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Abstract
Multiple myeloma (MM) is characterized by clonal plasma cell proliferation in the bone marrow, challenging prognosis 
prediction. We developed a gene-pairing prognostic risk model using m6A regulatory genes and a nested LASSO method. 
A cutoff of − 0.133 categorized MM samples into high-risk and low-risk groups. The model showed strong prognostic per-
formance in 2088 newly diagnosed MM samples and predicted response to combination therapy (daratumumab, carfilzomib, 
lenalidomide, and dexamethasone) in patients who failed or relapsed from bortezomib-containing regimens, with an AUC of 
0.9. It distinguished between smoldering MM and MM (cutoff: − 0.45) and between MM and plasma cell leukemia (cutoff: 
0.0857). Single-cell analysis revealed higher risk scores at relapse. Combining MM cell lines and sample data, we identified 
potential drugs and targets (ADAT2 and NUP153) effective against high-risk MM. Integrating the m6A risk model with 
the International Staging System (ISS) enhanced stratification accuracy. These insights support precision treatment of MM.
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Introduction

Multiple myeloma (MM) is characterized by malignant 
monoclonal plasma cells in the bone marrow, with a global 
incidence of 6–7 per 100,000 humans annually [1, 2]. The 
progression of MM can be subdivided into several stages, 
including monoclonal gammopathy of undetermined sig-
nificance (MGUS), smoldering myeloma (SMM), MM, 
and plasma cell leukemia (PCL). MGUS represents the 
initial stage, with approximately 1% of MGUS patients 
progressing to MM. The second stage, SMM, displays the 
same morphological characteristics as MM tumor cells but 
without significant organ damage, with about 10% of these 
cases transforming into MM [3]. Ultimately, MM tumor 
cells dissociate from the bone marrow microenvironment, 
progressing to PCL or extramedullary multiple myeloma 
(EMM) [4].

Identifying high-risk multiple myeloma (MM) patients 
is crucial for precision treatment. The International Stag-
ing System (ISS) [5] and Revised International Staging 
System (R-ISS) [6] are commonly used clinical methods 
for assessing poor prognosis in MM. The R-ISS incorpo-
rates abnormal karyotype data into the ISS, but these kar-
yotypes are specific to certain treatment regimens and may 
lose their effectiveness with newer therapies. Risk models 
based on transcription levels can predict the prognosis of 
MM patients in real time with accuracy [7]. However, their 
major drawback is the lack of absolute quantifiability, as 
they are influenced by different measurement methods and 
batch effects, which compromises their clinical applica-
bility. Gene-pairing models can effectively address these 
limitations of transcriptional models. Gene-pairing relies 
on comparing the expression level differences between two 
genes, significantly reducing batch effects and the impact 
of varying measurement methods. W. Kong and colleagues 
developed a gene-pairing model using pyroptosis-related 
genes to predict the prognosis of acute myeloid leukemia 
(AML) patients. Compared to non-pairing models, this 
approach significantly improved both accuracy and usabil-
ity [8].

N6-methyladenosine (m6A) is the most common inter-
nal RNA modification in eukaryotic cells, influencing vari-
ous aspects of RNA metabolism and playing a crucial role 
in the development and progression of multiple types of 
cancer. In multiple myeloma (MM), numerous studies have 
demonstrated the significant role of m6A in MM pathogen-
esis. HNRNPA2B1 promotes MM tumor cell proliferation 
by regulating ILF3-dependent AKT3 expression [9] and 
by enhancing cell proliferation through the TLR4 sign-
aling pathway while regulating apoptosis [10]. FTO sig-
nificantly promotes MM cell proliferation, migration, and 
invasion by targeting HSF1/HSPs in a YTHDF2-dependent 

manner [11]. IDH2 regulates global m6A RNA modifica-
tion in MM by targeting the RNA demethylase FTO. The 
imbalance of m6A methylation enhances the expression 
of WNT7B, activating the Wnt signaling pathway and 
thus promoting MM tumorigenesis and progression [12]. 
High expression of YTHDF2 promotes MM cell prolif-
eration through the EGR1/p21cip1/waf1/CDK2-cyclin E1 
axis-mediated cell cycle transition [13]. In another study, 
both in vitro and in vivo experiments demonstrated that 
reducing YTHDF2 expression inhibited MM cell prolif-
eration, while enforced expression of YTHDF2 reversed 
these effects. m6A-RIP sequencing and RIP-PCR analyses 
identified STAT5A as a downstream target of YTHDF2, 
with YTHDF2 promoting the degradation of STAT5A 
mRNA by binding to its m6A modification sites [14]. 
The METTL3/YY1/miR-27a-3p axis influences MM 
cell growth, apoptosis, and stem cell properties in both 
in vitro and in vivo settings [15]. Research has shown that 
ALKBH5 is highly expressed in primary CD138 + plasma 
cells isolated from MM patients and in MM cell lines. 
Reducing ALKBH5 expression inhibits the proliferation, 
angiogenesis, invasion, and migration of myeloma cells, 
while promoting apoptosis both in vitro and in vivo [16].

This study culminates in the creation of a novel gene-
pairing-based prognostic model, utilizing an aggregated 
m6A regulatory gene repository. We have demonstrated that 
the model possesses excellent risk prediction performance 
and clinical applicability. By integrating it with the ISS, we 
developed an m6A-refined ISS, significantly enhancing the 
risk stratification capabilities of the ISS. Furthermore, the 
m6A model's risk scores are strongly associated with MM 
disease progression and the development of drug resistance.

Methods

Data collection

For the construction of the m6A signature, we utilized gene 
expression profiles of CD138 + selected plasma cells along 
with clinical information from five multiple myeloma (MM) 
cohorts, encompassing a total of 2080 MM patients. The 
datasets were primarily sourced from the Gene Expression 
Omnibus (GEO) database and The Cancer Genome Atlas 
(TCGA) database. For detailed information, please refer 
to Supplementary Table 1. Twenty-seven m6A regulatory 
genes were identified from currently published literature 
[17–20] and are listed in Supplementary Table 2. Gene 
expression data for different stages of MM progression (nor-
mal control, MGUS, SMM, newly diagnosed MM, relapsed 
MM, and PCT) were obtained from seven GEO datasets, 
including GSE13591, GSE16558, GSE2113, GSE39754, 
GSE47552, GSE5900, and GSE6477. Specific information 
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is provided in Supplementary Table 3. Additionally, the sin-
gle-cell sequencing data were obtained from GSE161195 
[21] and GSE193695 [22] (Supplementary Table 4). The 
PRISM Repurposing Public 23Q2 drug sensitivity data and 
the combined RNAi dependency score data for MM cell 
lines were obtained from the DepMap portal (https://​dep-
map.​org/​porta​l/)​(23).

Construction and validation of a m6A risk score

We leveraged the MMRF-CoMMpass dataset, the largest 
cohort in our study (n = 796), to develop a training set. Two-
thirds of these samples were randomly selected for model 
training, while the remaining one-third were reserved for 
internal validation. External validation was conducted using 
the GSE24080, GSE136337, GSE57317, and GSE19784 
datasets. In the training cohort, we utilized univariate Cox 
regression and Kaplan–Meier (KM) survival analysis to 
identify m6A-related genes significantly associated with 
multiple myeloma (MM) prognosis. Patients were divided 
into two groups for KM curve analysis based on an optimal 
cutoff value. Genes with a p-value less than 0.05 in either 
the Cox or KM analysis were selected for further evaluation, 
resulting in the identification of 13 m6A regulatory genes 
that met these criteria.

Next, we paired the 13 m6A regulatory genes with other 
available genes and employed a nested LASSO method [24] 
to construct a gene-paired prognostic model. The gene-pair 
value was determined by comparing the expression levels 
of two genes. For instance, if gene A had higher expression 
than gene B, it was denoted as A|B = 1; otherwise, it was 
denoted as A|B = -1. After excluding gene-pairs with low 
variability and those not related to prognosis, further selec-
tion was performed using LASSO regression. The detailed 
methodology is illustrated in Supplementary Fig. 1. After 
constructing the model, we calculated a risk score for each 
multiple myeloma (MM) sample using the linear formula: 
RiskScore = ∑(coef*GenePAIR). In the training cohort, we 
utilized the ‘surv_cutpoint’ function from the 'survminer' 
package to determine the optimal cutoff value, which maxi-
mized the survival difference between high-risk and low-risk 
groups. This cutoff value was then uniformly applied to the 
validation cohorts for risk stratification.

The accuracy evaluation of the m6A risk score 
in predicting the therapy response for MM 
treatment

In the GSE161195 dataset, which includes baseline single-
cell transcriptome data of refractory MM patients who 
received a bortezomib-based induction, these patients sub-
sequently underwent a DARA-KRD regimen (daratumumab, 
carfilzomib, lenalidomide, and dexamethasone). Among the 

34 MM patients with baseline single-cell transcriptome data, 
therapy response has been recorded for 17 of them.

For the single-cell transcriptome data, quality control and 
normalization steps were performed as described in the orig-
inal article [21] using the Seurat package. The count data 
from cells corresponding to each sample were aggregated 
into pseudobulk count data using the 'AggregateExpres-
sion' function. Subsequently, we calculated the risk score 
for each sample in the same manner as for the bulk RNA-seq 
samples.

We compared and visualized the risk scores between the 
responder and non-responder groups using boxplots created 
with the ‘ggplot2’ package. Additionally, we generated an 
ROC plot using the ‘pROC’ package to evaluate the ability 
of the risk score to distinguish between different response 
groups.

Variation of m6A risk scores across different stages 
of multiple myeloma progression

Multiple myeloma (MM) can be classified into various 
stages of disease progression, including monoclonal gam-
mopathy of undetermined significance (MGUS), smoldering 
multiple myeloma (SMM), newly diagnosed MM, relapsed 
MM, and plasma cell leukemia (PCL). We collected gene 
expression data from multiple GEO datasets containing 
samples from these different stages. Given that the gene-
pairing model significantly enhances comparability across 
different batches of data, we merged multiple array datasets 
and calculated the m6A risk score for each sample in the 
combined array. The Kruskal–Wallis test was used to ana-
lyze the significance of differences among groups. Addition-
ally, we assessed the ability of the risk scores to distinguish 
between any two disease stages using the area under the 
curve (AUC) metric, with the ‘pROC’ package employed 
for these analyses.

Measuring the change in risk score from initial 
diagnosis to relapse

In Sect. "Variation of m6A risk scores across different stages 
of multiple myeloma progression," we have already exam-
ined the difference in risk scores between initial diagnosis 
MM and relapse MM samples, but this was not done using 
paired samples. The GSE193695 dataset contains single-cell 
transcriptome data for a Japanese MM patient, with samples 
spanning four time points: initial diagnosis (p1), relapse after 
lenalidomide treatment (p3), relapse after lenalidomide and 
ixazomib treatment (p4), and relapse after daratumumab and 
bortezomib treatment (p5). Additionally, the GSE161195 
dataset includes single-cell data from paired samples for the 
same MM patient who underwent the DARA-KRD regimen, 

https://depmap.org/portal/)(23
https://depmap.org/portal/)(23
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with time points spanning from baseline to after cycles 4 
and 10 of therapy.

For the single-cell data, we performed quality control 
and data normalization using the Seurat package, follow-
ing the methodology described in the original paper. In the 
analysis of the GSE193695 dataset, we first calculated the 
risk score for each cell using the normalized data and then 
compared the risk scores across different time points. For 
the GSE161195 dataset, we generated pseudobulk data for 
each sample and calculated the risk score for each sample 
as described in Sect. "The accuracy evaluation of the m6A 
risk score in predicting the therapy response for MM treat-
ment." Subsequently, we conducted pair-wise comparisons 
of the risk scores among the baseline, cycle 4, and cycle 10 
time points.

Screening drugs and targets for high‑risk score 
multiple myeloma (MM)

The PRISM Repurposing Public 23Q2 drug sensitivity data 
[25] were downloaded from the DepMap website. This data-
set contains cell viability fold change measurements at a 
2.5 μM concentration for various drugs compared to DMSO 
controls, including a total of 6,550 drugs and 881 cell lines. 
Considering the available drug data for MM cell lines, we 
excluded drugs without data for MM cell lines, resulting in 
a dataset of 639 drugs with data for 16 MM cell lines. The 
gene expression data for MM cell lines were also acquired 
from the DepMap website, with data available for 15 of the 
16 MM cell lines. We calculated the risk score for each MM 
cell line. Subsequently, we correlated the risk scores with the 
fold change data of the drugs, and used the ‘EnhancedVol-
cano’ package to create a volcano plot. The top five related 
drugs were labeled in the volcano plot.

We obtained the RNAi dependency score data, which 
were already integrated from the Broad Institute Project 
Achilles, Novartis Project DRIVE, and Marcotte et al., and 
calculated using the DEMETER2 model [23]. We selected 
the dependency score data for MM cell lines and performed 
correlation analysis with the risk score, following the same 
methodology as the drug analysis. This process allowed us 
to identify genes whose knockdown significantly decreased 
the proliferation of high-risk MM cell lines while having 
less effect on low-risk MM cell lines. We then returned to 
the MM patient cohort to validate these genes. We corre-
lated the risk score with the transcriptome levels of these 
genes across four cohorts (MMRF-CoMMpass, GSE136337, 
GSE24080, and GSE19784). GSE57317 was excluded due 
to the low sample count. Next, we identified genes that were 
significantly positively associated across all four cohorts and 
intersected these with genes that were significantly nega-
tively associated in the RNAi data.

Combining ISS with m6A‑related signature

We conducted a multivariate Cox regression analysis incor-
porating the m6A risk stratification model and other clinical 
information of MM patients to determine whether the m6A 
risk stratification serves as an independent prognostic fac-
tor. We aimed to integrate the m6A risk stratification system 
with the International Staging System (ISS) to develop a 
more precise prognostic stratification system. Given that all 
arrays, except for the smaller GSE57317 cohort, included 
ISS scoring data, we combined the m6A pairing model with 
ISS in a larger sample setting to create a modified ISS. The 
concordance index (C-index) was used to evaluate and com-
pare the performance of the modified ISS with other models.

Statistical analysis

All statistical analyses in this study were conducted using 
R software (version 4.3.0). Wilcoxon rank-sum test and 
Kruskal–Wallis test were applied for the comparison of 
continuous variables between two or more groups. All fig-
ures in this study were generated using the 'ggplot2' pack-
age. The analysis of Kaplan–Meier survival curves and Cox 
regression was conducted using the ‘survival’ and ‘sur-
vminer’ packages, respectively. For the LASSO regression, 
we employed the ‘glmnet’ package. To combine the c-index 
effect sizes from various arrays, the ‘meta’ package was used 
with a random effects model. The log-rank test was applied 
to calculate p-values for survival analysis, with statistical 
significance set at P < 0.05.

Results

Construction and evaluation of the m6A signature

In our study, we collected data from 2080 patients with 
multiple myeloma (MM) and their corresponding sur-
vival data to develop and validate prognostic models. The 
MMRF-CoMMpass dataset, with its robust sample size, was 
designated as the training set. Out of 27 m6A regulatory 
genes, 13 were found to be significantly associated with 
prognosis, including CPSF6, FMR1, FTO, HNRNPA2B1, 
HNRNPC, IGF2BP2, METTL14, NUDT21, RBM15, 
SRSF10, YTHDF1, YTHDF2, and YTHDF3 (supplemen-
tary Table 5). These 13 genes were paired with other avail-
able genes to obtain 13*11,769 gene-pairs. Following the 
filtering steps outlined in the methods section and refinement 
using nested Cox LASSO regression, a prognostic model 
with 38 gene-pairs was constructed (Fig. 1a-b). The gene-
pairs and their corresponding coefficients are listed in Sup-
plementary Table 6. The risk score for each MM sample was 
calculated. In the training cohort, an optimal cutoff point 
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Fig. 1   Development of the m6A gene-pairing model. (A-B) In the 
course of LASSO regression, the increase in penalty coefficients 
eliminates many gene-pairs' coefficients, while the partial likeli-
hood variation simultaneously decreases, reaching a minimum with 

a refined set of 38 gene-pairs. (C-H) Distribution of risk scores and 
associated trends in survival status and duration among MM samples 
with increasing risk scores. The designations of the respective arrays 
are indicated at the top of each panel
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of -0.133 was identified, which significantly distinguished 
between the high-risk and low-risk groups. This cutoff was 
also applied to define the high-risk group in both the internal 
and external test cohorts (Fig. 1c-h).

The variation in the range of risk scores for a risk model 
across cohorts indicates its stability in response to confound-
ing factors such as batch effects. We created density plots for 
the m6A risk scores across different cohorts and compared 
them with other models, using the ISS as a reference. We 
found that the risk score distribution of the m6A risk model 
was highly consistent across the five datasets, whereas the 
other models [26–28] showed significant variation among 
cohorts (Fig. 2a). Therefore, our gene-pair model is much 
more stable than the others.

Comparing the KM survival curve of high-risk MM 
samples with low-risk samples, the high-risk MM samples 
showed significantly shorter overall survival times than the 
low-risk samples across both the training and validation 
cohorts (Fig. 2b). We aimed to determine whether m6A 
risk stratification is an independent prognostic factor. To do 
this, we combined m6A risk stratification with other clini-
cal indices such as age, gender, and ISS stage. These vari-
ables were included in a multivariate Cox regression analysis 
across four cohorts with sufficient clinical data, including 
GSE136337, GSE19784, GSE24080, and MMRFtumor. 
The results, consistent across all four cohorts, showed that 
a high m6A risk, with an HR significantly greater than 1 
when compared to the low-risk group, remained an inde-
pendent prognostic factor even when adjusted for other clini-
cal features (Fig. 3). Therefore, m6A risk stratification can 
independently predict prognosis.

The prognostic impact of factors on MM outcomes may 
vary across treatment regimens. To assess the predictive 
performance of the m6A risk score across different treat-
ment settings, we compared C-index values within various 
therapeutic groups. First, in the MMRFtumor cohort, we 
compared samples with 1 autologous stem cell transplant to 
those without any transplant. To control for drug treatment 
effects, we focused on MM samples treated with a regimen 
comprising immunomodulatory agents, proteasome inhibi-
tors, corticosteroids, and alkylating agents, as this was the 
most prevalent treatment group. Additionally, due to the 
small number of samples with more than one transplant, we 
excluded this group from the analysis. The results showed 
no significant difference in C-index between the 1-trans-
plant and 0-transplant groups (Fig. 4a). Using clinical data 
from the GSE136337 cohort, we further compared C-index 
values for MM samples that had undergone more than 2 
stem cell transplants versus those with 2 or fewer. Results 
demonstrated a slight increase in the C-index for the group 
with 2 or fewer transplants, though confidence intervals 
overlapped (Fig. 4a). We also analyzed treatment regimen 
data from the MMRFtumor cohort, excluding groups with 

fewer than 50 samples, and classified the remaining sam-
ples into three treatment regimen groups for comparison 
(restricted to MM samples without stem cell transplants). 
Regimen (1) included immunomodulatory agents, protea-
some inhibitors, and corticosteroids; Regimen (2) consisted 
of proteasome inhibitors, corticosteroids, and alkylating 
agents; and Regimen (3) comprised immunomodulatory 
agents, proteasome inhibitors, corticosteroids, and alkylating 
agents. The results indicated an upward trend in the C-index 
for Regimens 1 and 3 compared to Regimen 2 (Fig. 4b). 
Given that the absence of immunomodulatory agents was 
the key distinction in Regimen 2, we hypothesized that the 
m6A risk score might perform better in samples treated 
with immunomodulatory agents. To test this, we stratified 
samples based on immunomodulatory agent use and con-
ducted C-index analysis, observing an upward trend in the 
C-index among samples that received immunomodulatory 
agents (Fig. 4b). In summary, while no statistically signifi-
cant differences were observed, the m6A risk score demon-
strated improved predictive performance in MM samples 
that received immunomodulatory agents or had undergone 
2 or fewer transplants.

m6A risk score as a predictor of MM therapy 
response

The results have shown that m6A risk stratification is an 
independent prognostic factor, so determining whether this 
risk model can predict the response to MM therapy is impor-
tant. We identified an MM cohort containing refractory MM 
samples with single-cell data that failed to respond to ini-
tial bortezomib-based induction. A DARA-KRD regimen, 
including monoclonal antibodies, proteasome inhibitors, 
immunomodulators, and glucocorticoids, was administered 
to these refractory MM patients. By correlating the ther-
apy data with the m6A risk score, we found that the non-
responder group had significantly higher m6A risk scores 
than the responder group (Fig. 5a) (p < 0.001). The ROC 
curve was used to evaluate the ability of the m6A risk score 
to distinguish therapy response, yielding an AUC value of 
90% (Fig. 5a). According to this evidence, the m6A risk 
score can accurately predict MM therapy response, which 
may explain its role as an independent prognostic factor.

m6A risk score as a marker of MM progression

We integrated data from seven different arrays to compare 
the m6A risk scores across various stages of MM progres-
sion. We found that m6A risk scores increased progressively 
from healthy controls to MGUS, SMM, MM, relapsed MM, 
and PCL (Fig. 5b). The ability of m6A risk scores to dis-
tinguish between these stages was assessed by comparing 
the AUC values between pairs of stages. Except for the 
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Fig. 2   Kaplan–Meier survival curves and distribution of m6A risk 
scores. (A) Comparison of the m6A 38-pair model with ISS and other 
gene expression-based prognostic models. Different colors represent 
different arrays. (B) These six Kaplan–Meier plots display the dif-

ferences in overall survival between high-risk and low-risk groups 
stratified by the m6A pairing model across various datasets. High-risk 
groups are shown in red, while low-risk groups are depicted in blue
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relatively low discriminatory power between healthy con-
trols, MGUS, and SMM, the AUC values between other 
stages were all above 0.6 (Fig. 5c). Notably, although SMM 
and MM exhibit high genomic similarity [29], m6A risk 
scores effectively distinguished between them (AUC = 0.76). 
The m6A risk score also accurately differentiated between 
plasma cell leukemia (PCL) and MM (AUC = 0.81). Addi-
tionally, we calculated the optimal cutoff values for distin-
guishing between paired stages using the Youden index, 
with -0.45 for MM and SMM, and 0.0857 for MM and PCL 

(Supplementary Table 7). This evidence suggests that m6A 
risk scores reflect the intrinsic malignant progression of 
tumor samples, which may be an underlying reason why a 
high m6A risk score corresponds to poorer prognosis.

The m6A risk scores upregulated at MM relapse

Clonal evolution of tumor clones occurs in response to thera-
peutic pressure, and it has been established that m6A modifi-
cations play a role in therapy resistance in multiple myeloma 

Fig. 3   m6A risk model as an independent prognostic factor. Forest 
plots in panels A-D illustrate multivariate Cox regression analyses 
across four different datasets, each indicated at the top of the plot. 
The ‘RISK’ label corresponds to the m6A risk model in the first col-

umn of the forest plot, showing that in each scenario, the high-risk 
group has a hazard ratio (HR) significantly higher than one compared 
to the low-risk group
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Fig. 4   Comparison of C-index 
for m6A risk scores across 
different treatment groups. 
(A) Forest plots depicting the 
C-index based on the number of 
stem cell transplants. The left 
panel presents data from the 
MMRF-COMMPASS cohort, 
with the y-axis indicating 
autologous stem cell transplant 
status (0 or 1 transplant); the 
right panel shows results from 
the GSE136337 cohort, with 
the y-axis indicating whether 
patients received more than 2 
transplants or 2 or fewer. The 
x-axis in both panels repre-
sents the C-index. (B) In the 
upper forest plot, the C-index 
and corresponding confidence 
intervals are shown for three 
distinct treatment regimens. 
The lower forest plot illustrates 
the C-index and confidence 
intervals for groups stratified by 
the use of immunomodulatory 
agents
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(MM). We aimed to investigate whether m6A risk scores 
change from initial diagnosis to relapse. In a non-paired 
differential analysis of m6A risk scores between newly 
diagnosed MM samples and relapse MM samples from 
the merged datasets mentioned in Sect. "m6A risk score as 
a marker of MM progression," we observed a significant 
upregulation of m6A risk scores in the relapse group.

Additionally, we analyzed the risk score changes over 
multiple time points in a single MM patient from the 
GSE161195 dataset. This patient had samples collected at 
four time points: initial diagnosis (P1), relapse after lena-
lidomide treatment (P3), relapse after lenalidomide and ixa-
zomib treatment (P4), and relapse after daratumumab and 
bortezomib treatment (P5). Comparing the distribution of 
risk scores across these time points, we found that the scores 
in P3 and P5 were upregulated compared to P1, with the 
highest risk score observed at P5 (Fig. 5d). Furthermore, in 
another subset of the GSE161195 dataset containing pair-
wise single-cell data before and after therapy, we utilized 
the pair-wise Wilcoxon test to compare m6A risk scores 
between baseline and after cycle 4 or cycle 10 of the DARA-
KRD regimen. The results showed a significant increase 
in risk scores after both cycle 4 and cycle 10 compared to 
baseline, but no significant difference between cycle 4 and 
cycle 10 (Supplementary Fig. 2). These findings collectively 
indicate that m6A risk scores are upregulated at MM relapse.

Identifying potential drugs and targets for the m6A 
high‑risk group

The m6A risk model categorizes MM patients into high-
risk and low-risk groups, prompting us to identify drugs 
with enhanced sensitivity in the high-risk group. Using the 
PRISM Repurposing Public 23Q2 drug sensitivity data, we 
analyzed the correlation between the m6A risk scores of 
15 MM cell lines and the logFC values (fold change in cell 
number compared to control after 5 days of treatment at 
2 µM concentration) of 639 drugs. We identified 14 drugs 
that were significantly negatively correlated with the risk 
scores (Fig. 5e). The five drugs with the strongest negative 
correlation were atuveciclib (CDK9 inhibitor), fostemsavir 
(antiviral), PI3KD-IN-2 (PI3K inhibitor), PF-06260414 
(androgen receptor modulator), and liquiritin (antioxidant). 
These potential drugs demonstrated stronger sensitivity in 
the high-risk group, suggesting their potential efficacy.

In addition to identifying drugs, we aimed to discover 
potential therapeutic targets for the m6A high-risk group. 
Using RNAi data from DepMap, we calculated the corre-
lation between the m6A risk scores of 16 MM cell lines 
and the dependence scores of 11,096 genes. (Lower scores 
indicate greater impairment of cell proliferation upon gene 
knockdown.) We identified 38 genes with a correlation 
coefficient less than − 0.7, indicating that knocking down 
these genes significantly impacts the proliferation of MM 
cell lines in the high-risk group (Supplementary Table 8). 
This suggests a mutual exclusivity between low expression 
of these genes and high m6A risk scores. To validate this 
mutual exclusivity, we analyzed the correlation between 
m6A risk scores and the expression of these genes using 
MM sample data from four arrays (GSE13667, GSE24080, 
GSE19784, and MMRFtumor). Interestingly, we found that 
the expression of two genes, ADAT2 and NUP153, was sig-
nificantly positively correlated with the risk scores across 
all four arrays (Fig. 5f-i). Based on this evidence, inhibit-
ing the function or expression of ADAT2 and NUP153 is 
likely to suppress the growth of cancer cells in high-risk 
MM samples.

Integrating ISS with the m6A model

With ISS data available in four datasets (GSE136337, 
GSE19784, GSE24080, MMRF tumor), covering a total of 
2026 samples, we stratified MM patients into six novel cat-
egories based on ISS and m6A risk scores (Fig. 6a). Within 
these six groups, samples with ISS stage 2 and high m6A 
risk scores exhibited poorer prognoses compared to those 
with ISS stage 3 and low m6A risk scores. Consequently, 
we defined groups 3-high, 3-low, and 2-high as the high-risk 
category. Samples with ISS stage 1 and high m6A risk scores 
had overall survival rates similar to those with ISS stage 2 

Fig. 5   The m6A risk score is significantly associated with MM treat-
ment response, malignancy, and relapse. (A) The upper box plot 
shows that the m6A risk score is significantly higher in the non-
responsive group compared to the responsive group following MM 
treatment. The lower ROC plot evaluates the m6A risk score's ability 
to distinguish between different treatment response groups, with an 
AUC of 90%. (B) Six box plots illustrate m6A risk scores in samples 
from six stages of MM progression: normal controls (NC), monoclo-
nal gammopathy of undetermined significance (MGUS), smoldering 
multiple myeloma (SMM), multiple myeloma (MM), relapsed MM, 
and plasma cell leukemia (PCL). (C) The heatmap displays the AUC 
values of m6A risk scores in distinguishing between these stages, 
with red indicating higher AUC values and blue indicating lower val-
ues. (D) Four box plots compare the distribution of m6A risk scores 
in samples from a single MM patient at four different time points: P1 
represents the initial diagnosis sample; P3, the sample after relapse 
following lenalidomide treatment; P4, the sample after relapse fol-
lowing lenalidomide and ixazomib treatment; and P5, the sample 
after relapse following daratumumab and bortezomib treatment. The 
samples follow a chronological order from P1 to P5, with P1 being 
the earliest and P5 the latest, indicating multiple relapses. The risk 
scores for P3 and P5 are significantly higher compared to P1. (E) The 
volcano plot shows the correlation between m6A risk scores and drug 
sensitivity across 15 MM cell lines, with the x-axis representing the 
correlation coefficient and the y-axis representing -log10(p value). 
The top five most correlated drugs are labeled on the plot. (F-G) Cor-
relation analysis results between the dependence scores of NUP153 
and ADAT2 and m6A risk scores in MM cell lines, showing signifi-
cant negative correlations. (H-I) Correlation analysis results between 
the gene expression of NUP153 and ADAT2 and m6A risk scores in 
multiple MM sample arrays, showing significant positive correlations

◂
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Fig. 6   Combining the m6A 
risk model with ISS to form 
m6A-enhanced ISS categories. 
(A) Overall survival comparison 
across six MM sample cohorts 
within the combined dataset, 
with ellipses indicating the 
reclassification method. (B-E) 
Survival comparisons among 
m6A-enhanced ISS categories 
across four distinct datasets
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and low m6A risk scores, both significantly shorter than 
those in group 1-low. Thus, we classified groups 2-low and 
1-high as the intermediate-risk category, and group 1-low 
as the low-risk category. This new stratification method 
was termed the m6A-enhanced ISS (Table 1). To evaluate 
the prognostic performance of the m6A-enhanced ISS, we 
first used Kaplan–Meier (KM) curves to compare overall 
survival (OS) among high-, medium-, and low-risk groups 
across four datasets (GSE136337, GSE19784, GSE24080, 
MMRF tumor) (Figs. 6b-e). The results revealed significant 
differences in OS among the three groups, with the high-
risk group exhibiting the shortest survival, followed by the 
medium-risk group, and then the low-risk group. Addition-
ally, to compare the predictive performance of the m6A-
enhanced ISS with other models, we calculated the con-
cordance index (C-index) for each model within each MM 
sample array. In the arrays where the m6A-enhanced ISS 
model could be applied, the C-index of the m6A-enhanced 
ISS was significantly higher than that of other models, except 
in GSE19784, where the C-index was slightly lower than 
that of the ISS. Furthermore, in GSE136337, the C-index of 
the m6A-enhanced ISS was significantly higher than that of 
the R-ISS (Fig. 7). To integrate the results from all available 
arrays, we performed a meta-analysis of the C-index using a 
random effects model. According to the integrated C-index 
results, the m6A-enhanced ISS exhibited the best predic-
tive performance, followed by the ISS, the m6A prognostic 
model, and the R-ISS (Fig. 7, META section lower right). 
These findings highlight the superior prognostic accuracy of 
the m6A-enhanced ISS over the conventional ISS and R-ISS.

Discussion

In this study, we developed an m6A gene-pairing risk 
stratification model using transcriptomic data from pre-
viously reported m6A regulatory genes. Using a cutoff 
of − 0.133, we categorized MM samples into high-risk 
and low-risk groups. The high-risk group exhibited sig-
nificantly poorer prognosis, and multivariate Cox regres-
sion analysis confirmed that the m6A risk stratification 

model is an independent prognostic factor. Furthermore, 
we found that the m6A risk score could accurately predict 
MM treatment responses, with significantly elevated risk 
scores in the non-responsive group. This finding partially 
explains why the m6A risk model is an independent prog-
nostic factor across multiple datasets, as it relates to treat-
ment response.

Subsequently, we analyzed the m6A risk scores at dif-
ferent stages of MM progression. The results indicated that 
the risk scores significantly increased with the malignancy 
of MM, reaching the highest levels at the PCL stage. Addi-
tionally, the risk score had an AUC of 0.76 in distinguishing 
SMM from MM, indicating that the m6A risk score can 
effectively differentiate between SMM and MM. Current 
studies suggest that SMM and MM share similar genomic 
characteristics, including clonal heterogeneity and gene 
mutation landscapes [30]. This suggests that an epigenetic 
perspective, such as examining m6A modifications, may 
offer a novel approach for exploring the differences between 
SMM and MM and for determining which subset of SMM 
patients might benefit from early intervention. Furthermore, 
the m6A risk score can effectively distinguish between MM 
and PCL, with an AUC of 0.81. This evidence underscores 
the significant association between the m6A risk score and 
the malignancy of MM, thereby validating the effectiveness 
of the m6A risk model.

We also analyzed the changes in m6A risk scores in MM 
samples upon relapse, and the results indicated that the risk 
scores were significantly higher in relapse samples com-
pared to initial diagnosis samples. In a patient with multiple 
relapses, the risk score at the last relapse was significantly 
higher than at the first relapse. This suggests clonal evolu-
tion in MM under treatment pressure, where resistant clones 
exhibit higher risk scores. This finding aligns with the obser-
vation that the risk score can predict treatment response, 
indicating that the m6A risk score may quantify the resist-
ance characteristics of MM samples and further validating 
the feasibility of the m6A risk model.

We integrated the m6A risk model with the International 
Staging System (ISS) to create an m6A-refined ISS risk 
model, which significantly enhanced the risk stratification 
capability of the ISS. In the GSE136337 dataset, the m6A-
refined ISS outperformed the Revised ISS (R-ISS). Our m6A 
risk model was constructed using a gene-pairing approach, 
minimizing the impact of batch effects and differences in 
measurement methods. Our results confirmed this, as the 
distribution of m6A risk scores across different datasets 
showed significantly less variability compared to other 
non-gene-pairing models. The model demonstrated usability 
across various measurement platforms, including microarray 
data, next-generation sequencing, and UMI-based single-cell 
transcriptome sequencing data (single-cell or pseudobulk 
data).

Table 1   Refined new ISS re-categorization based on m6A risk and 
ISS

m6A risk group ISS m6A-enhanced ISS

low 1 low
low 2 medium
high 1 medium
low 3 high
high 2 high
high 3 high
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However, our study has some limitations. First, due to 
the availability of datasets containing R-ISS data, we could 
only demonstrate the superiority of the m6A-refined ISS 
over the R-ISS in one dataset. More subsequent studies are 
needed to objectively evaluate the advantages of the m6A-
refined ISS compared to the R-ISS. Additionally, while we 
identified some potential drugs and targets for the high-
risk group through bioinformatic analysis, clinical trials 
are needed to validate these findings.

In summary, we have developed an m6A prognostic 
model that can accurately predict prognosis and treatment 
response, describe the malignancy and resistance char-
acteristics of MM, and enhance risk stratification when 
combined with the ISS to form the m6A-refined ISS. This 
provides a new strategy for the precision treatment of MM.
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