) using the COBRA Toolbox [36,42]. After completing the gap-filling stage, we

optimized the model using FBA across 70 different experimental conditions, allowing us to

assess reaction activity under varying environmental parameters. We focused on identifying

reactions with exogenous genes in their GPR associations that showed no flux under any

growth condition. Consistently inactive reactions underwent manual verification against

annotation files and bioinformatics databases (KEGG and BioCyc) to confirm the absence of

homologous genes in Thauera sp. MZ1T, establishing a lack of biological relevance. Verified

reactions were then removed from the model. In cases where reactions with exogenous genes

carried flux, these were retained as orphan reactions, following optimization to ensure func-

tionality across the intended conditions.

4.2.3 Final quality control and quality analysis. A final quality assessment was executed

to guarantee correct GPR associations and successfully balanced metabolites and reactions. We

employed the COBRA and RAVEN Toolboxes for MATLAB [32,36] to perform in silico single

gene-deletion simulations (in silico gene knockouts) and check if the GPR associations are prop-

erly allocated. Later, we balanced all the reactions and assigned charges and chemical formulas

to all the metabolites in the models, verifying the consistency of the model through the Mass

and Charge Balance simulations of the COBRA Toolbox on the M-model. Unbalanced reac-

tions were fixed by adding the correct formula and charge of each metabolite. Stoichiometric

values assigned in every reaction were carefully reviewed and corrected for unbalanced reac-

tions. The final model was analyzed by seeking for ATP, NADH, and NADPH energy cycles

which generate free energy in the M-models, by removing media substrates (i.e., exchange reac-

tions lower bounds constraint to zero) and checking that they do not carry out any flux (zero

flux). Duplicate metabolites with different identifiers (i.e., redundant metabolites from different

template GEMs) were unified to avoid repeated metabolic reactions or pathways.

4.3 Constraints and growth simulations

We utilized experimental conditions from the literature to determine specific medium con-

straints of the M-model in different oxygen concentrations. For all the experimental growth

conditions, C and N uptake rates were calculated depending on the values obtained from

results in the literature. When oxygen uptake rate was not specified in the experiments, the

oxygen exchange flux was set to a maximum uptake rate value of 1000 and limited based on

the C and N substrate exchange rates. Under anaerobic conditions, oxygen consumption rate

was set to zero (i.e. oxygen lower bound set to zero). The constraints related to mineral

requirements were set based on the BOF estimations. Growth and internal fluxes simulations

were performed in the COBRA Toolbox for MATLAB using the FBA procedure and Gurobi

Optimizer Version 10.0.3 solver (Gurobi Optimization Inc., Houston, Texas). Mineral stoi-

chiometric coefficients in the BOF of the M-model were set utilizing multiple mineral compo-

sitions retrieved from the literature. Ammonium was used as the main N source for initial

model estimations under aerobic conditions. In absence of oxygen, ammonium was used as
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the principal N substrate and nitrate was additionally provided to replace oxygen as the main

electron acceptor. Acetate was set as the principal carbon source based on experimental reports

in different oxygen concentrations. Mineral uptake fluxes were determined based Subse-

quently, over 70 preliminary experimental growth conditions were retrieved from the litera-

ture to evaluate the model accuracy and active pathways in all the conditions (aerobic and

anaerobic conditions). We tested alcohol derivatives, amides, amines, amino acids and deriva-

tives, aromatic compounds, carbohydrates, and nucleotide derivatives as C substrates. In the

presence of oxygen, ammonium was set as the sole N nutrient for all C substrates. Besides the

C sources validation, we tested 11 organic (amino acids, amino compounds, and nucleotides)

and inorganic (ammonium, nitrate, and nitrite) N compounds. During N condition simula-

tions, acetate was used as the main C source. For experimental conditions with no specific

uptake rates or experiments with only qualitative results (growth or non-growth), the valida-

tion process was reduced to true positive, true negative, false positive, and false negative calls.

Furthermore, the model was validated utilizing GN2 Biolog plate results from Allen 2002 [16]

to determine the global accuracy of the phenotype predictions. Thauera sp. MZ1T could grow

in 46 C sources from the GN2 Biolog plates according to the results reported by Allen 2002

under aerobic conditions. Six out of the 46 C sources from these experimental results were not

integrated to the M-model due to the lack of evidence about the metabolic pathways in

Thauera sp. MZ1T to assimilate these compounds (α-ketovaleric acid, bromo succinic acid,

liaconic acid, mono-methyl succinate, Tween 40, and Tween 80). For C substrate assessment,

ammonium and phosphate uptake rates were not fixed to specific values. Statistical parameters

were estimated based on the comparison between the M-model simulations and the experi-

mental values. The model accuracy from the GN2 Biolog plates results was compared with the

in-silico predictions of other Thauera sp. MZ1T models to determine the quality of model sim-

ulations. Statistical parameters were calculated to determine model precision, accuracy, posi-

tive and negative predictions. Later, the experimental growth values were classified in three

categories based on the OD600 measurements of the GN2 Biolog plate results from Allen in

2002: high, medium, and low. The growth rates of the C sources with true positive predictions

were distributed in these three categories. The growth values predicted were z-score normal-

ized and sorted following the same three categories from the experimental measurements

(high, medium, and low). Based on the model estimations and the experimental results, we cat-

egorized the model classifications in three possible outcomes: correct estimation (coincidence

between the model prediction and the experimental classification), underestimation (the

model estimates a lower category), and overestimation (the model predicts a higher category).

We determined the flux distribution of the reactions per subsystem using the true positive pre-

dictions of the GN2 Biolog plates results. Only subsystems with active flux reactions at least in

one of the GN2 Biolog plate simulations were included in the analysis. The total flux activity per

subsystem was calculated for all the C substrates, and z-score normalized across all the growth

conditions to emphasize the flux activity changes. An in silico gene essentiality analysis was per-

formed to determine which genes are required for the growth of Thauera sp. MZ1T for the GN2

Biolog experimental conditions. We employed the single gene deletion algorithm from the

COBRA Toolbox to carry out the gene essentiality analysis. Every gene of the M-model was

deleted for every condition and the growth rate value was estimated through FBA after the gene

deletion (KO growth rate). All growth rate KOs were compared against the WT growth rate to

calculate the growth rate ratio. The genes of the M-model were classified depending on the

impact of the knockout on the growth rate value into three groups: non-essential genes, genes

with no impact on the growth rate on any of the conditions (growth rate ratio = 1); growth-reduc-

ing genes including the model genes with a negative effect in the growth rate (lower than WT

growth rate) on any of the growth conditions (1e-6< growth rate ratio< 1); and lethal genes
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comprising the genes that decrease the KO growth rate lower than 1e-6 (considering the tolerance

of the Gurobi Optimizer Solver) in all of the experimental conditions.

We evaluated the capacity of the M-model to predict the consumption of aromatic com-

pounds under aerobic and anaerobic conditions. The M-model was constrained to consume a

single aromatic substrate, ammonium as the sole N source, and all the essential minerals

required by Thauera sp. MZ1T under aerobic conditions. In the absence of oxygen, ammo-

nium was set as the N source and nitrate replaced oxygen as the main electron acceptor. Addi-

tionally, we determined the variation of the metabolic fluxes across the different subsystems in

the M-model to identify which subsystems are down and up-regulated using aromatic com-

pounds as C sources. A sampling analysis was executed using the true positive predictions of

the aromatic compounds under different oxygen concentrations. The sampling algorithm

from the COBRA Toolbox was employed to perform the sampling analysis. The ACHR sam-

pling algorithm was selected, and a total of 5,000 sample points were generated to capture flux

variations within the model. The sampling evaluation was performed only for optimal growth

values, calculating the internal metabolic fluxes for the maximum biomass production. The

sampling results were averaged across samples and compared against the acetate sampling flux

distributions through the Mann Whitney U test for aerobic and anaerobic conditions. This

non-parametric test allows for robust statistical comparisons without assuming normal distri-

bution of flux data, which enhances interpretability of the metabolic behavior in aerobic and

anaerobic conditions. We estimated the up-regulated and down-regulated subsystems per aro-

matic C source using the p-values of the Mann Whitney U test with acetate as the C substrate

reference. The p-values of the Mann Whitney U test were transformed using the logarithmic

transformation to highlight the most up-regulated and down-regulated subsystems. Subsys-

tems with less significant p-values were filtered out to maintain only the metabolic pathways

with substantial changes compared to the acetate flux distribution.

4.4 PHB and EPS in silico optimization

We assessed the accuracy of the M-model to predict the PHB production using the experi-

ments of Colpa in 2020 under aerobic N-limiting conditions with acetate as the sole C source

[12]. Ammonium was provided as N source with the essential minerals required for Thauera
sp. MZ1T growth. Different acetate:ammonium ratios were employed to determine the opti-

mal C:N proportion for PHB production. Colpa in 2020 tested 10 g/L of acetate and 0.6 g/L of

ammonium in a 10:1 C:N proportion (mol/mol) with an average PHB production of 50% con-

tent in cell dry mass. We performed a sensitivity analysis from 1:1 to 20:1 C:N ratios using ace-

tate and ammonium and evaluating a total of 20 scenarios by increasing the C proportion one

unit per simulation. PHB production was estimated using the internal flux of the reaction PHB

synthase from the M-model. The model was specifically constrained to ensure the production

of 50% PHB content and 50% cell dry mass.

Later, we measured the impact of different C substrates and C:N proportions (mol/mol) on

the production of PHB and six variants of EPS under different oxygen concentrations (pres-

ence or absence). The PHB contribution can achieve values from 15% up to 75% of the total

cell dry weight depending on the environmental conditions by Thauera and other relevant

PHB bacteria producers [57,59,60]. We averaged all the PHB production scenarios to deter-

mine the PHB contribution to the final biomass dry weight. We calculated the in silico yield of

PHB production (initially estimated as production rates in mmol/gDWh) considering an aver-

age contribution of 50% in the dry weight (i.e. 50% of biomass production). The yield per C

molecule was determined considering the number of carbon molecules present in the chemical

formula of each C substrate. The C:N ratios (mol/mol) were estimated considering the C
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contribution from the C substrate and the N contribution from ammonium and the C sub-

strate when N was part of the C source chemical composition (such as amides, amines, amino

acids, and nucleotides). The N contribution was estimated considering ammonium for the aer-

obic conditions and nitrate for the anaerobic simulations. The estimations were calculated

using only the positive predicted C sources from the GN2 Biolog plate experiments in presence

and absence of oxygen [16]. The same strategy was utilized to estimate the production per C

molecule of six variants of the EPS extracted from the diverse EPS factions characterized by

Allen in 2002 and 2016, with a 30% in the dry weight participation in the cell biomass [16,17].

The coefficients for the EPS precursors in each reaction were estimated using the precursor

fractions estimated by Allen in 2002 and 2016. The abundance values of each EPS precursor

were transformed to determine their contribution to the final EPS structure. The average EPS

dry weight participation was estimated considering that bacteria can excrete values from 15%

up to 45% of the total cell dry weight depending on the available nutrients and growth condi-

tions. The yield per C molecule for PHB and EPS was compared between the two oxygen sce-

narios, aerobic against anaerobic production. We performed a Principal Component Analysis

(PCA) using the yield of the polymers to identify the effect of the C source and C:N ratio

under aerobic and anaerobic conditions. The results of the PCA distributions were clustered

based on the C sources, C:N ratio values, and the oxygen concentration (presence or absence).

Ultimately, we evaluated the essential reactions involved in the production and efficiency of

PHB and EPS in Thauera sp. MZ1T. A reaction essentially analysis was executed to determine the

relevance of each reaction and the associated TMZ genes on the growth rate using the experimen-

tal conditions of GN2 Biolog plates in two oxygen scenarios (presence and absence). The pseudo

reactions created only for modeling purposes were not included in the single deletion analysis

such as exchange reactions. Reactions evaluated in the deletion analysis were classified based on

their GPR associations, generating two categories: 1) reactions with TMZ genes and 2) orphan

reactions. Every reaction of the M-model was deleted for every condition and the growth rate was

estimated through FBA after the reaction deletion. The reactions were grouped depending on the

impact of the reaction removed from the M-model on the growth rate value: non-essential reac-

tions (growth rate ratio = 1); growth-reducing reactions (1e-6< growth rate ratio< 1); and lethal

reactions (growth rate ratio< = 1e-6). Additionally, we identified the subsystems which the lethal

reaction belongs to under aerobic and anaerobic conditions. The biological role of the enzymes

related to the lethal reactions were determined based on the annotation of Thauera sp. MZ1T.
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