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Decoding the m6A epitranscriptomic
landscape for biotechnological applications
using a direct RNA sequencing approach

Chuwei Liu 1,7, Heng Liang2,7, Arabella H. Wan3,7, Min Xiao2,7, Lei Sun2,7,
Yiling Yu4, Shijia Yan 2, Yuan Deng2, Ruonian Liu2, Juan Fang5, Zhi Wang5 ,
Weiling He 1,6 & Guohui Wan 2

Epitranscriptomic modifications, particularly N6-methyladenosine (m6A), are
crucial regulators of gene expression, influencing processes such as RNA sta-
bility, splicing, and translation. Traditional computational methods for
detecting m6A from Nanopore direct RNA sequencing (DRS) data are con-
strained by their reliance on experimentally validated labels, often resulting in
the underestimation of modification sites. Here, we introduce pum6a, an
innovative attention-based framework that integrates positive and unlabeled
multi-instance learning (MIL) to address the challenges of incomplete labeling
and missing read-level annotations. By combining electrical signal features
with base alignment data and employing a weighted Noisy-OR probability
mechanism, pum6a achieves enhanced sensitivity and accuracy in m6A
detection, particularly in low-coverage loci. Pum6a outperforms existing
methods in identifying m6A sites across various cell lines and species, without
requiring extensive parameter tuning. We further apply pum6a to study the
dynamic regulation of m6A demethylases in gastric cancer under hypoxia,
revealing distinct roles for FTO and ALKBH5 in modulating m6Amodifications
and uncovering key insights into m6A -mediated transcript stability. Our
findings highlight the potential of pum6a as a powerful tool for advancing the
understanding of epitranscriptomic regulation in health and disease, paving
the way for biotechnological and therapeutic applications.

The discovery and subsequent exploration of RNA nucleotide
modifications1,2, particularly N6-methyladenosine (m6A), have unveiled
a complex layer of gene expression regulation with profound impli-
cations for biotechnology and therapeutic development3–6. As the

most prevalent internal modification in mammalian mRNA7,8, m6A is
intricately regulated through the dynamic interplay of its deposition
by a methyltransferase complex consisting of METTL3, METTL14,
WTAP, KIAA1429, and RBM159–14, and its removal by demethylases
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FTO15 and ALKBH516. This modification exerts a profound influence on
various aspects of RNA biology, including its structure17, stability18,
splicing19, and translation20, underscoring its potential as a target for
biotechnological innovations.

Over the past decade, technological advancements have sig-
nificantly improved our ability to map m6A sites transcriptome-wide.
Initially, antibody-based techniques like MeRIP-Seq21, m6A-Seq22 and
miCLIP23 offer the first glimpses into them6A epitranscriptome but are
limited by low resolution and high false-positive rates due to non-
specific antibody interactions24. These methods often require com-
plementary approaches, such as chemical7,25,26 and enzymatic27–29

assays, to increase specificity, but they still struggle with the accurate
detection of m6A at single-nucleotide resolution. In response to these
challenges, newer methodologies have been developed. For instance,
miCLIP230, combined with the m6Aboost machine learning algorithm,
represents a significant improvement in m6A site detection. miCLIP2
refines antibody specificity and increases the library complexity,
allowing for better mapping of m6A sites, even those outside the
canonical DRACH motif. This innovation is particularly valuable as it
uncovers previously unrecognized m6A sites that could play crucial
roles in RNA metabolism and disease.

Parallel to these experimental advances, computational tools have
evolved to address the limitations of traditional m6A detection meth-
ods. Direct RNA sequencing (DRS) technologies, such as those devel-
oped by Oxford Nanopore Technologies (ONT)31, have revolutionized
the field by allowing the sequencing of native RNA molecules without
prior conversion to cDNA, thus preservingRNAmodifications likem6A.
However, the interpretation of DRS data is complex, requiring
sophisticated computational approaches to distinguish m6A-induced
signal variations from other noise in the sequencing data7. The intro-
duction of deep learning and multi-instance learning (MIL) frame-
works, such as m6Anet32, marks a substantial leap forward. m6Anet
leverages MIL to account for the heterogeneity in RNA samples, where
not all reads at a given site are modified. By learning high-dimensional
representations of individual reads before aggregating them, m6Anet
significantly improves the prediction accuracy of m6A sites across
diverse biological contexts. Nonetheless, while m6Anet has shown
robustness in detecting m6A, it still faces challenges such as depen-
dency on high-quality training labels and the potential under-
estimation of m6A sites due to variable read coverage32.

Despite these advancements, several limitations persist. Tradi-
tional m6A detection methods are often constrained by the need for
negative controls, reliance on specific sequence motifs, and the
inability to accurately quantify m6A at low stoichiometry sites. More-
over, current computational approaches may not fully capture the
complexity of m6A modifications in heterogeneous RNA populations,
leading to missed detections in low-abundance transcripts30,32. Addi-
tionally, most existing models are designed for specific sequence
contexts, limiting their generalizability across different species or cell
types. In response to the limitations of existing m6A detection meth-
ods, we develop pum6a, an innovative computational framework that
employs an attention-based positive and unlabeled multi-instance
learning strategy to enhance the detection of m6A sites from direct
RNA-Seqdata. Thismodel is specifically designed to accurately identify
m6A modifications, even without comprehensive, experimentally vali-
dated labels. It achieves high sensitivity and specificity, especially at
sites with low modification frequencies, and is adaptable to a broad
range of RNA sequences and biological conditions. Differing from
m6Anet,which aggregates features from reads at a specific site, pum6a
introduces an attention mechanism that selectively focuses on the
most informative reads, significantly improving the signal-to-noise
ratio. This refinement not only increases the accuracy of m6A site
identification but also broadens the model’s applicability to detect
other RNA modifications, making it a versatile tool for epitran-
scriptomic research.

Results
Enhancement of anomaly detection through the pum6a
framework
The pum6a framework introduces a significant advancement in
anomaly detection by addressing the challenges inherent in positive
and unlabeled multi-instance learning. As shown in Fig. 1a (Methods),
pum6a utilizes a structured, multi-module approach, beginning with
an instance-level feature extraction phase where each data instance is
transformed into compact, low-dimensional embeddings. This is fol-
lowedby a self-attentionmechanism that offers a flexible alternative to
conventional aggregationmethods, such asmax ormean pooling. The
self-attention module incorporates a trainable weighted average,
implemented via a dual-layer neural network, enabling the adaptive
and interpretable aggregation of features across instances33.

Next, these aggregated instance features are processed by a
classifier module to predict the probability of a positive class within
each bag. The self-attention mechanism enhances interpretability by
identifying key instances that contribute most significantly to the
classification outcome. To further refine multi-instance learning, Platt
scaling is applied to the attention scores, converting them into
instance-level probabilities. These probabilities are then integrated
into a bag-level classification using a weighted Noisy-OR function34,
which effectively combines the contributions of individual instances.

To mitigate potential overfitting toward positive instances, we
implemented a balancing strategy by ensuring the number of selected
negative bags equals the number of positive bags (|R| = |P|). This
balanced sampling approach reduces bias toward positive classifica-
tions and enhances the model’s robustness and generalization across
various datasets. As a result, pum6a demonstrates improved classifi-
cation performance, offering a more accurate and balanced approach
to anomaly detection in MIL settings.

The pum6a framework outperforms the state-of-the-art
competitors
The pum6a framework demonstrated superior performance in multi-
instance anomaly detection when compared to several state-of-the-art
methods, including PUMA34 and the Inexact Autoencoder (IAE)35, as
well as other baselines like Random Forest and puIF (an unsupervised
Isolation Forest with logistic regression).We evaluated pum6a across a
range of datasets, including a modified MNIST image dataset and 20
well-established benchmarks for anomaly detection. To ensure
robustness and generalizability, themodel was tested using a stratified
5-fold cross-validation procedure, with varying label frequencies (10%
to 50%), and a weighted Noisy-OR method for consistent interpreta-
tion (Fig. 1a, Methods).

The results highlight pum6a’s ability to accurately identify and
prioritize critical instances, as demonstrated in the MNIST dataset,
where images of the digit “9” consistently received the highest atten-
tion, suggesting the framework’s proficiency in capturing salient fea-
tures that are critical for effective anomaly detection (Fig. 1b). When
benchmarked against other methods, pum6a exhibited superior
adaptability and accuracy, particularly under varying label frequencies.
The framework achieved consistently higher ROC AUC scores at both
the bag and instance levels across all conditions (Bag level ROC AUC:
10%LF: 0.60 ±0.15, 20%LF: 0.73 ± 0.10, 30%LF: 0.77 ± 0.10, 40%LF:
0.81 ± 0.08, 50%LF: 0.88 ±0.06; Instance level ROC AUC: 10%LF:
0.66 ±0.14, 20%LF: 0.76 ± 0.11, 30%LF: 0.81 ± 0.09, 40%LF: 0.86 ±0.06,
50%LF: 0.90 ±0.04) (Fig. 1c, Supplementary Data 1).

To further evaluate pum6a’s generalizability, we applied the fra-
mework to 20 benchmark datasets spanning various domains of
anomaly detection. The results consistently confirmed pum6a’s
superior performance, with average ROC AUC scores exceeding 0.70
across different label frequency settings (Fig. 2a, b, Supplementary
Data 1). Notably, pum6a maintained robust performance even as
dataset complexity increased, particularly in high-dimensional
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settings. The aggregate ranking across all experiments revealed that
pum6a achieved the lowest (and therefore best) average rank, affirm-
ing its competitive edge and versatility in anomaly detection tasks
(Fig. 2c, d). Thesefindings establishpum6a as a highly effective tool for
multi-instance learning in positive and unlabeled setting, demon-
strating its potential to significantly improve anomaly detection per-
formance across a wide range of datasets and applications.

Refining the pum6a framework for precise detection of
m6A sites
Tailoring the pum6a framework for thedetection ofm6Amodifications
within direct RNA sequencing data revealed its capacity to accurately
distinguish signal variations and base-calling errors generated by ONT
nanopore technology (Fig. 3a, Methods)8,36. This process involved a
comprehensive preprocessing pipeline, including base calling, re-
squiggling, and alignment using minimap, which transformed raw
signal data into structured ‘site bags’ for further analysis (Methods).

We trained and validated pum6a using two datasets from
HEK293T cell lines provided by the Singapore Nanopore Expression
Project37—replicate 1 for training and replicate 4 for validation.
pum6a’s performance was compared against six established m6A
detection methods, including EpiNano, MINES, m6Anet, ELIGOS,
Nanom6A, and Tombo. To ensure a fair comparison, we applied fil-
tering thresholds of 3, 5, and 20 reads per site, as both ELIGOS and
m6Anet discard sites with fewer than 5 and 20 reads, respectively.
Experimentally validated m6A sites from CIMS, CTIS, m6ACE, GLORI
served as additional reference7,23,38, addressing potential label under-
estimation (Fig. 3b).

Our benchmark analysis, based on ROC and precision-recall (PR)
curves (Fig. 3c–h), demonstrated pum6a’s superior performance
across all thresholds. The ROC AUC scores increased from 0.826 with
>3 reads per site to 0.842 with >20 reads per site, while PR AUC scores
improved from 0.580 to 0.615. Across all filtering criteria, pum6a
outperformed the other methods, consistently providing higher
accuracy in identifying m6A sites (Fig. 3i, Supplementary Data 2). Fur-
thermore, pum6a’s precision in identifying the top 18,000 m6A sites
remained stable, outperforming competing methods across various
conditions, highlighting its robustness in m6A site prediction (Fig. 3j).
These findings underscore pum6a’s effectiveness in leveraging train-
ing and validation datasets to optimize anomaly detection in m6A site
identification.

To further evaluate pum6a’s generalization capabilities, we
extended our analysis to mouse embryo stem cells (mESCs), utilizing
miCLIP and miCLIP2 data as the ground truth for m6A site labeling30,39.
pum6a again demonstrated superior performance, with ROC AUC
scores increasing from 0.810 with >3 reads per site to 0.827 with >20
reads, and PR AUC scores increasing from 0.325 to 0.490 (Fig. 4b–g).
Notably, pum6a identified a higher number of modified sites with
greater accuracy than baseline methods, further affirming its precision
(Fig. 4n, Supplementary Data 3). Interestingly, the minimal overlap in
m6A site predictions between species suggests species-specific mod-
ification patterns, emphasizing pum6a’s adaptability and biological
relevance. The alignment of five-mer profiles from pum6a predictions
with experimental data further supports this finding (Figs. 4i, f, S1).
Additionally, pum6a achieved exceptional results on a constructed
dataset, with ROC AUC reaching 0.946 and PR AUC 0.952 at the bag-
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level, and ROC AUC 0.857 and PR AUC 0.893 at the read level. These
results solidify pum6a’s capability for precisem6A site detection inONT
direct RNA sequencing data, demonstrating its broad applicability and
superior accuracy across various cell lines and species (Fig. 4h–k).

We observed that both pum6a and m6aNet, two advanced deep-
learning models, exhibited robust performance in predicting m6A
modifications within third-generation sequencing tasks. Given that
m6aNet’s implementation specifically includes a prediction threshold
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Fig. 3 | Application of pum6a for m6A detection in ONT direct RNA sequencing
data in HEK293T cells. a Schematic diagram of the pum6amodel tailored for m6A
detection from ONT direct RNA sequencing. The conceptual structure of the
workflow was inspired by previous works by Hendra et al. (Nature Methods)32 and
Zhong et al. (Nature Communications)47, and independently designed and inte-
grated. This figure was adapted from Hendra et al. (Nature Methods, 2022, https://
doi.org/10.1038/s41592-022-01666-1) and Zhong et al. (Nature Communications,
2023, https://doi.org/10.1038/s41467-023-37596-5), both published under a CC-BY
license (https://creativecommons.org/licenses/by/4.0/). Modifications were made.

b Distribution of m6A modification sites identified in HEK293T cells across four
experiment protocols. c, d Comparison of pum6a’s performance with EpiNano,
MINES, Nanom6A, and Tombo using ROC (c), and PR curves (d) for datasets with at
least 3 reads. e, f, ROC (e), and PR curves (f) for datasets with at least 5 reads,
comparing pum6awith additionalmethods including ELIGOS. g, h ROC (g), and PR
curves (h) for datasets with at least 20 reads, incorporating m6anet into the
comparison. i Summary of precision, recall, and F1 scores for all evaluatedmodels.
j Precision analysis of the top 18,000 m6A sites across four protocols, showing
pum6a’s superior precision.
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Fig. 4 | Evaluation of pum6a on mouse embryonic stem cells and synthetic
datasets. a Distribution of m6A modification sites identified in HEK293T cells
across two experiment protocols. b, c ROC (b), and PR curves (c) comparing
pum6a to baseline models on datasets with at least 3 reads. d, e ROC (d), and PR
curves (e) for datasets with at least 5 reads. f, g ROC (f), and PR curves (g) for
datasets with at least 20 reads, showcasing pum6a’s performance relative to other
models. h, i, j, k ROC (h, j), and PR (i, k) curves on synthetic data at the bag and

instance levels, demonstrating pum6a’s accuracy. I Comparison of m6A mod-
ification sites distributions between species (HEK293T and mouse embryonic
stem cells). Left: Ground truth set obtained from experiment protocol; Right:
Pum6a inference set.m Proportion ofm6Amodification sites predicted by pum6a
and experimental protocols for RRACH motifs in both species. n Summary of
precision, recall, and F1 scores across two protocols, highlighting pum6a’s strong
performance.
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based on a 20 reads per site criterion, we weremotivated to undertake
a comparative analysis of both models across varying read thresholds
to further clarify performance distinctions, particularly between
pum6a andm6aNet. To this end, we adapted the originalm6aNet code
to conduct a detailed evaluation under 0, 3, and 5 reads per site
thresholds. The comparative results showed that both models main-
tained strong predictive capabilities across all tested thresholds.
Moreover, both pum6a and m6aNet showed improved prediction
accuracy with higher read thresholds. Notably, pum6a consistently
outperformed m6aNet at each threshold level, particularly achieving
superior results in terms of area under the receiver operating char-
acteristic curve (ROC AUC) and area under the precision-recall curve
(PR AUC) at the 0 threshold condition (Fig. S1a-f).

This observation prompted us to investigate the essential com-
ponents contributing to the pum6amodel’s performance. To elucidate
these contributions, we performed targeted modifications by repla-
cing the attention layer and the weighted-Noisy-OR layer in pum6a
independently, then evaluated the impacts on performance. Experi-
mental results indicated that removing the attention layer hadminimal
effect on model accuracy, whereas replacing the weighted Noisy-OR
layer with a standard Noisy-OR layer led to a notable decrease in per-
formance (Fig. S1g-h). These findings suggest that, within third-
generation sequencing applications, a fully connected layer alone is
highly effective; combining it with either a Noisy-OR layer (as in
m6aNet) or a weighted-Noisy-OR layer (as in pum6a) yields high pre-
dictive accuracy for base modifications. Notably, our model frame-
work demonstrates a significant drop in accuracy when replacing
pum6a’s weighted Noisy-OR with alternative components, indicating
its critical role in performance.

The pum6a model represents an enhanced iteration of the puma
model34, originally challenged by complex datasets. To address this
limitation, we integrated an attention layer, inspired by feature
aggregation methods suggested by Ilse et al.33,34, which provided a
mechanism for better feature aggregation in pum6a. Thismodification
led to improved performance on complex datasets, while maintaining
comparable results on simpler datasets (Fig. 1b, c). Building on pre-
vious work, our approach also incorporated essential electrical signal
features and alignment data specific to individual modification sites,
totaling 40 features in all. While our third-generation sequencing
dataset is relatively manageable in complexity, we anticipate that
pum6a holds significant promise for applications involving more
complex biological data.

Dynamic m6A modification in gastric cancer mediated by m6A
demethylases under hypoxia stress
The dynamic regulation of m6A modifications by demethylases FTO
and ALKBH5 under hypoxia plays a critical role in the adaptation of
gastric cancer cells to oxygen-limited environments40,41. To explore
this relationship, we employed knockdown strategies in gastric cancer
cell lines under normoxic (20% O2) and hypoxic (1% O2) conditions,
followed by ONT direct RNA sequencing to analyze m6Amodifications
and gene expression. Poly(A) RNA was isolated for high-resolution
analysis (Fig. 5a), and knockdown efficiency was validated by Western
blot and direct RNA sequencing (Fig. 5b, c). The results revealed a
distinct regulatory pattern under hypoxia: ALKBH5 expression was
significantly upregulated, whereas FTO expression remained unchan-
ged (Fig. 5c, d, Supplementary Data 4), suggesting a pivotal role for
ALKHB5 in hypoxic response while FTOmay operate independently of
oxygen levels.

Hypoxia reduced proliferation in AGS cells (Fig. 5e), whileMKN28
cells exhibitedgreater tolerance, showing amilder reduction in growth
(Fig. S2b), consistent with previous studies indicating tumor adapta-
tion to hypoxic environments42. Further investigation into the roles of
FTO and ALKBH5 under varying oxygen conditions revealed that
overexpression of FTO enhanced proliferation in AGS cells under

normoxia but had no significant effect under hypoxia or in MKN28
cells (Figs. 5f, g, S2c, d). Overexpression of ALKBH5 did not impact cell
growth in either cell line. However, knockdown of either FTO or
ALKBH5 led to a significant reduction in proliferation in both cell lines,
particularly under hypoxia, as confirmed by cell counts and Edu assays
(Fig. 5h–k, l, m; Fig. S3e–h, i). These findings underscore the essential
roles of FTO and ALKBH5 in maintaining gastric cancer cell growth
under oxygen-limited conditions.

To further elucidate the molecular mechanisms involved, we
employed the pum6a framework to perform site-specific analysis of
m6A modifications, comparing knockdown samples to controls under
both normoxic and hypoxic consitions. This “Double check” approach
identified 1061 and 1686 m6A sites regulated by both demethylases
under normoxia and hypoxia, respectively, indicating complementary
roles for FTO and ALKBH5 in modulating m6A methylation (Fig. 5n–o,
Supplementary Data 5). Analysis of these sites revealed significant
shifts in metabolic pathways and cell cycle regulation under both
oxygen conditions, with 650 sites altered under normoxia and 1275
under hypoxia, suggesting a role for m6A in metabolic adaptation
during hypoxic stress (Fig. 5p, Supplementary Data 6). KEGG pathway
enrichment analysis of normoxia-regulated sites highlightedmetabolic
pathways, while GO analysis emphasized the importance of these sites
in cell cycle and division processes, aligning with observed effects on
cell proliferation (Fig. 5q, r, h-m; Supplementary Data 7).

Moreover, knockdown of FTO or ALKBH5 led to significant
reductions in ATP levels in both AGS and MKN28 cells, under both
normoxic and hypoxic conditions (Fig. 5s, t; S2j, k). Similarly, NAD+

levels and the NAD+/NADH ratio were significantly decreased under
hypoxia following demethylases knockdown (Fig. 5u, v; S2l, m), sug-
gesting that FTO and ALKBH5 are key regulators of energy home-
ostasis in gastric cancer cells. These findings indicate that the
depletion of FTO and ALKBH5 disrupt cellular metabolic balance,
particularly under hypoxic conditions, and highlight their roles in
maintaining energy production and supporting cancer cell survival
during oxygen deprivation.

Hypoxia-induced regulation of CXCL10 by m6A demethylases in
gastric cancer cells
The tumor-immunemicroenvironment in gastric cancer, influenced by
m6Amodifications, is intricately modulated under hypoxic conditions,
with CXCL10 emerging as keymediator in tumor-immune interactions.
Depletion of m6A demethylases, particularly ALKBH5, under hypoxia
leads to the upregulation of CXCL10, which may impact tumor pro-
gression and immune response dynamics43,44. Using the pum6a fra-
mework, we identified several predicted m6Amodification sites within
theCXCL10mRNA inAGS cells followingALKBH5 knockdown (Fig. 6a).
This knockdown significantly increased CXCL10 mRNA levels in both
AGS (Fig. 6b, c) andMKN28 cells (Fig. 6d, e) under hypoxic conditions.
Consistent with mRNA results, ELISA assays confirmed that ALKBH5
depletion elevated CXCL10 protein levels, particularly under hypoxia
(Fig. 6j–m), indicating that ALKBH5 serves as a negative regulator of
CXCL10 expression.

In contrast, FTO knockdown displayed cell-line-specific effects on
CXCL10 expression. In AGS cells, FTO knockdown increased CXCL10
mRNA and protein levels under hypoxia (Fig. 6f, g, k), while in MKN28
cells, it led to a downregulation of CXCL10 under the same conditions
(Fig. 6h, i, m). These results suggest divergent roles for FTO in reg-
ulating CXCL10, promoting its expression in AGS cells and suppressing
it in MKN28 cells, thereby highlighting the context-dependent func-
tion of FTO in different gastric cancer cell lines.

Further mechanistic insights were obtained through Actinomycin
D chase assays, which demonstrated that ALKBH5 knockdown sig-
nificantly stabilizedCXCL10mRNA in bothAGSandMKN28 cells under
hypoxia (Fig. 6n, o, p, q). FTO knockdown similarly reduced the decay
rate of CXCL10 mRNA in AGS cells under hypoxia, enhancing mRNA
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stability (Fig. 6r, s). In MKN28 cells, however, FTO knockdown
increased CXCL10 mRNA stability under normoxia but had a dimin-
ished effect under hypoxia (Fig. 6t, u). These findings indicate that
both ALKBH5 and FTO regulate CXCL10 mRNA stability in a cell-line
and oxygen-dependent manner.

To further explore the differential m6A regulation between AGS
and MKN28 cells, we analyzed the copy numbers of key m6A writers,

erasers, and readers, revealing that MKN28 cells harbor a hetero-
zygous deletion of the m6A reader YTHDF1 (Fig. S4a, b). YTHDF1 has
been shown to promote mRNA translation and stability45, while
YTHDF2 primarily facilitates mRNA decay46. In AGS cells, where both
readers are intact, YTHDF1 plays a prominent role in stabilizing
CXCL10 mRNA, as evidenced by the increased stability following
ALKBH5 knockdown (Fig. 6n, o). In contrast, MKN28 cells, with
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reduced YTHDF1 expression, may compensate by relyingmore heavily
on YTHDF2 for mRNA decay regulation (Fig. 6p, q).

To confirm the involvement ofm6A readers in CXCL10 regulation,
luciferase reporter assays were performed using wild-type andmutant
CXCL10 3′UTR sequences (Fig. S4c, d). In AGS cells, knockdown of
YTHDF1 reduced luciferase activity following ALKBH5 knockdown
under hypoxia, indicating that YTHDF1 is the primary m6A reader
mediatingCXCL10 regulation in this context (Fig. S4e, f, g, j). InMKN28
cells, however, YTHDF1 knockdown only partially reduced luciferase
activity, suggesting the involvement of alternative m6A readers in
modulating CXCL10 expression (Fig. S4h). Similarly, YTHDF1 knock-
down reduced luciferase activity inAGS cells with FTOdepletion, while
YTHDF2 knockdown increased luciferase activity inMKN28 cells under
hypoxia (Fig. S4i, j). These results underscore the crucial role of m6A
readers in regulating CXCL10 mRNA stability and translation through
m6A modifications, with distinct contributions from YTHDF1 and
YTHDF2 depending on the cellular context.

Discussion
The discovery of m6A modifications has transformed our under-
standing of RNA biology, influencing key processes such as splicing19,
translation20, and RNA stability17. Advances in DRS technologies,
particularly ONT, have enabled more detailed mapping of m6A
modifications. However, the complexity of RNA modifications has
necessitated the development of computational tools for accurate
detection8,32,36,47–50. While m6Anet has made pioneering strides in
m6A detection through multi-instance learning (MIL) on ONT
sequencing data32, its reliance on a Noisy-OR pooling layer and a 20-
read threshold introduces limitations. By aggregating multiple reads
at each site, m6Anet improves prediction accuracy; however, the 20-
read threshold results in the exclusion of lower-coverage loci,
potentially limiting the detection of m6A sites in low-abundance
transcripts32. This threshold, while reducing noise, may also over-
simplify the complexity of RNA modifications. To address these
challenges, pum6a introduces an enhanced MIL framework33,34 that
incorporates both electrical signal and base alignment features,
enabling a more comprehensive capture of modification signals.
Additionally, the inclusion of a weighted-Noisy-OR probability con-
version and an attention-based feature aggregation mechanism
offers improved detection sensitivity, particularly at low-read cov-
erage sites. Unlike m6Anet, which uses motif-based encoding to
capture m6A-related patterns, pum6a emphasizes base alignment-
derived features, such as base quality, mismatches, and deletions.
This approach allows pum6a to detect subtle sequence variations

introduced by m6A modifications, thus enhancing its robustness
across a diverse range of contexts36,48,51,52.

A major challenge in m6A detection is the variability in read
coverage across different loci. m6Anet addresses this by filtering out
loci with fewer than 20 reads, resulting in reduced noise but also
potentially missing important low-abundance modifications. In con-
trast, pum6a’s weighted-Noisy-OR mechanism allows it to estimate
modification probabilities even at low-read coverage sites, broadening
its applicability across transcripts with variable expression levels. This
adaptability was demonstrated in additional experiments where
m6Anet’s 20-read threshold was removed, allowing pum6a to out-
performm6Anet across all threshold settings in termsofROCAUCand
PR AUC. An important innovation in pum6a is its attention-based
feature aggregation mechanism. While m6Anet employs a traditional
MIL approach, pum6a selectively focuses on the most informative
reads, which improves the signal-to-noise ratio and detection specifi-
city, particularly for m6A sites with low stoichiometry. Furthermore,
pum6a’s incorporation of positive-unlabeled learning addresses the
critical issue of incomplete m6A site labeling in training data47,
enabling it to effectively identify m6A sites even in the presence of
incomplete or noisy labels. This makes pum6a particularly effective in
detecting m6A modifications in low-abundance transcripts or under-
represented biological conditions.

Our application of pum6a to the study of m6A demethylases in
gastric cancer cells under hypoxia highlights its potential for revealing
unrecognized regulatory mechanisms. Notably, pum6a’s flexibility in
handling read imbalance allowed us to investigate differential m6A
modifications across cell lines with variable read coverage. In AGS and
MKN28 cells, we observed differential regulation of m6A-modified
transcripts, particularly in relation to CXCL10 mRNA stability, indi-
cating cell-specific responses to hypoxia. In MKN28 cells, a hetero-
zygous deletion of the m6A reader YTHDF1 suggests a shift in
regulatory dependence towards YTHDF2, which promotes mRNA
decay47. In AGS cells, where YTHDF1 is fully expressed, CXCL10mRNA
stability is maintained through YTHDF1-mediated recognition of m6A
sites. This shift in m6A reader dependency between the two cell lines
underscores the flexibility of m6A regulatory networks and the
importance of specific m6A readers in modulating transcript stability
and translation under stress conditions, such as hypoxia. Furthermore,
our data suggest that ALKBH5 and FTO target distinctm6A sites within
CXCL10mRNA. ALKBH5 appears to regulatemodifications outside the
3′UTR, while FTO primarily targets the 3′UTR, providing additional
insights into the selective activity of m6A demethylases. This differ-
ential targeting highlights the complex roles that m6A modifications

Fig. 5 | Dynamic regulation of m6A modification by hypoxia and m6A deme-
thylases in gastric cancer cells. a Experimental workflow for assessing dynamic
m6Amodification under hypoxia and the effects ofm6A demethylases.b, Validation
of ALKBH5 and FTO knockdown efficiency by Western blot in AGS gastric cancer
cells. c Gene count of ALKBH5 and FTO in AGS cells under different oxygen con-
ditions. *p =0.0475 by a t-test. d Western blot analysis showing differential
expression of ALKBH5 and FTO in AGS cells under normoxic and hypoxic condi-
tions. e AGS cell proliferation responses to hypoxia, showing suppressed growth.
****p <0.0001 by a two-way ANOVA. f, g Impact of ALKBH5 or FTO overexpression
on AGS cell growth under normoxia (f) and hypoxia (g), quantified by cell count. In
f, ALKBH5-OE (**p =0.0019), FTO-OE (***p =0.0006) by a two-way ANOVA. h, i, j, k
Effects of ALKBH5 and FTO knockdownon AGS cell proliferation and growth under
normoxia (h, j) and hypoxia (i, k), quantified through cell count (h–i) and growth
rate (j–k) measurements. ****p <0.0001 by a two-way ANOVA. l,m Knockdown of
ALKBH5 or FTO significantly reduced proliferation of AGS cells under hypoxia, as
measured by EdU assay. Scale bars are 200μm. Quantification of fold changes was
performed using ImageJ. l: Normoxia; *p =0.0268, *p =0.0174, *p =0.0118,
*p =0.0124, by a t-test. m: Hypoxia; *p =0.0126, **p =0.0014, *p =0.0128,
*p =0.0359, by a t-test. n, o Distribution analysis of m6A-modified sites in AGS cells
following ALKBH5 or FTO knockdown under normoxia (n) and hypoxia (o).

pOverlap analysis showing commonm6A-modified sites regulated by ALKBH5 and
FTO under varying oxygen levels. q KEGG pathway enrichment analysis of
m6A-modified sites regulated by m6A demethylases under normoxic conditions.
Dot color indicates the number of genes, anddot size represents the –log10 p-value
of the pathway term. r Gene Oncology (GO) enrichment analysis of m6A-modified
sites regulated by m6A demethylases under hypoxia. Dot color indicates the
number of genes, and dot size represents the –log10 p-value of the biological
process term. Statistical analysis (q, r) was performed using a two-sided hyper-
geometric test with adjustment for multiple comparisons using the Benjamini-
Hochberg (BH) method to control the false discovery rate (FDR). s, t Significant
reduction of ATP levels in AGS cells following FTO/ALKBH5-knockdown under
normoxic (s) and hypoxic (t) conditions. In s, **p =0.0022, **p =0.0018,
**p =0.0041, **p =0.002, by a t-test. In t, ***p =0.001, ***p =0.0001, ****p <0.0001,
***p =0.0007, by a t-test. u, v Decreased NAD+ levels and NAD+ /NADH ratio in
AGS cells after FTO/ALKBH5 depletion under normoxic (u) and hypoxic (v) con-
ditions. In u, *p =0.011, **p =0.0075, **p =0.0049, **p =0.0058, by a t-test. In
v, **p =0.0045, *p =0.0136, **p =0.0066, *p =0.0129, by a t-test. Data are presented
as mean ± S.D. and are representative of three independent experiments. Source
data are provided as a Source Data file.
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play in regulating gene expression in gastric cancer, particularly in
response to hypoxic stress.

While m6Anet provided an important foundation for m6A detec-
tion from ONT sequencing data, pum6a represents a significant
advancement in the field by addressing key limitations inherent in
previous methods. Through the integration of both electrical signal
and base alignment features, the use of a weighted-Noisy-OR approach

to handle variable read coverage, and an attention-based read selec-
tion strategy, pum6a improves detection accuracy and sensitivity.
Additionally, its positive-unlabeled learning capability enables pum6a
to detect m6A sites that may be overlooked by threshold-based
methods like m6Anet.

In conclusion, pum6a is not merely an extension of m6Anet but a
comprehensive framework that offers more flexibility and nuanced
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detection for m6A detection in direct RNA sequencing data. This
advancement broadens opportunities for exploring RNA modifica-
tions and their roles in a wide range of biological processes, particu-
larly in complex and variable environments like cancer and hypoxia.

Methods
Pum6a design
Pum6a is an attention-based positive and unlabeled multi-instance
learning framework well-designed for detecting RNA modification
using direct RNA-Seq data.

MILwithNeuralNetworks. In the caseof theMILproblem, one aims to
find a model that predicts a value of a target variable, Y∈{0, 1}, for a
given a bag of instances, X = x1, . . . , xk

� �
. Where k represents the

number of instances. We assume that individual labels exist for the
instanceswithin a bag, i:e:, y1, . . . , yk , yk 2 0, 1f g, however they remain
unknown as there is no access to those labels. So, we can re-write the
assumptions of the MIL problem as below:

Y =
0, if

P
kyk =0,

1, otherwise:

�
ð1Þ

These assumptions imply that a MIL model must be permutation-
invariant.We can assumeneither ordering nor dependency of instances
within a bag, so theMIL problemcan be considered as a specific formof
the Fundamental Theorem of Symmetric Functions with monomials.

In the classical MIL problem, features of instances do not require
further processing. In complex cases like images or text, additional
steps of feature extraction are necessary.

Here, we use a neural network f φ :ð Þ to transform the k-th instance
into a low-dimensional embedding, where φ represents neural net-
work parameters.

hk = f φ xk
� �

ð2Þ

Where xk represent k-th instance, andhk 2 H = RM represent the low-
dimensional embedding for k-th instance.

MIL pooling. Classical MIL pooling approaches such as maximum
operator 8m= 1, ...,M : zm =maxk = 1, ...,K hkm

� �
and mean operator

z = 1
K

PK
k = 1hk , are pre-defined and non-trainable. Here, we propose to

parameterize the neural networks for flexible and adaptive MIL pool-
ing. A weighted average of instances where weights are determined by
neural network was used:

z =
XK
k = 1

akhk ð3Þ

Where hk is the K embedding of H = h1, . . . ,hk

� �
, and ak is the

attention-based neural network function to ensure the sum of weights

to 1 to be invariant to the size of a bag:

ak =
exp wT tanh VhT

k

� �n o
PK

j = 1 exp wT tanh VhT
j

� �n o ð4Þ

Wherew 2 RL× 1 and V 2 RL×M are parameters. tanh(·) is the element-
wise non-linearity hyperbolic tangent to include both negative and
positive values for proper gradient flow.

Loss function of the MIL learning module. To simplify the learning
problem, we train the MIL module by optimizing the negative log-
likelihood function, assuming the bag label is distributed according to
the Bernoulli distribution.

Lm = �
XN
k = 1

ðyk logPk + 1� yk
� �

log 1� Pk

� �Þ ð5Þ

Where: Pk =
1

1 + e�wz , z represent the weighted average of instances and
the w is the parameter.

Mapping attention scores to probabilities. Ideally, high attention
weight would be assigned to instances that are likely to have label
yk = 1: That is the key instance would obtain a larger attention score:

attsk =w
T tanh VhT

k

� �
ð6Þ

So, we can further map instance attention score to instance
probability using Platt scaling:

Pk =
1

1 + exp �α attsk
� �� β

� � ð7Þ

Note that one could apply any transformation function to map
attention score to [0, 1]. We choose Platt scaling as it is widely used in
the literature.

Transform instance probabilities into bag probabilities. Taking the
max instance probabilities or an unweighted average of the instance
probabilities to compute the bag probabilities has a clear dis-
advantage. Taking the max instance probability means that the bag
label is based on a single instance and ignores the information in other
samples, which might be inappropriate following the embedding
functionmentioned above.Moreover, themean approachwouldmake
a bag that contains a small number of anomalies seem more normal
than it is. Noisy-OR is a promising alternative, which computes the bag
probabilities of being positive as “oneminus the probability that all the
instances are negatives.”

Nosiy�ORð ÞPðŶB = 1Þ= 1�
Y
j≤ k

1� f xj
� �� �

Fig. 6 | Hypoxia-induced regulation of CXCL10 expression by m6A demethy-
lases in gastric cancer cells. a Detection of m6A modification sites in CXCL10
mRNA in AGS cells following ALKBH5 knockdown, identified by pum6a analysis. b,
c, d, e Knockdown of ALKBH5 upregulated CXCL10 mRNA expression in AGS cells
(b, c) and MKN28 cells (d, e) under hypoxic conditions. In b, *p =0.013,
**p =0.0086, by a t-test. In c, **p =0.0098, **p =0.0061, *p =0.0103, ***p =0.0001,
by a t-test. In d, ***p =0.0003, **p =0.002, by a t-test. In e, *p =0.029, *p =0.0153,
*p =0.0129, ***p =0.0004, by a t-test. f, g, h, i Knockdown of FTO upregulated
CXCL10 mRNA expression in AGS cells (f, g) and downregulated CXCL10 expres-
sion in MKN28 cells (h, i) under hypoxia. In f, ***p =0.0001, ***p =0.0002, by a
t-test. In g, ****p <0.0001, ****p <0.0001, *p =0.0219, *p =0.0147, by a t-test. In
h, ****p <0.0001, ****p <0.0001, by a t-test. In i, **p =0.0012, ***p =0.0005,

**p =0.0041, **p =0.0026, by a t-test. j, k, l, m ELISA validation of CXCL10 protein
levels in AGS cells (j, k) and MKN28 cells (l, m) with ALKBH5 or FTO knockdown
under normoxic and hypoxic conditions. In k, ***p =0.0002, ****p <0.0001,
*p =0.012, **p =0.0021, by a t-test. In m, ***p =0.0003, ***p =0.0003, **p =0.0031,
*p =0.0356, by a t-test. n, o, p, q Actinomycin D chase assays showing that ALKBH5
knockdown decelerated CXCL10 mRNA decay rates in AGS cells (n, o) and MKN28
cells (p, q) under hypoxia. In o, ****p <0.0001, by a two-way ANOVA; In
q, **p =0.0024, by a two-way ANOVA. r, s, t, u FTO Knockdown decreased CXCL10
mRNAdecay rates in AGS cells (r, s) under hypoxia but promotedmRNA stability in
MKN28 cells (t, u). In s, ***p =0.0003, by a two-way ANOVA. Data are presented as
mean ± S.D. and are representative of three independent experiments. Source data
are provided as a Source Data file.
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The standard Noisy-OR is clearly inappropriate in the case of ONT
data, as different sites may contain various numbers of reads. The
standard noisy-OR approach produces bag probabilities of being
positive that converge exponentially to 1 for k→ +∞. In this research,
weighted Noisy-OR is used, which gives higher weight to the instances
with the highest and the lowest positive probabilities.

Weighted nosiy�ORð ÞP ŶB = 1
� �

= 1�
Y
xjϵB

1� f xj
� �� �wj

ð8Þ

Where wj is the weight for xj, and is calculated as follow:

First. we rank the positive instance probabilities in ascending order
using a ranking map pf : R

k ! 0, . . . , k � 1
� �

and normalize the
rankings to [0, 1] by dividing them by k-1.

pf xj

� �
= rϵ 0, . . . , k � 1

� �() xϵ x1, . . . , xk
� �

: f xð Þ< r
		 		= r

xϵ x1, . . . , xk

� �
: f xð Þ> r

		 		= k � r � 1

(

ð9Þ
Second. we introduce a weight function S: [0, 1]⟶ℝ that gives high
weights to both high and low rankings.

S
pf xj

� �
k � 1

0
@

1
A=N0

pf xj

� �
k � 1

0
@

1
A+ N1

pf xj

� �
k � 1

0
@

1
A ð10Þ

Where Nα is the Gaussian density function with mean α and standard
deviation0.1. Here, wedefine S asN0+N1 tomake such function tohave
two peaks. (0 for low rankings and 1 for high rankings) and be flat
(almost null) in between.

Third. weapply the function S to each instance’s ranking andnormalize
them within bag.

wj = S
pf xj

� �
k � 1

0
@

1
A=
X
q<k

S
pf xq

� �
k � 1

0
@

1
A ð11Þ

Selecting theR reliable negatives. In the positive and unlabeled task,
learning from only positive bag labels would make the model overfit
towards the positive class. Here, we selected |R| reliable negatives
negative bags among B with the lowest positive probability. We
selected |R|=|P|, to transform the problem into a classification task with
balanced classes.

Loss function of the positive and unlabeled learning module.
Similarly, as we assume that labels follow a Bernoulli distribution with
parameter F(B), we build the loss function for this module as:

Lp = � log
Y
B2P

F Bð Þ
Y
B2R

1� F Bð Þð Þ
 !

+ λ α2 + β2
� �

ð12Þ

Where α2 + β2
� �

avoid overfitting, and we derive pum6a’s loss func-
tion as

L= Lm + Lp ð13Þ
Pum6a for modification detection from nanopore direct RNA
sequence data
Base-calling, re-squiggle, and mapping. Training and evaluation
data of the pum6a model were obtained from refs. We downloaded a
single replicate of the HEK293T cell lines (replicate 1) for model
training. We use another independent single replicate of the HEK293T
cell lines (replicate 4) for model evaluation. We further tested the

model performance in other species (mouse embryonic stem cells)
and constructed data (Curlcake). Reads were locally base-called using
Guppy 6.5.7. MINES [11] corrected the raw signal through Tombo re-
squiggle function. After base-calling, we performed re-squiggle with
Tombo (v1.5) to correct the raw base-calling sequence and assign the
corrected base to the raw signal segment. We finally mapped the
sequences to the genome using minimap2 with the settings -ax
map-ont.

Feature extraction. We searched for the RRACH motif and extracted
the signal features and the sequence features per site. As for the signal
feature, we extracted the median, standard deviation, mean, and
number of Nanopore signals form each RRACHmotif. As for sequence
features, we use sam2tsv from jvarkit to convertBAMalignment files to
tab delimited. We extract mean per-base quality, mismatch frequency,
insertion frequency, and deletion frequency for each RRACH motif.

Model training and evaluation. Modified position of HEK293T from
miCLIP, m6ACE-seq, and GLORI were obtained from ref. We combined
CIMS, CITS, m6ACE-seq and GLORI libraries as ground truths for
model training and evaluation. We train the model with HEK293T data
and further evaluate the model in a mouse embryo sample. We
downloaded miCLIP1 and miCLIP2 libraries of mES from the ref and
combined them as ground truth labels for model evaluation.

Comparison with other models for m6A detection
Tombo. We ran Tombo v.1.5.1 from https://github.com/nanoporetech/
tombo. After re-squiggle reads, we assign raw current signals to each
base. We then use a de novo non-canonical base method with the
“detect_modifications de_novo” command for modification detection.

EpiNano. We ran EpiNano 1.2 from https://github.com/enovoa/
EpiNano. We collected the mean quality, mismatch, insertion, and
deletion frequency of eachbase of theRRACHmotif.Moreover,we use
the Support VectorMachinemodels EpiNano offers form6A detection.

MINES. We ranMINES from https://github.com/YeoLab/MINES. Mines
trained the random forestmodel form6A detection using the coverage
and fraction-modified values calculated by Tombo. As MINES only use
for AGACT and GGACH motifs detection. We modified the code to
output the modification probability of all sites in all RRACH motifs.

Nanom6A. We ran nanom6A from https://github.com/gaoyubang/
nanom6A. Nanomo6a trained the XGBoost model for m6A detection
using the median, mean, standard deviation and dwell time features
from normalized raw signals.

ELIGOS. We ran ELIGOS from https://gitlab.com/piroonj/eligos2. We
used the “rna_mod” of ELIGOS for the identification of RNA modifica-
tions compared to an rBEM + 2 model.

M6anet. We ran m6anet from https://github.com/GoekeLab/m6anet.
We usedNanopolish (0.14.1) to generate the input required bym6anet.

Gene level counts of DRS data
In long-read mode, we used featureCounts version 1.6.3 for each
nanopore DRS replicate Gene level counts53.

Enrichment analysis
We used web server DAVID for functional enrichment analysis54.

Cell culture and treatments
The cells were maintained at 37 °C in a humidified incubator with 5%
CO2. For the hypoxic culture, the cells were cultured in a low oxygen
incubator with a gas mixture containing 1% O2, 5% CO2, and 94% N2.
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HEK-293T cells (ATCC, CRL-3216, USA) were cultured in DMEM
(Gibco), while AGS (ATCC, CRL-1739, USA) andMKN28 (BNCC, 338339,
China) cells were cultured in RPMI (Gibco). The culture media were
supplemented with 10% FBS (Gibco) and 1% penicillin and streptomy-
cin (Gibco).

Plasmid construction, lentiviral production and tumor cell
infection
Stable knockdowns of FTO, ALKBH5, YTHDF1 and YTHDF2 were gen-
erated using lentiviral-based shRNA. For each knockdown, 10μg of
PLKO.1 plasmid (PLKO.1 puro #8453, PLKO.1 hygro #24150, addgene)
containing shRNA targeting the gene of interest, along with 5.6μg of
PAX2 (#12260, addgene) and 3.5μg of pMD2.G (#12259, addgene)
packaging vectors, were co-transfected into HEK-293T cells in 100mm
cell-culture dishes. The shRNA sequences used for FTO knockdown
were shFTO (1, CGGTTCACAACCTCGGTTTAG; 2, TCACCAAGGAGACT
GCTATTT), for ALKBH5 knockdown were shALKBH5 (1, GAAAGGC
TGTTGGCATCAATA; 2, CCACCCAGCTATGCTTCAGAT; 3, CCTCAG-
GAAGACAAGATTAGA), for YTHDF1 knockdown were shYTHDF1
(CCCTACCTGTCCAGCTATTAC) and for YTHDF2 knockdown were
shYTHDF2 (TCTGGATATAGTAGCAATTAT). After 48 and 72 h, the
virus-containing supernatant was collected and filtered through a 0.22
μm PES Syringe Filter (Thermo Fisher) before infecting the target cells
with 8μg/mL Polybrene (TR-1003, Sigma). The cells were then
screened with puromycin (2μg/mL) at the corresponding concentra-
tion for 3-5 days to obtain stable knockdown cells. The FTO cDNA
(NM_001080432) and ALKBH5 cDNA (NM_017758) were cloned into
pCDH-puro lentiviral vector (CD510B-1, System Biosciences).

Poly(A) RNA isolation
100μg aliquots of total RNA were diluted in 100 μl of nuclease-free
water and subjected to poly(A) selection using Magnosphere MS150/
Oligo(dT) Beads (Lexogen, Poly(A) RNA Selection Kit, cat. no.
039.100). The eluted poly(A) RNA was measured using a Qubit fluo-
rometer, and stored at -80 °C for MinION native RNA sequencing.

MinION native RNA sequencing
For the preparation of RNA libraries, 500ng of poly(A) RNAwere used,
and the Direct RNA Sequencing Kit (SQK-RNA002) was employed for
nanopore direct RNA sequencing. The ligation of the RT Adapter and
RNA Adapter was carried out using T4 DNA Ligase (M0202, NEB) and
SuperScript III Reverse Transcriptase (18080044, Thermo Fisher Sci-
entific). The RNA library was purified using Agencourt RNAClean XP
beads. SpotON flow cells were primed and loaded according to the kit
protocol for RNA sequencing on the MinION platform.

Proliferation and viability assays
Cell viability was assessed using the Cell Counting Kit-8 (CCK-8 assay,
DOJINDO) following the manufacturer’s instructions. The proliferative
capacity of AGS and MKN28 cells was measured by cell counting and
the BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 555
(C0075L, Beyotime).

RNA isolation and quantitative real-time PCR
Total RNA was extracted from tumor cells using TRIzol reagent
(15596018, ThermoFisher) following themanufacturer’s instructions, and
cDNA was synthesized using the PrimeScript RT reagent Kit (RR036A,
Takara). RT-qPCR was performed on the 7500 apparatus (Applied Bio-
systems) using SYBR-Green Master mix (RR820B, Takara). The following
primer sequenceswere used: GAPDH (Forward, GTCTCCTCTGACTTCAA
CAGCG; Reverse, ACCACCCTGTTGCTGTAGCCAA), CXCL10 (Forward,
GTGGCATTCAAGGAGTACCTC; Reverse, TGATGGCCTTCGATTCTGGAT
T), YTHDF1 (Forward, CAAGCACACAACCTCCATCTTCG; Reverse, GTAA
GAAACTGGTTCGCCCTCAT) and YTHDF2 (Forward, TAGCCAGCTACAA
GCACACCAC; Reverse, CAACCGTTGCTGCAGTCTGTGT).

Western blotting
Protein samples were extracted using RIPA lysis buffer containing a
protease inhibitor cocktail (Roche) and the protein concentration was
quantified using the BCA method. A total of 30 µg of protein was loa-
ded and electrophoresed on 12% SDS–polyacrylamide gels, transferred
onto PVDF membranes (Invitrogen), and subjected to western blot
analysis. Antibodies were diluted in 5% (wt/vol) nonfat dry milk in PBS
containing 0.1% Tween-20. The primary antibodies used were rabbit
monoclonal anti-ALKBH5 (1:1000, A11684, ABclonal), rabbit mono-
clonal anti-FTO (1:1000, A3861, ABclonal), and anti-GAPDH (1:1000,
5147, Cell Signaling Technologies).

ATP and NAD+ /NADH assay
The levels of ATP and NAD+ /NADH were measured using the ATP
Assay Kit (S0026, Beyotime) and NAD+ /NADH Assay Kit with WST-8
(S0175, Beyotime), respectively. The protein samples were quantified
using the BCA protein assay kit (P0011, Beyotime) to determine the
ATP or NAD+ /NADH levels per microgram of protein.

RNA stability
The cells were treated with actinomycin D (HY-17559-5 mg, MCE) at a
final concentration of 5μg/mL for the indicated time period, after
which they were collected. Real-time PCR was then performed to
determine the relative abundance of each mRNA.

ELISA
Supernatants from AGS, MKN28, and their corresponding stable
knockdown cells for FTO or ALKBH5 were used to measure the con-
centrations of CXCL10. The Human CXCL10 ELISA Kit (EHC157.96,
Neobioscience) were used according to the manufacturer’s instruc-
tions to quantify the concentrations of CXCL10.

Luciferase reporter assays and mutagenesis analysis
The 3′UTR sequence of CXCL10 was amplified by PCR from AGS
cell genomic DNA and subsequently subcloned into the dual-
luciferase vector pmiGLO (C838A, Promega). Predicted m6A
recognition sites within the 3′UTR were identified through the
pum6A analysis. Site-directed mutagenesis, altering adenine (A) to
thymine (T), was performed using the QuikChange II Site-Directed
Mutagenesis Kit (200523, Agilent). Luciferase activity was mea-
sured using the dual-luciferase reporter assay kit (RG028, Beyo-
time) in the GM2000 luminometer (Promega). All experiments
were performed in triplicate, and firefly luciferase activity was
normalized to Renilla luciferase activity to account for variations
in transfection efficiency.

Statistics and reproducibility
No statistical method was used to predetermine the sample size.
No data were excluded from the analyses. The experiments were
not randomized, and the investigators were not blinded to allo-
cation during experiments and outcome assessment. Data are
presented as the mean ± standard deviation (S.D.). Statistical ana-
lyses were performed using GraphPad Prism 10.0 software. Sta-
tistical differences between the indicated groups were assessed
using a two-tailed Student’s t-test or two-way ANOVA. A p value of
less than 0.05 was considered statistically significant. Statistical
significance is indicated as follows: p < 0.05; *p < 0.01; **p < 0.001.
Biological replicates and the number of independent experiments
are stated in the figure legends. All experiments presented as
representative micrographs or gels were repeated at least 3 times
with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The HEK293T cell lines data generated in this study have been
deposited in the European Nucleotide Archive (ENA) under accession
code PRJEB44348. The mouse embryo data used in this study are
available in the Gene Expression Omnibus (GEO) database under
accession code GSE195618. The constructed data were obtained from
the GEO database under accession code GSE124309. The benchmark
anomaly datasets used in this study are publicly accessible at https://
github.com/Minqi824/ADBench/tree/main/adbench/datasets/
Classical. The data generated in this study are provided in the Sup-
plementary Information/Source Data file. Source data are provided
with this paper.

Code availability
The source code for pum6a is publicly available at https://github.com/
liuchuwei/pum6a and the doi for the code is https://doi.org/10.5281/
zenodo.14279615.
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