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Abstract

Motivation: Genome-wide association studies (GWAS) have identified genetic variants, usu-

ally single-nucleotide polymorphisms (SNPs), associated with human traits, including dis-

ease and disease risk. These variants (or causal variants in linkage disequilibrium with

them) usually affect the regulation or function of a nearby gene. A GWAS locus can span

many genes, however, and prioritizing which gene or genes in a locus are most likely to be

causal remains a challenge. Better prioritization and prediction of causal genes could reveal

disease mechanisms and suggest interventions.

Results: We describe a new Bayesian method, termed SIGNET for significance networks,

that combines information both within and across loci to identify the most likely causal gene

at each locus. The SIGNET method builds on existing methods that focus on individual loci

with evidence from gene distance and expression quantitative trait loci (eQTL) by sharing

information across loci using protein-protein and gene regulatory interaction network data.

In an application to cardiac electrophysiology with 226 GWAS loci, only 46 (20%) have

within-locus evidence from Mendelian genes, protein-coding changes, or colocalization with

eQTL signals. At the remaining 180 loci lacking functional information, SIGNET selects 56

genes other than the minimum distance gene, equal to 31% of the information-poor loci and

25% of the GWAS loci overall. Assessment by pathway enrichment demonstrates improved

performance by SIGNET. Review of individual loci shows literature evidence for genes

selected by SIGNET, including PMP22 as a novel causal gene candidate.

Author summary

A motivation for the Human Genome Project was to identify the genetic causes of dis-

eases. The first human genome was sequenced about twenty years ago, and since then
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genome-wide association studies (GWAS) have identified genetic variants that correlate

with many human traits, including disease and disease risk. Usually the GWAS variant

affects the regulation of the closest gene or the activity of its protein product, but about

20–30% of the time the effect involves another gene that can be hundreds of kilobases

away. We describe a new method, SIGNET, to identify which gene within each GWAS

locus is most likely to be causal. SIGNET uses within-locus information when it is available,

for example ‘gold-standard’ genes from family-based Mendelian studies, and adds

between-locus information from protein-protein and gene-regulatory interaction net-

works to create a holistic model of causal genes across all loci. In applications to cardiovas-

cular disease, we show better ability to identify relevant pathways and suggest new

candidate genes within several GWAS loci.

Introduction

The Human Genome Project was motivated by the goal of discovering the genetic basis of dis-

ease. A milestone draft sequence of a human genome was achieved about twenty years ago.

Genetic variation between individuals, primarily single-nucleotide polymorphisms (SNPs),

then provided a substrate for identifying variants that correlate with human traits, including

disease and disease risk. GWAS have used statistical analysis of large human cohorts to identify

SNPs that are associated with individual phenotypes. Understanding which gene in a GWAS

locus is responsible for the causal effect is a current challenge [1].

The challenge arises for two reasons. First, SNPs identified by a GWAS are statistical associ-

ations, not causal mechanisms. Linkage disequilibrium creates large blocks of correlated SNPs

or haplotypes. Methods that predict functional consequences of variants are helpful [2], but

often statistical measures are insufficient to distinguish which SNPs in a block are responsible

for a causal effect. Second, even among causal variants, only a small fraction occur in protein-

coding regions, and a small fraction of these cause amino acid changes that provide strong evi-

dence implicating a particular gene. At the majority of loci, the causal variants occur in inter-

genic regions thought to regulate the expression of nearby genes, but without direct evidence

from GWAS of which gene’s regulation is affected.

Connecting SNPs to causal mechanisms is important when considering approaches to pre-

vent or treat disease. A search for therapies often requires identifying a gene or protein target

whose activity can be perturbed by a small molecule or biologic, or in more recent approaches

by gene editing. The gene whose activity is affected directly by a GWAS SNP could be such a

target, and could identify a downstream pathway with additional targets.

A default approach is to select the gene closest to a GWAS SNP as most likely to be causal.

Many methods incorporate within-locus information to improve causal gene identification. A

gene within the locus may already be known to be responsible for Mendelian forms of similar

diseases or phenotypes, as recorded in databases such as OMIM [3]. Other methods use genet-

ics of gene expression, often obtained from the GTEx database [4], to identify genes that are

regulated by expression quantitative trait loci (eQTL) at the locus. One type of analysis, often

termed colocalization, is performed at the level of individual variants, identifying GWAS SNPs

that are also eQTL; methods include COLOC [5], ECAVIAR [6], EMAGMA [7], and ENLOC/FAS-

TENLOC [8, 9]. More recent studies have augmented expression cis-QTL with splicing cis-

QTL for improved predictions [10].

A second type of analysis, an example being PREDIXCAN [11], builds a genetic predictor of

gene expression to perform a transcriptome-wide association study, or TWAS. While
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colocalization and TWAS use similar or even identical data, the genes identified can be quite

different [12, 13]. Other methods use chromatin state as within-locus evidence [14, 15]. Many

QTL depend on cell type and developmental stage, however, and the cell type relevant to a par-

ticular disease may not be clear or may not be represented in GTEx or related databases. Fur-

thermore, even if the relevant cell types are known and data are available, a locus may remain

information poor. Our goal is to use evidence from information-rich loci to guide causal gene

selection at information-poor loci.

We highlight examples of previous efforts in this and related areas. An early effort by Mar-

cotte and coworkers used networks of functional associations (physical interactions aug-

mented with coexpression and other evidence) to boost GWAS signals for genes near SNPs

that may not have reached statistical significance. Bayes scores from GWAS were propagated

to generate scores for all genes in the genome [16]. This problem is distinct from our focus on

identifying the most likely gene at each locus given ample cohort sizes for statistical

significance.

Many integrative analysis methods identify the most relevant genes within the set of genes

with minimum distance to a GWAS SNP, generally equivalent to the mapped gene reported in

the GWAS Catalog [17], then use physical interactions to identify relevant genes within this

minimum distance set or interacting with them. A study by Ratnakumar et al. used such an

approach to suggest core genes for disease phenotypes, including both genes identified

through GWAS and genes associated through protein interactions [18]. In another study,

genes not identified as causal by GWAS but linked through protein interactions have been sug-

gested as drug targets [19].

Other methods have a similar goal to ours but with focus on a single type of data rather

than on principled integration of multiple types of evidence. Roth and coworkers used func-

tional association networks, including curated annotations, to select causal genes at GWAS

loci [20]. They discussed the possibility of information leakage through annotations; we

instead restrict our data sources to experimental data rather than annotated pathway member-

ship. A study of GWAS in maize was similarly focused on functional associations, in this case

from co-expression, rather than integration across data types [21]. It is also noteworthy in

demonstrating that the problem of selecting causal genes is not specific to human but is more

general across organisms.

Finally, methods to combine GWAS and non-GWAS data continue to use a simple set

intersection approach, reporting genes highly ranked by both methods, rather than developing

more systematic approaches. A study by Ferrari et al. used Mendelian genes as seeds in an

interaction network to define a disease network that was intersected with candidate genes at

GWAS loci [22]. A recent report by Finucane and coworkers calculated a polygenic priority

score (PoPS) as a regression fit for gene-based GWAS scores using non-GWAS features, pri-

marily gene expression data and protein interaction indicator functions [23]. Genes with

locally maximal regression scores were then intersected with genes with GWAS significance.

These prior studies highlight the continuing need to explore methods that provide a princi-

pled integration of GWAS results with other biological data to identify the most likely causal

genes at GWAS loci. The new method we describe, SIGNET for significance networks, focuses

on loci that reach genome-wide significance and uses machine learning to predict the most

likely causal gene within each locus. In addition to within-locus information such as distance

from the significant SNP, protein-coding variation, and colocalization with eQTL, SIGNET uses

between-locus interaction data: genes selected based on strong functional information at some

loci can influence the genes selected at other loci (Fig 1). The between-locus data sets we con-

sider are protein-protein interactions between gene products and gene-regulatory interactions

between transcription factors and target genes. These types of interactions are enriched among
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genes and proteins that participate in related biological processes or contribute to similar phe-

notypes [24–26]. We draw information across all loci by favoring genes that form regulatory

networks or signal transduction pathways with other selected genes. Stochastic block models

for interaction enrichment, which we have used previously to discover hierarchical structure

in biological networks [27, 28], here provide a principled framework to convert high-through-

put data and biological intuition into a computable and interpretable probability distribution

for identifying the most likely causal genes at GWAS loci.

Fig 1. SIGNET overview. Population cohorts (top) are genotyped and phenotyped in a genome-wide association study (GWAS). The study identifies genetic

variants, usually single-nucleotide polymorphisms (SNPs, indicated by vertical bars overlayed on double-stranded DNA), that are associated with the

phenotype at genome-wide significance. These SNPs occur throughout the genome, and each SNP defines a genomic region, or locus, that likely contains a

gene with a causal relationship with the phenotype. Each locus may contain several genes (arrows above and below the double helix indicate genes on the

positive and negative strand), and three loci are depicted. The SIGNET method integrates within-locus and between-locus information from DNA-based,

RNA-based, and protein-based evidence to select the most likely causal gene at each locus. Locus 1 (red): a SNP in a protein-coding region may change the

amino acid sequence of the encoded protein, indicated by the star overlaying the gene symbol and protein. Similarly, a gene in the region may be known to

cause a Mendelian disease related to the GWAS phenotype, indicated as a familial case. At this locus, the red gene is selected as most likely. Locus 2

(orange): a SNP may affect the transcriptional regulation of a nearby gene, indicated by the orange arrow from the SNP to the gene transcription start site.

The corresponding mRNA transcript may have altered abundance, indicated by the multiple transcripts. These SNPs are expression quantitative trait loci

(eQTL), and colocalization of a GWAS association with an eQTL association provides evidence for the most likely causal gene. Methods such as

transcriptome-wide association studies (TWAS) provide a similar type of evidence. Locus 3 (green): Many loci are information-poor, with no within-locus

evidence and a default approach of selecting the gene closest to the SNP. The SIGNET method adds between-locus information using a probability model for

the network formed by protein-protein interactions and gene-regulatory interaction of the genes selected at each locus. The green gene product interacts

with proteins encoded by genes selected at the other loci, and its causal likelihood is calculated to be higher than the other genes in the locus, including the

gene closest to the GWAS SNP.

https://doi.org/10.1371/journal.pcbi.1012725.g001
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We have applied this method to cardiac electrophysiology, chosen based on the availability

of recent large GWAS and scientific expertise to evaluate prioritized genes. We describe how

our predictions differ from closest-gene predictions and compare them with other available

methods. Finally, we suggest possible extensions that incorporate additional types of evidence

and that permit multiple causal genes at a single locus.

Materials and methods

Genome-wide association data

Genome-wide association data sets were downloaded from the GWAS Catalog [17]. Based on

our ongoing participation in GWAS for cardiac electrophysiology [29], we selected electrocar-

diogram (EKG) parameters PR interval [30], QT interval [31], QRS interval [32], and JT inter-

val [33] for analysis. We also included heart rate (HR) [34], which is used to correct the EKG

parameters. Associations at the conventionally accepted p-value of 5 × 10−8 for genome-wide

significance were retained. We mapped rsIDs to human genome assembly GRCh38.p13

released on July 2014 on Ensembl. Transcription start sites (TSSs) of each annotated gene were

also obtained from the GRCh38.p13 assembly.

We created candidate regions, termed ‘GWAS loci’ throughout, by mapping each SNP to

all protein-coding genes whose TSS was within a maximum distance D from the SNP. If no

gene was found within the flanking region, we extended the distance to include the closest

gene. Next, we aggregated SNP regions sharing at least one gene into a candidate locus. We

used a distance D = 250 kb for our analysis and ascertained that results were not overly sensi-

tive to smaller and larger values of D (see Results).

Within-locus functional evidence: Mendelian genes, protein-coding

variants, and colocalization

Exome chip data sets were collected for QT and JT intervals [35]. The protein-coding variants

reported to reach genome-wide significance were retained.

Colocalization between a GWAS locus and cis-expression QTL (cis-eQTL), from the COLOC

method [5], allows us to infer shared causal signals between the GWAS trait and the expression

of nearby genes for each locus. For each genome-wide significant locus in at least one of the

GWAS mentioned above, COLOC was applied for all genes for which the sentinel GWAS SNP

was a genome-wide eQTL in heart tissues, specifically the Atrial Appendage and Left Ventricle,

in GTEx v8 [4]. The COLOC with the Approximate Bayes Factor method was then run jointly

between the GWAS and each eQTL gene-tissue pair including all SNPs in the region ±500 kb

from the sentinel GWAS SNP that were also within 1 Mb of the gene TSS in that tissue. The

COLOC parameters were set to recommended values of p1 = 10−4, p2 = 10−4, and p12 = 10−6.

Despite the larger flank distance of 1 Mb for COLOC versus 250 kb for building GWAS loci, all

genes identified by COLOC were within the GWAS loci.

Mendelian genes were gathered from OMIM [3] for these cardiovascular phenotypes: Bru-

gada syndrome (BRGDA), Catecholaminergic polymorphic ventricular tachycardia (CPVT),

Jervell and Lange-Nielsen syndrome (JLN), Long QT, Short QT, Sick sinus syndrome (SSS),

and Wolff-Parkinson-White (WPW). While many Mendelian genes occurred within previ-

ously defined GWAS loci, several Mendelian genes occurred outside GWAS loci. These genes

were retained by defining new single-gene loci. The GWAS loci together with the singleton

Mendelian loci are termed the ‘total loci’.
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Cross-locus interaction evidence: Protein-protein and gene-regulatory

interactions

We collected 236,584 Protein-Protein Interactions (PPI) from the Integrated Interactions

Database [36], where we used the experimental and orthologous interactions in the 2021-05

version of the dataset. Interactions were treated as unweighted, undirected edges in a graph

whose vertices represented proteins. Gene symbols and protein identifiers were mapped to

each other using UniProt release 2015_06 [37]. Gene regulatory interactions (GRI) between

transcription factor (TF) proteins and their targets were obtained from the TRRUST v2 data-

base [38], with 8444 regulatory interactions for 800 TFs in humans. Interactions were treated

as unweighted, directed edges in a graph whose vertices represented transcription factor

sources and targets.

Bayesian model selection

The probability distributions we consider couple together the observed data at individual loci

with protein-protein and gene-regulatory interactions that cross between loci. We introduce

notation L to represent the set of GWAS loci, with cardinality L = |L|, and similarly M to repre-

sent the set of singleton Mendelian genes falling outside GWAS loci, with cardinality M = |M|.

The number of genes within locus l is Nl; the number of genes in GWAS loci is G,

G ¼
X

l2L

Nl; ð1Þ

and the total number of genes is G + M. Mendelian genes that are within GWAS loci are

counted in G, not in M. An allowed configuration selects a single causal gene at each locus,

termed the active gene. At a singleton Mendelian locus, the singleton Mendelian gene is always

the active gene.

The active gene at locus l is denoted al. The configuration defined by the set of active genes

{al} is denoted a. The set of active genes a defines a complementary set of inactive genes bl for

locus l. The set of all inactive genes is termed b, with

b ¼ [L
l¼1
bl; ð2Þ

the union of the sets of inactive genes across all the loci. With the constraint of a single active

gene at each locus, the total number of active genes must always equal the total number of loci,

jaj ¼ LþM: ð3Þ

The number of inactive genes is similarly fixed,

jbj ¼ G � L: ð4Þ

We often omit b in notation because this set is defined by a.

Our goal is to identify the configuration of active genes a that is most likely given the

observed data D. The total number of possible configurations is
QL

l¼1
Nl, which grows combi-

natorially large with the number of GWAS loci. These configurations are assumed to follow a

probability distribution, denoted Pr(a|D). For non-trivial probability distributions, identifying

the optimal configuration is an NP-hard problem.

To make progress, we use Bayes law,

PrðajDÞ ¼ PrðDjaÞPrðaÞ=PrðDÞ: ð5Þ

The total data set D comprises individual data features, D� {Df}. These features, denoted f,
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include within-locus real-valued features (the distance of a gene to a GWAS SNP), within-

locus binary features (indicators for genes with Mendelian, exome, or colocalization evidence),

and between-locus features (presence or absence of protein-protein or gene-regulatory inter-

actions between pairs of genes and gene products). Formally,

PrðDjaÞ � PrðfDfgjaÞ: ð6Þ

We make a simplifying naïve Bayes assumption of data independence,

PrðfDfgjaÞ �
Y

f

PrðDf jaÞ: ð7Þ

We explore co-occurrence of features to support the rationale for the naïve Bayes assumption

(see Results).

We assumed a uniform prior, with each configuration having equal probability,

PrðaÞ ¼
QL

l¼1
1=Nl. The probability of the data Pr(D) is independent of the configuration a.

The score S(a) of configuration a is defined as the log-likelihood ignoring these constant fac-

tors,

SðaÞ � ln
Y

f

PrðDf jaÞ ¼
X

f

ln PrðDf jaÞ ¼
X

f

Sf ðaÞ: ð8Þ

The probability distributions defining the scores have parameters that are shared across

loci. These parameters are optimized using likelihood maximization, as described below.

Distance score

The distance score SDist uses a parametric probability distribution to represent the observation

that genes closer to a GWAS SNP are more likely to be causal. In the absence of other evidence,

a weak effect is sufficient to bias selection of the closest gene. We therefore used an exponential

decay for this probability distribution. Defining x as the distance from a gene’s transcription

start site to the closest GWAS SNP, and x = 0 for singleton Mendelian genes, the distance

score is

SDistðxÞ � ln
1

2g
exp ð� jxj=gÞ

� �

: ð9Þ

The multiplier 1/2γ is the standard factor ensuring normalization,

Z 1

� 1

dx exp ½SDistðxÞ� ¼ 1: ð10Þ

The contribution of active genes to the distance score is therefore

SDistðaÞ ¼
X

i2a

� ln ð2gÞ � jxij=g: ð11Þ

The value of γ was updated at the end of each pass using maximum likelihood estimation,

which requires (d/dγ)SDist(a) = 0. The expression for the derivative yields the update

g ¼
1

L

X

i2a;i=2M

jxij: ð12Þ

Note that singleton Mendelian genes are excluded from contributing to the distance score

update.
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Let |bl| represent the number of inactive genes for locus l. The score for the inactive genes is

represented by a uniform distribution,

SDistðbÞ �
1

jblj
: ð13Þ

We consider a baseline where all the genes are inactive. Thus if we change a single gene

from inactive to active, the score difference is SDist(a) − SDist(b). Since the score of inactive

genes does not affect the relative gene scores of a locus, it is omitted from subsequent gene

score calculation.

Functional scores: Mendelian, exome, and colocalization evidence

The three categories of functional evidence (genes with evidence from Mendelian studies,

exome variation, and colocalization) were treated individually with parameters αf and βf, with f
2 {Mendelian, Exome, Colocalization}:

Prðhas featurejnot activeÞ ¼ a Prðlacks featurejnot activeÞ ¼ 1 � a

Prðhas featurejactiveÞ ¼ b Prðlacks featurejactiveÞ ¼ 1 � b:
ð14Þ

For each locus, we introduce a fixed baseline score corresponding to all genes inactive,

S0 ¼ H ln aþW ln ð1 � aÞ; ð15Þ

where H is the number of genes having the feature and W is the number without the feature. If

a gene having the feature is selected as active, the locus contributes a feature score ln(β/α); if a

gene without the feature is selected as active, the locus contributes a feature score of ln[(1 − β)/

(1 − α)]. We combined these into a single score equal to 0 if a gene without the feature is active

and a score

Sf ¼ ln
b

a

� �

� ln
1 � b

1 � a

� �

ð16Þ

if a gene with the feature is active.

At the end of each pass, the score Sf was updated for each categorical feature by maximizing

the likelihood,

Prðfn00; n01; n10; n11gja; bÞ ¼ ð1 � aÞ
n00ð1 � bÞ

n01an10b
n11 ; ð17Þ

where n00 is the number of inactive genes without the feature, n01 is the number of inactive

genes with the feature, n10 is the number of active genes without the feature, and n11 is the

number of active genes with the feature. We excluded the singleton Mendelian genes from

these counts, giving a total count equal to the number of GWAS loci, n00 + n01 + n10 + n11 = L.

As is often done, we added a pseudocount of 1 to each number to avoid undefined values.

Parameters were updated by maximization with respect to α and β,

Sf ¼ ln
n11 þ 1

n10 þ 1

� �

� ln
n01 þ 1

n00 þ 1

� �

: ð18Þ

Degree-corrected network score

Many networks, including biological networks, such as protein-protein interaction (PPI) net-

works and gene-regulatory interaction (GRI) networks, have skewed degree distributions:
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some genes and proteins have many interactions, while others have few. We developed a

degree-corrected network score to evaluate evidence based on a model in which interactions

between active genes and proteins may be enriched relative to the null expectation.

For each type of network, denoted as net 2 {PPI, GRI}, we counted the total number of

interaction edges among the L + M active genes and their gene products, here including single-

ton Mendelian genes. Denoting the number of observed edges as E, we defined the log-likeli-

hood ratio Λnet(E) for each network as

LnetðEÞ ¼ ln
PrðEjaltÞ
PrðEjnullÞ

� �

; ð19Þ

calculated separately for net = PPI and net = GRI. The alternative and null distributions have

slightly different forms for the PPI and GRI networks because PPI interactions are generally

modeled as undirected edges between interaction partners and GRI interactions are modeled

as directed edges from transcription factor protein to target gene.

For the PPI network, edges are unweighted and undirected. Self-edges are ignored for two

reasons. First, some technologies have difficulty identifying self-edges reliably. Second, meth-

ods that favor edge enrichment can create a bias in favor of selecting genes with self-edges.

The number of pairwise interactions among the L + M active proteins (here including the

singleton Mendelian genes) is defined as E. Under the alternative hypothesis, the presence or

absence of each edge is modeled as an independent, identically distributed binary random var-

iable with success probability θ. The total number of pairs of active genes is denoted T, with

T ¼ ðLþMÞðLþM � 1Þ=2: ð20Þ

The probability of the observed count, conditioned on θ, is

PrðEjyÞ ¼
T!

E!ðT � EÞ!
y
E
ð1 � yÞ

T� E
: ð21Þ

The probability under the alternative hypothesis is obtained by integrating θ from 0 to 1,

PrðEjaltÞ ¼
Z 1

0

dy PrðEjyÞ ¼
1

T þ 1
; ð22Þ

a constant independent of the configuration.

The null hypothesis accounts for the vertex degrees by using the network defined by all G +

M genes to define an effective θ0, or equivalently an effective E0� Tθ0. For the network defined

by all genes G + M (here using all genes rather than just the active subset), let Etot represent the

total number of pairwise interactions and di the degree, or number of interaction partners, of

protein i.
To build the null expectation, we use a standard degree-corrected interaction probability

for proteins i and j. The Etot edges have 2Etot total endpoints. The probability that an edge with

one endpoint at i has its other endpoint at j is therefore approximately dj/2Etot, with relative

error on the order of dj/Etot. The probability that none of the di edges from i ends at j is approx-

imately

Prðno edgeÞ � 1 �
dj

2Etot

� �di

� exp �
didj

2Etot

� �

: ð23Þ
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The probability of at least one edge between i and j is

PrðedgeÞ � 1 � exp �
didj

2Etot

� �

�
didj

2Etot
; ð24Þ

with error terms on the order of (didj/2Etot)
2. Therefore, provided that vertex degree products

are smaller than the total number of edges, didj/2Etot provides a degree-corrected edge proba-

bility. Note that these terms can be calculated once at the start of run and factorize conve-

niently. Therefore, after defining the GWAS and Mendelian loci with G + M total genes and

Etot interactions, we define

di �
diffiffiffiffiffiffiffiffiffi
2Etot

p ð25Þ

and store these values. Then, for the L active genes at GWAS loci and additional M singleton

Mendelian genes, for convenience numbered i 2 1, 2, 3, . . ., L + M, the expected number of

edges under the null is

E0 ¼
XLþM

i¼1

XLþM

j¼iþ1

didj: ð26Þ

We then use the standard limiting form of the binomial distribution as a Poisson distribution,

PrðEjnullÞ ¼ PrðEjE0Þ ¼ ðEE
0
=E!Þexp ð� E0Þ.

The log-likelihood ratio for the PPI network is therefore

LPPIðEÞ ¼ ln
E!exp ðE0Þ

ðT þ 1ÞEE
0

� �

¼ lnGðEþ 1Þ � E ln E0 þ E0 � ln ðT þ 1Þ: ð27Þ

The term Γ(E + 1) is the standard Γ function, with Γ(k + 1) = k!. While we do not use Stirling’s

approximation, substituting the approximation that Γ(E + 1)� E ln E − E yields the log-likeli-

hood equivalent to a maximum-likelihood estimator,

L
ML
PPIðEÞ � E ln ðE=E0Þ � ðE � E0Þ � ln ðT þ 1Þ: ð28Þ

The minimum value of ΛPPI(E) occurs close to E = E0, and for L
ML
PPIðEÞ occurs exactly at E = E0.

The network score ΛPPI(E) favors deviations of edge counts in both directions, enriched

(the expected direction) and depleted. To avoid convergence to an edge-depleted state that

may be a local optimum but is unlikely to be a global optimum, we define the network score

SPPI(E) to favor edge enrichment over edge depletion:

SPPIðEÞ ¼ LPPIðE0Þ þ sgnðE � E0ÞjLPPIðEÞ � LPPIðE0Þj; ð29Þ

where sgn(x) is the sign function, +1 for positive x, −1 for negative x, and 0 for zero-valued x.

The value of the log-likelihood ratio ΛPPI(E) at E = E0 from Eq 27 is used as a baseline, and the

magnitude of the difference between the calculated value and the baseline value is added for

edge enrichment (E> E0) and subtracted for edge depletion (E< E0).

The GRI network score uses a directed, unweighted, degree-corrected network model that

yields results that are similar to the PPI network results, except that in-degree and out-degree

are considered separately. Variables and parameters for the GRI network are distinguished

from similar PPI notation by appending a 0 character. The total number of edges in the

observed network is denoted E0, and the total number of possible edges, excluding self-edges
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as with the PPI network, is

T 0 ¼ ðGþMÞðGþM � 1Þ: ð30Þ

The log-likelihood under the alternative hypothesis is

PrðE0jaltÞ ¼
Z 1

0

dy0 PrðE0jy0Þ ¼
1

T 0 þ 1
: ð31Þ

Under the null hypothesis, the probability of an edge from vertex j to vertex i, denoted edge

ij, is degree-corrected:

Prðedge ijÞ �
d0i;ind

0
j;out

E0tot
: ð32Þ

These degrees are calculated from the entire network of all G + M genes at all loci, with d0i;in as

the in-degree of vertex i, d0j;out as the out-degree of vertex j, and E0tot as the total number of edges

between all pairs of G + M genes at all L + M loci. After the loci are defined, degree-corrected

parameters are calculated once at the beginning of the run:

d
0

i;in �
d0i;in
ffiffiffiffiffiffiffi
E0tot

p ð33Þ

d
0

j;out �
d0j;out
ffiffiffiffiffiffiffi
E0tot

p : ð34Þ

Then, following the same approach as for the PPI network, the score for the GRI network,

SGRI(E0), is calculated as follows:

E0
0
¼

XLþM

i¼1

XLþM

j6¼i;j¼1

d
0

i;ind
0

j;out ð35Þ

LGRIðE0Þ ¼ lnGðE0 þ 1Þ � E0 ln E0
0
þ E0

0
� ln ðT 0 þ 1Þ ð36Þ

SGRIðE0Þ ¼ LGRIðE00Þ þ sgnðE
0 � E0

0
ÞjLGRIðE0Þ � LGRIðE00Þj: ð37Þ

As noted above, computational time is reduced by pre-calculating the δi values for the PPI

network and the d
0

i;in and d
0

j;out values for the GRI networks. We considered three additional

performance enhancements. First, rather than calculating E0 and E0
0

by summing over all pairs,

it is possible to sum first and then subtract off self-terms:

E0 ¼
1

2

XLþM

i¼1

di

" #2

�
1

2

XLþM

i¼1

d
2

i ð38Þ

E0
0
¼

XLþM

i¼1

d
0

i;in

" #
XLþM

j¼1

d
0

j;out

" #

�
XLþM

i¼1

d
0

i;ind
0

i;out: ð39Þ

Second, many configurations are revisited over multiple passes. The set of genes in a config-

uration can be used as a key to store the network score the first time a configuration is

observed and then to retrieve the cached score if it is visited again. For further efficiency, the
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set of genes can be limited to genes that have non-zero vertex degree for the network type.

Caching is particularly valuable for the sparse GRI network.

A third performance improvement, when visiting a particular locus, is to pre-calculate the

observed and expected edge counts within all the other loci (again with caching), and then to

only consider the new observed and expected edge counts from the locus being visited to the

other L + M − 1 loci. We implemented the first and second improvements, which gave ade-

quate performance.

Initialization, sampling, and convergence

The active network is initially configured by selecting the most plausible causal gene at a locus

as the selected gene. Mendelian genes are given the highest priority, followed by exome-chip

and then colocalized genes. If a locus has no genes with functional evidence, the gene with the

minimum distance is selected as the causal gene. Thus, our initial network configuration pro-

vides a baseline upon which SIGNET improves. We then performed 100 independent runs, each

pass traversing each locus in a random permuted order. For locus l, the active genes at all other

loci are frozen, and we calculate the score Si for each gene i of the Nl genes within locus l as the

active gene al,

Si ¼ SDistance þ SMendelian þ SExome þ SColocalization þ SPPI þ SGRI: ð40Þ

We define the weight wi as the probability of gene i at locus l being active,

wi ¼
exp ðSiÞ

PNl
j¼1
exp ðSjÞ

: ð41Þ

We record the weights for each gene, {wi}, set the active gene at the locus to be the gene m with

the maximum score, al = m, and proceeded to the next locus. If genes had tied scores, one is

selected at random. At the end of each pass, probability distribution parameters are updated as

described above. Runs continue until the set of active genes is unchanged. Since parameter val-

ues are updated based on active genes, this implies that the parameters are also unchanged. At

the end of each of the 100 runs, we recorded the final, converged value of wi for each gene and

then computed the overall mean of wi over the 100 runs. We also computed the frequency that

each gene was selected as the active gene, again averaged over the 100 runs.

Note that the selection frequency can be different from the gene weight. If a gene has a

weight above 0.5, it will always be selected, leading to a selection frequency of 1. An alternative

to our greedy approach would be a Gibbs sampler, selecting the new configuration according

to the gene weights. Gibbs samplers are appropriate when transitions between high-scoring

configurations are frequent. Our greater concern is trapping in the region of one particular

high-scoring configuration with rare transitions to other high-scoring configurations, and

therefore we assessed convergence of the greedy sampler over multiple random restarts (see

Results). Furthermore, we tested the performance of SIGNET when the active network was ini-

tialized at random. For each run, the active genes were initialized by selecting one gene uni-

formly at random from each locus. We then performed 100 passes, each pass traversing each

locus in a random permuted order (see Results).

Gene selection by SIGNET, SIGNET+, and MINDIST

We define the SIGNET gene list as the single gene selected most often by SIGNET over the 100

runs. Some loci contain multiple genes with functional evidence, including loci with multiple

Mendelian genes. To avoid the limitation of selecting a single gene at these loci, we define the
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SIGNET+ gene list as the union of the SIGNET genes with the set of genes with any functional evi-

dence from Mendelian studies, exome chips, or colocalization analysis. The MINDIST method

is a baseline approach of selecting the single gene within a locus with minimum distance from

its transcription start site to the closest GWAS SNP.

We performed analysis over the full set of loci and over an information-poor set of loci,

defined as loci lacking any genes with functional evidence. For the information-poor loci, SIG-

NET and SIGNET+ are necessarily equivalent.

Implementation and performance

The SIGNET method was implemented in Python with standard open-source libraries. The

GRAPHVIZ library was used for graph drawing [39, 40] and the Fruchterman-Reingold force-

directed placement algorithm was used for graph layout [41]. Computation time on a 2.9 GHz

CPU, 32 GB memory, for the traits considered here was 15–20 sec per run, or about 30 min for

the entire results. The SIGNET software with documentation for installation and use is available

under the BSD 2-Clause Simplified License at https://github.com/joelbaderlab/signet_v1 and

from Zenodo under DOI 10.5281/zenodo.12774442 at https://zenodo.org/doi/10.5281/

zenodo.12774442 [42].

Results

Cardiac electrophysiology GWAS loci

GWAS summary data sets were downloaded from the NHGRI-EBI GWAS Catalog [17] for

the most recent studies of the following electrocardiogram (EKG) parameters: PR interval

[30], QT interval [31], QRS interval [32], JT interval [33], and heart rate (HR) [34]. Studies

except JT were *99% European ancestry cohorts. For JT, the ancestry was 63% European,

21% Hispanic/Latino, and 16% African American. Single-nucleotide polymorphisms (SNPs)

were selected if the reported p-value was 5 × 10−8 or below (Table 1).

Exome-chip data from a recent study of 95,626 individuals from 23 cohorts identified 45

loci associated with ventricular repolarization, of which six were novel for QT, and four were

novel for JT, implicating a total of 12 genes [35].

The phenotypes under study have 345 significant GWAS SNPs. With a flank distance of

250 kb, and merging loci with shared genes, the resulting network had 226 loci and 1165

genes. To assess robustness, we also constructed loci using 125 kb flanks and 500 kb flanks

Table 1. Cardiovascular GWAS data.

Phenotype GWAS Genes

Cohort size SNPs Exome Colocalized

JT 71,857 69 9 -

QRS 60,255 73 - 4

PR 92,340 44 - 11

QT 70,389 98 3 15

HR 134,251 86 - 12

Total unique 345 12 38

GWAS cohort size and number of SNPs for electrophysiology phenotypes. The number of genes with Exome and Colocalization evidence associated with each

phenotype is also stated.

https://doi.org/10.1371/journal.pcbi.1012725.t001
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(Table 2). While the median locus width and number of genes per locus increase proportion-

ally with the two-fold changes in flank size, the number of loci changes only by about 10%.

Functional evidence

In addition to functional evidence from exome-chip data, functional evidence was also gath-

ered from colocalization of GWAS signals with cis-eQTL using COLOC. Colocalization of

GWAS signals with cis-eQTL in heart tissue identified 38 genes, with some identified in multi-

ple phenotypes (Table 1). Mendelian genes for heritable forms of arrythmia were obtained

from the Online Mendelian Inheritance in Man (OMIM) database [3]. Alleles were collapsed

onto 31 single genes, with some genes linked to multiple phenotypes (Table 3). The 31 genes

with Mendelian evidence, 12 genes with exome-chip evidence, and 38 genes with colocaliza-

tion evidence had little overlap with each other and mapped to 75 unique genes with functional

evidence. Of the 31 Mendelian genes, 12 were in GWAS loci. The 19 remaining genes were

added as single-gene loci to yield 245 total loci.

We analyzed the overlap of genes with functional evidence, restricted to the 1165 genes in

GWAS loci, excluding the Mendelian genes without GWAS evidence (Table 4). While the

overlap between Mendelian genes and exome genes is significant (p = 3.1 × 10−6), the number

of genes with this shared evidence is small, only 4. The number of genes with other types of

Table 2. Cardiovascular GWAS loci.

Flank distance 125 kb 250 kb 500 kb

Number of GWAS loci 240 226 210

Locus width, median 204 387 856

Genes, total 693 1167 2034

Genes per locus, median 2 3 7

Summary statistics for networks of GWAS loci constructed with flank distances of 125, 250, and 500 kb.

https://doi.org/10.1371/journal.pcbi.1012725.t002

Table 3. Cardiovascular Mendelian genes.

Phenotype Genes

LongQT 18

BRGDA 9

ShortQT 6

CPVT 5

SSS 2

JLN 2

WPW 1

Total unique 31

Mendelian genes in GWAS 12

Singleton Mendelian genes 19

Mendelian genes linked to cardiovascular function were included in our analysis. The number of genes for each

phenotype is shown. Abbreviations: BRGDA = Brugada syndrome, CPVT = Catecholaminergic polymorphic

ventricular tachycardia, JLN = Jervell and Lange-Nielsen syndrome, SSS = Sick sinus syndrome, WPW = Wolff-

Parkinson-White.

https://doi.org/10.1371/journal.pcbi.1012725.t003
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shared evidence is also small. The small number of genes with shared evidence supports the

naïve Bayes approach to treat these different types of evidence as independent.

Robust convergence to a network of selected genes (SIGNET and SIGNET+)

Final active networks were obtained for 100 independent runs starting from a ‘best guess’ ini-

tialization favoring genes with stronger functional evidence and defaulting to the minimum

distance gene in loci without functional evidence. The runs required a median of 6 passes to

converge, and the final active genes were identical across all 100 runs for 210 of the 245 loci.

Frequencies of selected genes are therefore strongly peaked at 0 and 1 (Fig 2). Only 51 of the

1167 genes in GWAS loci had selection frequencies between 0.1 and 0.9. The gene weights

defined by Eq (41) are similarly peaked at 0 and 1. Selecting the most likely gene at each locus

causes the selection frequencies to be peaked more strongly than the gene weight; a Gibbs sam-

ple would give a selection frequency more similar to the gene weight. Results from these runs

are available as S1 Table with table columns defined in S2 Table.

Since a major purpose of a Gibbs sampler is to explore more regions configuration space,

we assessed the importance of the initial configuration by performing 100 runs with the initial

active genes selected uniformly at random within each locus, rather than the best guess initiali-

zation. Compared with the genes that were selected for the 100 runs with the best guess initiali-

zation, the same gene was selected at 232 of the 245 loci. For the remaining 13 loci, the random

initialized networks select the same gene as the candidate gene of the best guess initialization

but for less than half of the runs. We used best guess initialization thereafter because it gave

faster convergence.

Final parameter values had little dispersion across the 100 independent runs (Table 5). The

distance parameter increased from 148.0 kb from the ‘best guess’ initialization, which selected

the closest gene at information-poor loci, to a final value of 161.3 ± 0.9 kb. The Mendelian and

Exome scores show no dispersion because the numbers of Mendelian and Exome genes

selected were identical at the end of each run. The exponentials of the scores for special fea-

tures can be interpreted as odds for selecting a gene with the feature, other evidence being

equal: 15× for Mendelian evidence, 55× for Exome evidence, and 11× for Colocalization evi-

dence. While the lower odds for Mendelian evidence may be surprising, the explanation is

simple: two loci had two Mendelian genes each, preventing two Mendelian genes from being

selected and lowering the Mendelian score (see below).

Table 4. Functional evidence.

Category Number of genes

Mendelian 12

Exome 12

Colocalized 38

Intersection Genes Count P-value

Mendelian–Exome KCNH2 KCNQ1 SCN10A SLC4A3 4 3.1 × 10−6

Mendelian–Colocalized KCNJ5 SCN10A 2 0.056

Exome–Colocalized SCN10A 1 0.33

Mendelian–Exome–Colocalized SCN10A 1 0.0040

Genes are restricted to those within the 226 GWAS loci defined with 250 kb flanks and exclude the 19 additional

singleton Mendelian genes. Significance tests for the number of genes in two categories are from Fisher exact tests

and for three categories are from a binomial test.

https://doi.org/10.1371/journal.pcbi.1012725.t004
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We examined the robustness of these estimated parameters by running SIGNET once on

each of 100 subsets of 80% of the loci, selected uniformly at random, and comparing the final

parameters with the values obtained for the 100 random restarts using the full data (Table 5).

The distance parameters agree within the sampling standard deviation, as do the scores for

Mendelian genes and co-localized genes. The score for genes with exome evidence are smaller

for the 80% subsets, 3.7±0.2 versus 4.0±0.0 for the full data. This difference is due to our use of

pseudocounts, which bias the scores towards 0 for smaller data sets. In the full data of 226

GWAS loci, 1167 total genes, and 12 genes with exome evidence, each exome gene was always

selected (see GWAS loci with exome-chip or colocalization evidence). The exome score for the

Fig 2. Selection frequency: Fraction of SIGNET runs where a gene was selected as the active gene within its locus, averaged

over 100 runs. Gene weight: Bayesian scores expressed as gene weights, as defined by Eq (41), averaged over final values from

the same 100 runs.

https://doi.org/10.1371/journal.pcbi.1012725.g002

Table 5. Parameter values.

Parameter Initial value, full data Final value, full data Final value, 80% subsets

γ 148.0 kb 161.3 ± 0.9 kb 158.8 ± 10 kb

SMendelian 2.7 2.7 ± 0.0 2.6 ± 0.3

SExome 4.0 4.0 ± 0.0 3.7 ± 0.2

SColoc 2.7 2.4 ± 0.1 2.4 ± 0.2

Initial values are from ‘best guess’ selection of the active gene at each locus. Final values for the full data provide the standard deviation for 100 independent runs with

random restarts. Final values for 80% subsets provide the standard deviation for performing one run on each of 100 subsets of 80% of the loci selected uniformly at

random.

https://doi.org/10.1371/journal.pcbi.1012725.t005
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full data was therefore ln[(12 + 1)/(0 + 1)] − ln[(214 + 1)/(941 + 1)] = 4.04. If all gene counts

are reduced proportionally in the 80% subsets, we expect an exome score of approximately ln

[(9.6 + 1)/(0 + 1)]−ln[(171.2 + 1)/(752.8 + 1)] = 3.84. Thus, reducing from the full data to 80%

of the data accounts for much of the difference between the full data and the smaller subsets.

We separately examined the ability to recover genes whose functional information was hidden;

see Importance of functional information.

We next examined the selection of genes based on functional evidence, analyzed in terms of

loci (Table 6) and in terms of genes (Table 7). If a locus has a gene with functional evidence,

that gene is usually selected. Of the 56 genes with any functional evidence (highest evidence 10

Mendelian, 8 exome, 28 colocalized), 44 were the selected gene. Of the 12 genes with func-

tional evidence that were not selected, 10 were in loci where the selected gene did have func-

tional evidence. There were only two cases in which a gene with functional evidence (in both

cases colocalization) was passed over in favor of a gene without functional evidence. At a locus

where VPS29 was colocalized, ATP2A2 (the minimum distance gene) was selected, and at a

locus where DDX17 was colocalized and SUN2 was the minimum distance gene, JOSD1 was

selected.

Finally, we examined selection of genes as a function of distance from the closest GWAS

SNP (Fig 3), comparing genes selected by minimum distance to the SNP, by best guess initiali-

zation, and by SIGNET. Signed distances were calculated relative to the transcription start site,

using the maximal gene boundary for genes with multiple reported transcription starts. Nega-

tive distances correspond to SNPs that are located 50 relative to the start site on the sense

strand. Genes with exome evidence usually have closest SNPs within the gene body,

Table 6. Selection of genes by level of information at the GWAS locus.

Highest level of information in locus Number of loci Number of genes selected

Mendelian Exome Coloc Mindist None

Mendelian 10 10 0 0 0 0

Exome 8 - 8 0 0 0

Coloc 28 - - 26 1 1

None 180 - - - 124 56

Total 226 10 8 26 125 57

Number of genes selected: the selected gene is counted once in the category corresponding to the highest level evidence in the order Mendelian, Exome, Colocalization,

MinDist, and None. Thus a gene that is Mendelian and colocalized is counted in the Mendelian column.

https://doi.org/10.1371/journal.pcbi.1012725.t006

Table 7. Selection of genes by level of information for the gene.

Highest level of information for gene Number of genes This gene selected Other gene selected

Mendelian Exome Coloc Mindist None

Mendelian 12 10 2 0 0 0 0

Exome 8 8 0 0 0 0 0

Coloc 36 26 1 1 6 1 1

Mindist 200 125 3 2 13 0 57

None 911 57 73 58 174 206 343

Other gene selected: the selected gene is counted once in the category corresponding to the highest level evidence in the order Mendelian, Exome, Colocalization,

MinDist, and None. Thus a gene that is Mendelian and colocalized is counted in the Mendelian column.

https://doi.org/10.1371/journal.pcbi.1012725.t007
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corresponding to positive distances. In general, all three distributions are peaked at distance 0

and then decrease. Best guess and SIGNET have distributions that are shifted somewhat more

outward, with functional evidence favoring more distant genes over the minimum distance

gene. The learned distribution decays less rapidly because of GWAS loci in gene deserts, where

the minimum distance gene may be quite far from the SNP.

To avoid losing genes with strong functional evidence because of other strong nearby can-

didates, we augmented the single gene selected by SIGNET at each locus with any additional

genes with functional evidence that were not selected. We term this method SIGNET+. The SIG-

NET and SIGNET+ results are identical for the 37 loci with a single gene with functional evidence

(which is also the selected gene for 35 of these loci) and for the 179 information-poor loci with

no genes with functional evidence. The results differ, however, at the 14 loci with multiple

genes with functional evidence, with SIGNET selecting one of these genes at each of the loci.

Methods that permit multiple genes to be selected at a locus are possible (see Discussion), but

often involve optimization of hyper-parameters.

Importance of functional information

To test the importance of functional information from Mendelian studies, exome variation,

and colocalization, we performed tests in which these annotations were hidden (Table 8). We

considered the 37 loci where only a single gene had Mendelian, exome, or colocalization data.

We then performed a series of 37 tests in which the functional information for one of these

Fig 3. Distribution of the signed distance from a GWAS SNP to the transcription start site of the active gene selected at

each locus. Distributions are shown for genes selected by a minimum distance criterion, by best guess initialization, and by

SIGNET. Learned distribution: exponential distribution with converged distance parameter 161.3 kb used by SIGNET.

https://doi.org/10.1371/journal.pcbi.1012725.g003
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genes was hidden, 100 runs were performed using the best-guess initialization, and the gene

selected most often at the locus in question was determined. For all 7 genes with Mendelian

information, the Mendelian gene was recovered even with its information hidden. For genes

with exome variation, 3 of 7 were recovered, and for genes with colocalization information, 12

of 23 were recovered. Two of the colocalized genes not recovered, DDX17 and VPS29, were

also not recovered when colocalization information was provided (see below, GWAS loci

where multiple genes may be causal).

Of the 7 genes with exome information that were tested, the 3 recovered in the runs with

information hidden were NRAP, RNF207, and TTN. The genes not recovered were NACA
(nonsynonymous variant, GLS2 selected instead), PM20D1 (nonsynonymous variant,

SLC41A1 selected instead and also an eQTL target of the variant), SENP2 (nonsynonymous

exome variant, LIPH selected instead), and SLC12A7 (synonymous splicing variant, NKD2
selected instead and also an eQTL target of the variant).

This analysis indicates the importance of integrating multiple types of information. Recov-

ery of Mendelian genes may be better than other categories because these genes may be better

studied, with more protein interaction data available. Also, while Mendelian genes are trust-

worthy as a gold standard for causality, genes with exome or colocalization data are less certain

to be the true causal gene at a locus.

SIGNET genes improve pathway enrichment over closest genes and shuffled

networks

A default approach to select the most likely causal gene at a GWAS locus is to select the gene

whose transcription start site is closest to a GWAS SNP, here termed the minimum-distance

(MINDIST) method. Of the 226 loci, SIGNET and MINDIST agree at 149 loci, or 66%. Of the

remaining 77 loci where the MINDIST gene is not selected, 20 had within-locus information

contributing to the selection of the causal gene: 1 had only Mendelian evidence, 3 had only

exome evidence, 13 had only colocalization evidence, 2 had both Mendelian and exome evi-

dence, and 1 had Mendelian, exome, and colocalization evidence. The candidate causal gene at

the remaining 57 loci, or 25% of the total loci, were selected based primarily on network con-

nectivity with genes selected by SIGNET at other loci.

Of the 226 loci, 46 have functional evidence. Of the loci with functional evidence, SIGNET

and MINDIST agree at 25, and SIGNET selects a more distant gene that has functional evidence

at 21 loci. The number of information-poor loci, lacking strong functional evidence, is 180, or

80% of the total. Among the information-poor loci, SIGNET and MINDIST agreed at 124 loci and

SIGNET selected a more distant gene at 56 loci.

Pathway enrichment provides an assessment of the relative performance of gene selection

by SIGNET, SIGNET+, and MINDIST. The ENRICHR method [43–45] was used to calculate p-values

for pathways from KEGG [46]. The SIGNET method performs better than selecting the mini-

mum distance gene for significant cardiovascular-related pathways (Tables 9 and 10).

Table 8. Number recovered, using information: Number of genes in the specified category selected by SIGNET most often over 100 runs. Number recovered, hiding

information: Number of genes in the specified category selected by SIGNET, hiding the functional information and performing 100 runs for each of the 37 genes in turn.

Highest level of information for gene Number of genes Number recovered

Using information Hiding information

Mendelian 7 7 7

Exome 7 7 3

Coloc 23 21 12

https://doi.org/10.1371/journal.pcbi.1012725.t008
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Including multiple genes with functional evidence with SIGNET+ improves the number of path-

way genes for the ‘Adrenergic signaling in cardiomyocytes’, ‘Circadian entrainment’, and

‘Oxytocin signaling’ pathways.

To assess the improvements that were due to the network data, we also performed tests

excluding the network data and using shuffled versions of the network data. We ran SIGNET on

100 shuffled versions of the protein-protein and genome-regulatory interactions networks.

Each shuffled network was generated to maintain the vertex degree of each gene in the actual

network [47], using the implementations CONFIGURATION_MODEL for protein-protein interac-

tions and DIRECTED_CONFIGURATION_MODEL for gene-regulatory interactions from NETWORKX

Table 9. Cardiovascular pathway enrichment, all 245 loci.

Pathway Number of genes

Pathway SIGNET+ SIGNET BESTGUESS MINDIST SHUFFLED AFIB CARDIO

Adrenergic signaling in cardiomyocytes 150 19 18 15 14 15.0 ± 1.1 16 18

Arrhythmogenic rt ventricular cardiomyopathy 77 10 10 9 9 8.7 ± 0.7 10 11

Cardiac muscle contraction 87 11 11 7 7 7.6 ± 0.7 9 9

Cholinergic synapse 113 11 11 9 6 8.7 ± 0.9 5 7

Circadian entrainment 97 13 12 12 10 11.0 ± 0.9 8 10

Dilated cardiomyopathy 96 9 9 6 6 6.4 ± 0.6 10 9

GnRH signaling pathway 93 7 7 6 5 6.2 ± 0.4 7 8

Hypertrophic cardiomyopathy 90 11 11 8 8 8.1 ± 0.8 11 10

Oxytocin signaling pathway 154 14 14 12 11 12.7 ± 0.8 13 15

Overlap of genes selected by different methods with genes in cardiovascular pathways. SIGNET+ and SIGNET: genes selected most often at each locus over 100

independent runs. BESTGUESS: genes selected by best guess initialization based on functional information and distance from GWAS SNP. MINDIST: genes selected by

minimum distance to GWAS SNP. SHUFFLED: genes selected using shuffled networks using degree-preserving randomization [47, 48], with standard deviation over 100

independently shuffled networks. AFIB and CARDIO: genes selected by maximum polygenic priority score (POPS) at each locus for atrial fibrillation (AFib) and

cardiovascular disease (Cardio) phenotypes [23].

https://doi.org/10.1371/journal.pcbi.1012725.t009

Table 10. Cardiovascular pathway enrichment, all 245 loci.

Pathway p-value

SIGNET+ SIGNET BESTGUESS MINDIST SHUFFLED AFIB CARDIO

Adrenergic signaling in cardiomyocytes 7.5 × 10−14 3.9 × 10−13 5.1 × 10−10 4.8 × 10−9 5.0 × 10−11 5.0 × 10−11 3.9 × 10−13

Arrhythmogenic rt ventricular cardiomyopathy 5.3 × 10−8 3.4 × 10−8 4.2 × 10−7 4.2 × 10−7 4.2 × 10−7 3.4 × 10−8 2.4 × 10−9

Cardiac muscle contraction 1.5 × 10−8 9.2 × 10−9 9.7 × 10−5 9.7 × 10−5 1.2 × 10−5 1.2 × 10−6 1.2 × 10−6

Cholinergic synapse 2.3 × 10−7 1.4 × 10−7 1.1 × 10−5 2.6 × 10−3 1.3 × 10−6 1.2 × 10−2 4.9 × 10−4

Circadian entrainment 3.4 × 10−10 2.5 × 10−9 2.5 × 10−9 3.1 × 10−7 2.9 × 10−8 2.6 × 10−5 3.1 × 10−7

Dilated cardiomyopathy 4.1 × 10−6 2.8 × 10−6 1.2 × 10−3 1.2 × 10−3 1.2 × 10−3 2.8 × 10−7 2.8 × 10−6

GnRH signaling pathway 2.0 × 10−4 1.5 × 10−4 9.9 × 10−4 5.7 × 10−3 9.9 × 10−4 1.5 × 10−4 1.9 × 10−5

Hypertrophic cardiomyopathy 2.2 × 10−8 1.3 × 10−8 1.5 × 10−5 1.5 × 10−5 1.2 × 10−4 1.3 × 10−8 1.5 × 10−7

Oxytocin signaling pathway 1.3 × 10−8 6.8 × 10−9 4.5 × 10−7 3.2 × 10−6 5.8 × 10−8 5.8 × 10−8 7.4 × 10−10

Statistical significance of overlap of genes selected by different methods with genes in cardiovascular pathways. SIGNET+ and SIGNET: genes selected most often at each

locus over 100 independent runs. BESTGUESS: genes selected by best guess initialization based on functional information and distance from GWAS SNP. MINDIST: genes

selected by minimum distance to GWAS SNP. SHUFFLED: genes selected using shuffled networks using degree-preserving randomization [47, 48], with geometric mean

of p-values over 100 independently shuffled networks. AFIB and CARDIO: genes selected by maximum polygenic priority score (POPS) at each locus for atrial fibrillation

(AFib) and cardiovascular disease (Cardio) [23] phenotypes.

https://doi.org/10.1371/journal.pcbi.1012725.t010
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[48]. We again used pathway enrichment to assess performance. The results using the true net-

work interactions were better than the results using shuffled networks (Tables 9 and 10). We

also ran SIGNET without using any network data. Gene selection without network data was

identical to the best guess initialization, which performs similarly to gene selection with ran-

domized network data. Equivalent performance without network data and with randomized

network data is ideal performance for a Bayesian method and suggests that SIGNET is not over-

fitting the network data.

SIGNET compares favorably with polygenic priority scores

We also compared our gene selection method with polygenic priority scores from the POPS

method [23], which provides a compendium of pre-calculated scores for phenotypes with

ample GWAS data. Rather than using GWAS results directly, this method builds a regression

model for GWAS data from extensive genomic and proteomic data, then reports the model

output as the score. We used scores from the PoPS_FullResults.txt file for the two

most relevant phenotypes, atrial fibrillation (AFib) and cardiovascular disease (Cardio). Some

differences may arise because SIGNET used data from the GWAS Catalog [17], whereas POPS

used data from UK BioBank. The cohorts are both European ancestry, however, and the cohort

size used by POPS was larger, with 349,512 individuals for AFib and 408,963 individuals for

Cardio, whereas our GWAS results are from cohorts of 60,255 to 134,251 individuals

(Table 1). Therefore, differences in cohorts are likely to favor POPS.

Of the 1195 genes within our loci, POPS scores were reported for 1069. The difference in

count of 126 genes arises from updates to gene names and genome annotations between the

GRCh38 version we used and the earlier version used by POPS. These genes were dropped

from comparisons. Additionally, some genes in the GRCh38 version we used map to multiple

genes in the version used by POPS, with distinct scores for each gene. A summary table joins

SIGNET results with POPS results (S3 Table), with empty cells for the missing genes and multi-

ple rows for the duplicated genes. To make score more comparable, we calculated a locus-spe-

cific baseline for each method as the maximum score for a gene in that locus. We then

subtracted this baseline from all genes within a locus, giving the best gene for each method a

baseline-subtracted score of 0 and other genes increasingly negative scores. For a robust com-

parison, we also converted scores to integer ranks in descending order of scores within each

locus.

The SIGNET and POPS baseline-subtracted scores and ranks are highly correlated, with den-

sity plots of scores showing maximum density when both methods score the same gene at or

near the top (Fig 4). For the AFib phenotype, the Pearson correlation of scores is 0.46 (p-value

2.5 × 10−56) and the Spearman correlation of ranks is 0.53 (p-value 6.9 × 10−101). For the Car-

dio phenotype, the score correlation is smaller but still significant, 0.15 (p-value 4.2 × 10−7),

and the rank correlation is 0.47 (p-value 1.2 × 10−89). The AFib and Cardio results from POPS

are themselves significantly correlated, a score correlation of 0.43 (p-value 1.4 × 10−51) and a

rank correlation of 0.72 (p-value 3.3 × 10−179).

We then examined concordance of genes ranked first or second within a locus (Table 11).

The top-ranked gene from SIGNET agrees with top-ranked POPS gene at 138 loci for the AFib

phenotype and 140 loci for the Cardio phenotype. The overlap increases to 211 genes (86% of

the 245 loci) for genes ranked first by one method and first or second by the other method for

AFib, and to 202 genes (82% of loci) for Cardio.

Because ground truth is not yet available for GWAS data, we used pathway enrichment as a

proxy for comparing the number of pathway genes recovered by each method (Table 9) and

the corresponding p-values (Table 10). Comparing SIGNET with POPS for the AFib phenotype,
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SIGNET finds more genes for 5 of the pathways and fewer genes in 1 pathway of the 9 cardiovas-

cular pathways (Table 9). Comparing with POPS for the Cardio phenotype, SIGNET find more

genes for 4 pathways and fewer genes for 3 pathways. SIGNET performs better in each case,

nearly reaching statistical significance for AFib (paired two-sided t-test for number of genes

recovered, p-value = 0.071 for AFib and p-value = 0.28 for Cardio).

We investigated the differences in genes recovered where functional evidence favors clear

candidate genes within a locus (Table 12). Of the 18 GWAS loci with Mendelian or exome

Table 11. Comparison of SIGNET and POPS gene rankings.

SIGNET Rank POPS AFib Rank POPS Cardio Rank

1 2 � 3 1 2 � 3

1 138 36 60 140 34 60

2 37 34 69 28 34 78

� 3 68 77 588 75 79 579

https://doi.org/10.1371/journal.pcbi.1012725.t011

Fig 4. Density plot of gene scores from SIGNET compared with POPS for the POPS phenotypes AFib (left) and Cardio (right). More saturated colors

indicate higher density, with contour lines from kernel density estimation.

https://doi.org/10.1371/journal.pcbi.1012725.g004

Table 12. Genes with strong functional evidence found by SIGNET but not by POPS.

SIGNET POPS

Gene Evidence AFib Cardio

RNF207 Exome ACOT7 PLEKHG5
PM20D1 Exome, MinDist NUCKS1 NUCKS1
SLC4A3 Medelian, Exome DES DES
CASR Exome FAM162A KPNA1
KCNQ1 Mendelian, Exome INS INS
KCNJ5 Mendelian, Colocalized, MinDist FLI1 FLI1
KCNJ2 Mendelian, MinDist KCNJ16 KCNJ16

https://doi.org/10.1371/journal.pcbi.1012725.t012
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evidence for at least one gene (excluding the 19 Mendelian loci without GWAS evidence), SIG-

NET recovers a Mendelian or exome gene in each (see below, Sec. GWAS loci with Mendelian

evidence and GWAS loci with exome-chip or colocalization evidence). Within these 18 loci

with strong evidence, the POPS results for AFib and Cardio both select a gene not included in

our Mendelian or exome evidence at 7 loci.

In one of these loci where SIGNET and POPS differ, both selected genes may be causal: at the

locus where SIGNET selects SLC4A3, responsible for a Mendelian form of short QT syndrome,

POPS selects DES (desmin), responsible for a Mendelian form of cardiomyopathy [3]. Other

genes selected by POPS include FLI1, a transcriptional regulator of blood and endothelial

development [49], in a locus where SIGNET selected KCNJ5, responsible for a Mendelian form

of long QT syndrome [3], and KCNJ16, a potassium channel responsible for deafness [3],

where SIGNET selected KCNJ2, a different potassium channel responsible for Mendelian forms

of atrial fibrillation and short QT syndrome [3]. These results suggest that SIGNET performs

better than POPS at loci with strong functional evidence.

GWAS loci with Mendelian evidence

At many loci, functional evidence points to a gene other than the MINDIST gene as the causal

gene. The SIGNET method is effective in using this information to select the appropriate gene.

Mendelian evidence is particularly strong. Of the 12 Mendelian genes in the GWAS loci, 5

were not selected by MINDIST. Of these, the genes KCNE2 and SCN10A occur in loci with two

Mendelian genes, which were selected instead. Of the remaining three genes, CACNA1C,

KCNQ1, and SLC4A3, all were selected by SIGNET but not MINDIST. The genes are each consid-

ered in turn.

The Mendelian gene CACNA1C is 104,528 bp from a locus on chromosome 12 defined by

SNP rs2283274 at position 2075300, whose 250 kb flanks include one other protein-coding

genes: DCP1B at 70,765 bp distance. The MINDIST gene, DCP1B, encodes mRNA-decapping

enzyme 1B, which has no literature reports suggesting involvement with cardiovascular phe-

notypes. The Mendelian gene selected by SIGNET, CACNA1C, encodes a calcium voltage-gated

channel that is the target of calcium channel blockers (Fig 5).

The Mendelian gene KCNQ1 is at a locus on chromosome 11 defined by rs2074238,

rs2301696, and rs7122937, all from the QT GWAS (Fig 5). The gene selected by MINDIST is

TRPM5, at 1,239 bp from rs2301696. The KCNQ1 gene is the closest to rs2074238 at 18,889 bp;

Fig 5. GWAS loci with Mendelian evidence. SIGNET selects the gene with Mendelian evidence (green rectangle) over the closest gene in the locus to a

GWAS SNP (gray rectangle). Pink ovals represent genes with Mendelian evidence; yellow ovals represent colocalized genes; white ovals represent

information-poor genes; and gray lines represent protein-protein interactions. Networks are shown for three individual loci, highlighting the gene selected

by SIGNET: (a) CACNA1C, (b) KCNQ1, (c) SLC4A3.

https://doi.org/10.1371/journal.pcbi.1012725.g005
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its gene product is a potassium voltage gated channel with alleles responsible for hereditary

forms of long QT syndrome. The gene TRPM5 is not directly related to cardiovascular func-

tion. Instead, it is implicated in taste transduction. The activation/impairment of TRPM5 has

been shown to reduce/increase salt-induced cardiovascular function [50, 51]. TRPM5 has no

interaction partners in the network selected by SIGNET. These results suggest that there is a sin-

gle causal gene at this locus, KCNQ1.

The Mendelian SLC4A3 gene, which also has exome evidence, is at a locus on chromosome

2 defined by rs55910611 and rs907683 associated with heart rate, JT, and QT phenotypes (Fig

5). This locus contains 23 genes, all of which are protein-coding. While SLC4A3 is the closest

gene to rs55910611 at 8,296 bp distance, the MINDIST gene is SPEG, 24 bp from rs907683, and

also colocalizing with this SNP. The SLC4A3 protein is a plasma membrane anion exchange

protein with mutations responsible for short QT syndrome and elevated risk of ventricular

fibrillation and sudden cardiac death [52]. The SPEG gene encodes a myosin light chain kinase

and regulator of cardiac calcium homeostasis with mutations causing dilated cardiomyopathy,

atrial fibrillation, and heart failure [53]. Furthermore, SPEG interacts with CACNA1C and

RYR2, both selected by SIGNET. Strong evidence for both SLC4A3 and SPEG suggests that this

locus contains multiple causal genes.

GWAS loci with exome-chip or colocalization evidence

All of the 12 genes that were implicated in a recent exome-chip study of individuals with ven-

tricular repolarization [35] were selected by SIGNET. Of these twelve genes, four genes

(KCNH2, KCNQ1, SCN10A, SLC4A3) also had Mendelian evidence, and are thus accounted

for as Mendelian genes. The remaining eight genes that had exome-chip evidence, were also

selected by SIGNET (Table 7). Of these eight genes, three were not the minimum distance gene

of loci.

For example, in the locus defined by rs11920570 and rs1801725 associated with HR, JT, and

PR phenotypes, SIGNET selected the CASR gene, which has exome evidence, rather than the

minimum distance gene, CCDC58 (Fig 6). The SNP rs1801725 is in the terminal exon of

CASR, located 101 kb downstream from the transcriptional start site. CASR is expressed in

Fig 6. GWAS loci with exome-chip or colocalization evidence. SIGNET selects the gene with exome-chip or colocalization evidence (green rectangle) over

the closest gene in the locus to a GWAS SNP (gray rectangle). Pink ovals represent genes with Mendelian evidence; white ovals represent information-poor

genes; gray lines represent protein-protein interactions; and green arrow represents gene-regulatory interaction. Networks are shown for two individual

loci, highlighting the gene selected by SIGNET: (a) CASR, (b) CAV1.

https://doi.org/10.1371/journal.pcbi.1012725.g006
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various cardiovascular cell types and has a crucial role in cardiovascular diseases [54]. The dis-

tance from CCDC58 to rs11920570 is much smaller, only 12 kb. While it is colocalized with

HR, there are no studies connecting this gene to cardiovascular disease.

For the 28 loci that have a colocalized gene as their highest level of information, 26 selected

genes were the genes that had colocalization evidence. Of these, 14 were not the minimum dis-

tance gene of the locus. An example is the CAV1 gene, which is colocalized with PR is at a

locus on chromosome 4 defined by rs3807989, rs41748, and rs9920, identified in GWAS stud-

ies for the HR, PR, and QT intervals. The minimum distance gene of this locus CAPZA2,

which is located 4,551 bp from the locus was not selected by SIGNET. Instead, CAV1 which is

located 21,193 bp from the locus was selected. The CAV1 protein forms interactions with the

protein product of eleven other selected genes in the network and a gene-regulatory interac-

tion (Fig 6). The deletion of CAV1 in mice diminishes caveolae formation, resulting in cardiac

defects [55–57]. Similarly, Zebrafish lacking CAV1 showed impaired cardiac function [58].

CAPZA2 caps the barbed ends of actin filaments. While it is expressed in many tissues includ-

ing the heart, there is less evidence linking this gene to cardiovascular disease.

GWAS loci with no functional evidence

The SIGNET method was designed to use cross-locus information to improve the selection of

causal genes at loci lacking within-locus functional evidence. We present several loci where the

genes selected by SIGNET and MINDIST are different, and where network connectivity with

genes selected at other loci strongly suggests that the SIGNET prediction of the causal gene is

correct.

The STK38 gene is selected by SIGNET at a locus on chromosome 6 defined by SNPs

rs1321311, rs236349, and rs9470361 (Fig 7). The STK38 gene is 107,644 bp from rs1321311.

The MINDIST gene is PPIL1, located 2,038 bp from rs236349. STK38 modulates the stability of

Rbm24 protein [59], which is a key regulator in cardiogenesis [60]. STK38 forms protein-pro-

tein interactions with CALM1, CAV1, ID2, KCNJ2, MAPKAP1, SENP2, and SKI in the

Fig 7. GWAS loci with no functional evidence. SIGNET selects the gene (green rectangle) based on network connectivity with genes selected at other loci,

over the closest gene in the locus to a GWAS SNP (gray rectangle). Pink ovals represent genes with Mendelian evidence; orange ovals represent exome-chip

evidence; yellow ovals represent colocalized genes; white ovals represent information-poor genes; and gray lines represent protein-protein interactions.

Networks are shown for loci containing (a) STK38, (b) PMP22.

https://doi.org/10.1371/journal.pcbi.1012725.g007
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network. The MINDIST gene, PPIL1, encodes a peptidylprolyl isomerase that may function in

spliceosome activity and protein folding. It has no interaction partners in the selected network

and no substantial literature reports suggesting relevance to cardiac electrophysiology.

The PMP22 gene is selected by SIGNET at a locus on chromosome 17 defined by the SNP

rs79121763, identified in the heart rate GWAS, and 19,670 bp from the GWAS SNP (Fig 7).

The minimum distance gene is TEKT3, 11,84 bp away from the SNP. The PMP22 protein has

physical interactions with proteins encoded by genes selected at 7 other loci, whereas TEKT3

has no interactions with selected genes. The PMP22 gene encodes peripheral myelin protein-

22. This may be a novel candidate gene at the locus.

GWAS loci where multiple genes may be causal

As discussed earlier, there were a total of 12 genes with function evidence that were not

selected by SIGNET. Of these 12, 10 were in loci where the selected gene also had functional evi-

dence. Examination suggests that these loci contain multiple causal genes. To prevent the

exclusion of genes with strong functional evidence due to other strong nearby candidates, we

augmented the selection of a single gene made by SIGNET at each locus to include any addi-

tional genes supported by functional evidence that were not initially chosen (SIGNET+).

Of the 12 genes with Mendelian evidence, presumably the strongest level of evidence, 2

were not selected: KCNE2 and SCN5A. Each is in a GWAS loci that contains an additional

Mendelian gene that was selected instead. One locus contains Mendelian genes KCNE1 and

KCNE2, and a second locus contains Mendelian genes SCN5A and SCN10A. Local networks

show dense interactions between the Mendelian genes at the KCNE1-KCNE2 locus (Fig 8) and

the SCN5A-SCN10A locus (Fig 8) and the genes selected at other loci.

Similarly, at two loci with colocalization evidence, SIGNET selects a non-colocalized gene

(Table 6), and evidence suggests that both the colocalized gene and the selected gene may be

Fig 8. GWAS loci where multiple genes may be causal. SIGNET selects the gene (green rectangle) based on within locus and across loci evidence. SIGNET+

augments the selection with other genes in the locus that have functional evidence (gray rectangle). Pink ovals represent genes with Mendelian evidence;

orange ovals represent exome-chip evidence; yellow ovals represent colocalized genes; white ovals represent information-poor genes; gray lines represent

protein-protein interactions; and green arrows represent gene-regulatory interactions. Networks are shown for loci containing (a) KCNE1, (b) SCN10A, (c)

JOSD1, (d) ATP2A2, (e) NKX2–5.

https://doi.org/10.1371/journal.pcbi.1012725.g008
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causal. Colocalized gene DDX17 is 246,785 bp from rs2076028, identified in the GWAS studies

for HR [34] (Fig 8). Instead of selecting this gene, however, SIGNET selected JOSD1, which is

52,889 bp away from the SNP. The JOSD1 protein interacts with genes selected at other loci,

which are themselves highly connected to other genes. These interactions cause JOSD1 to be

selected, even though DDX17 has colocalization and interaction evidence. DDX17 has been

identified as a binding partner of CPhar, which regulates the expression of proliferation mark-

ers, in cultured neonatal mouse cardiomyocytes [61] The gene closest to the SNP is SUN2,

21,155 bp away. Loss of this gene causes cardiac hypertrophy in mice [62]. Thus, this locus

may contain multiple causal genes, all of which are listed in SIGNET+ and the selected gene,

JOSD1 may be a novel candidate gene at the locus.

The VPS29 gene is at a locus on chromosome 12 defined by rs11068997, rs3026445, and

rs75714509 identified in GWAS studies for the QT phenotype and is colocalized with QT (Fig

8). VPS29 is located 140,181 bp from the locus and was not selected. Instead SIGNET selects the

gene ATP2A2, which is the minimum distance gene located 4,642 bp from the locus. ATP2A2
forms a gene-regulatory interaction (green arrow) with a selected gene of another locus, as

well as seven protein-protein interactions with other selected genes, two of which have Mende-

lian evidence. The ATP2A2 gene encodes SERCA2, which controls the cardiac contraction-

relaxation cycle by regulating Ca2+ uptake levels [63, 64].

Loci without functional evidence may also contain multiple causal genes. An example is the

locus containing NKX2–5 and BNIP1 (Fig 8). The NKX2–5 gene occurs at a locus defined by

rs4868243 from a heart rate GWAS [34] and rs255292 from a PR-interval GWAS [30]. These

SNPs are a distance of 62,252 bp from each other, located on Chromosome 5 at positions

173216115 and 173153863, respectively, and have an R2 of 0.19 in Hapmap samples with Euro-

pean ancestry [65]. The SNP rs255292 is located within the gene BNIP1 and is 9,421 bp its

transcription start site of BNIP1. The SNP rs4868243 lies between BNIP5 and NKX2–5 and is

71,673 bp and 15,994 bp from the transcription start sites of BNIP1 and NKX2–5, respectively.

This locus contains 6 protein-coding genes, of which BNIP1 is the closest to a GWAS SNP.

The gene selected by SIGNET at this locus is NKX2–5. It forms protein-protein interactions

with HAND1 and ID2, selected at other information-poor loci, and is a transcriptional regula-

tor of TBX5. The NKX2–5 protein is a homeobox transcription factor whose mutations affect

cardiac development [66]. The regulated gene TBX5 also encodes a transcription factor that

itself regulates cardiac development [67]. Thus, evidence for NKX2–5 as the causal gene is

strong. Nevertheless, BNIP1 has a physical interaction with SCN3B, which has Mendelian evi-

dence, and this locus may contain multiple causal genes.

Discussion

The GWAS era has provided statistically reproducible associations between genetic variants

and human biomedical phenotypes, including disease and disease risk. Determining how these

variants have their effects is a basic step towards using these findings to improve basic under-

standing and advance human health. The SIGNET method connects variants to likely causal

genes with a Bayesian framework that integrates GWAS summary data with gene regulatory

interactions and protein-protein interactions, selecting the most likely gene at each locus in

the context of genes selected at other loci. It augments methods that focus primarily on within-

locus information, such as Mendelian evidence, protein functional effects from variants that

change amino acid sequence, colocalization, and chromatin state. By using information from

evidence-rich loci to bias gene selection at evidence-poor loci, the method selects genes that

differ from a common default approach of selecting the closest gene. Pathway enrichment

analysis indicates that the results provided by SIGNET are higher quality, and the literature
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review provides evidence for improved selection of causal genes. Our method, which learns

from genes that have strong functional evidence, is complementary to data-driven approaches

such as a recent polygenic priority score method POPS [23]. We find that SIGNET performs bet-

ter than POPS at loci where functional information provides strong evidence for a particular

candidate. The network used by SIGNET to generate a score may also help in inferring mecha-

nistic interactions between genes and proteins contributing to a GWAS phenotype.

Improvements could include replacing binary features with real-valued features. While we

set a genome-wide significance threshold on GWAS SNPs to include, we do not include quan-

titative information about the chi-square value or estimated regression coefficient. These

could be included and could improve results for loci with multiple SNPs. Similarly, we could

incorporate the score calculated by colocalization methods.

This method could be extended to include other sources of information. A property related

to distance is co-occurrence of a SNP and a gene in a topologically associating domains

(TADs). Flanking regions could be defined by TADs rather than by a fixed distance cutoff,

although even within a TAD we might still anticipate an overall bias for causal genes to be

closer to a SNP. Examining genes within the same TAD as a SNP has been helpful in identify-

ing candidate genes [68–70]. Functional studies have shown that transcription factor binding

sites are often within the same TAD as the regulated gene [71, 72]. One complication of incor-

porating TADs is that chromatin structure depends on the tissue or cell type and development

stage. The tissue, cell, or developmental stage relevant to a particular association may not be

known. An effective approach could be to learn the cell and tissue type along with building a

model for the active SNPs. Learning the cell type could also help identify the best data sets to

use for colocalization. Similarly, tissue-specific versions interaction databases could be incor-

porated [36], and single-cell data may be an additional source of information.

Of course, if TAD-related predictions are provided by other methods, these predictions

could be readily incorporated along with colocalization in our naïve Bayes framework. Simi-

larly, existing methods that aggregate within-locus information to provide a single summary

score could be incorporated. The naïve Bayes approach assumes statistical independence

between different evidence types. Aggregating methods would require greater attention to

non-independence. One approach could be to model joint distributions of features drawn

from the same data, for example a joint distribution for SNP-level and TWAS-level methods

for colocalization, or to generalize from naïve Bayes to a more general functional form that

accounts for non-independence. Deep learning could be considered, but the data available

may not yet be sufficient for the bias-variance tradeoff.

A more fundamental improvement would be to lift the restriction of exactly one gene

selected at each locus. Several of the loci in this study contain multiple genes with strong evi-

dence for causality, including multiple genes with Mendelian evidence. Our method already

provides scores and probabilities for all genes within a locus, but only allows one to be active at

a time. An approach could be to include the number of active genes at a locus as a variable to

be optimized, with a meta-parameter describing the distribution of active genes per loci. We

have developed similar methods to estimate the number of independent effects at GWAS loci

[73, 74].

Finally, our search for causal genes was limited to protein-coding genes. We did not include

structural RNA genes, anti-sense RNAs, and long non-coding RNAs. Other RNA genes could

be intriguing to include, particularly with appropriate interaction data for cis-regulation

within a locus or trans-interactions across loci. Within a locus, anti-sense regulators could be

connected with their cognate protein-coding genes. Regulatory RNAs could be connected to

their targets at other loci, similar to gene-regulatory interactions of transcription factors.
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Known physical interactions between long non-coding RNAs or other RNA species and their

protein binding partners could be included alongside protein-protein physical interactions.

Conclusion

The SIGNET method connects GWAS variants with the most likely causal gene at each GWAS

locus, using genes selected at information-rich loci to bias the selection of genes at informa-

tion-poor loci. The method improves on pathway enrichment obtained using a default

approach of selecting the gene closest to a GWAS SNP and augments methods that use coloca-

lization and other within-locus information. Applications to cardiovascular phenotypes pro-

vide new evidence for causal genes. Our results also highlight several GWAS loci that may

include multiple causal genes. Methods that can learn the number of causal genes within each

GWAS locus could be the most important next step in causal gene prioritization.
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