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Background and Objectives: Previous studies have reported there were associations between ovarian function 
and dietary factors, metabolic factors and gut microbiota. However, it is unclear whether causal associations exist. 
We aimed to explore the causal relationship of these factors with risk of primary ovarian failure (POF). Methods 
and Study Design: Two-sample Mendelian randomization (MR) analysis was performed to genetically predict 
the causal effects of dietary and metabolic factors and gut microbiota on POF. The inverse variance weighted 
(IVW) method was used as the primary statistical method. A series of sensitivity analyses, including weighted 
median, MR-Egger, simple mode, weighted mode methods, and leave-one-out analysis, were conducted to assess 
the robustness of the MR analysis results. Results: IVW analysis revealed that cigarettes smoked per day, coffee 
intake and cooked vegetable intake were not causally correlated with POF at the genetic level. However, POF 
were associated with fresh fruit intake, BMI, Eubacterium (hallii group), Eubacterium (ventriosum group), Ad-
lercreutzia, Intestinibacter, Lachnospiraceae (UCG008), and Terrisporobacter. These findings were robust ac-
cording to extensive sensitivity analyses. Conclusions: This study identified several dietary factors, metabolic 
factors and gut microbiota taxa that may be causally implicated in POF, potentially offering new therapeutic tar-
gets. 
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INTRODUCTION 
The ovary is essential for establishing and maintaining 
secondary sexual characteristics and fertility in females. 
However, primary ovarian failure (POF) negatively influ-
ences reproductive health and induces disorders of ovari-
an function. POF is defined as the presence of postmeno-
pausal levels of follicle-stimulating hormone (FSH) (> 40 
IU/L) in woman under 40 years of age, accompanied by 
four or more months of secondary amenorrhea, indicating 
the exhaustion of the ovarian reserve before age 40. In 
addition, women with POF experience menopausal symp-
toms and are adversely affected by long-term estrogen 
deprivation, which significantly affects their physical and 
mental health.1 Given that the chance of spontaneous 
conception is 5%-10%,2 adoption or in vitro fertilization 
and embryo transfer using donor oocytes are considered  

 
 
effective fertility treatments for women with POF. The 
etiology of POF is heterogeneous, including genetic de-
fects, autoimmune diseases, iatrogenic factors (radiother-
apy, chemotherapy, and ovarian surgery), and environ-
mental factors.3 However, most patients are idiopathic an- 
 
Corresponding Author: Prof Hefeng Huang, Department of 
Obstetrics and Gynecology, Center for Reproductive Medicine, 
the Fourth Affiliated Hospital of School of Medicine, and Inter-
national School of Medicine, International Institutes of Medi-
cine, Zhejiang University, Yiwu, China. 1575 Chouzhou North 
Rd., Yiwu, Zhejiang, China, 322000 
Tel: +86-13906526300 
Email: hhf57@zju.edu.cn 
Manuscript received 16 June 2024. Initial review completed 18 
June 2024. Revision accepted 13 August 2024. 
doi: 10.6133/apjcn.202502_34(1).0005 

mailto:hhf57@zju.edu.cn


58                                     X Liu, Z Lin, K Zhu, R He, Z Jiang, H Wu, et al. 

d the cause is unclear. Compared with immobile etiolo-
gies such as genetic and iatrogenic factors, learning and 
understanding the influence of modifiable factors such as 
diet, metabolic traits and gut microbiota in POF seem 
more valuable for the prevention and treatment of this 
disease. The most established and well-learned dietary 
factor associated with POF is smoking, while caffeine 
intake has been suggested as a potential factor.4 Several 
observational studies have suggested that smoking dura-
tion,5-8 caffeine consumption,9-11 and fruit intake12,13 were 
associated with the age of menopause. In addition, the 
gastrointestinal tract, which hosts ten trillion diverse 
symbionts (50 bacterial phyla and approximately 100–
1000 bacterial species), has been extensively studied ow-
ing to its basic functions in the immunological, metabolic, 
structural and neurological landscapes in humans.14 The 
interactions of the gut microbiota with estrogen, andro-
gens, insulin, and other hormones appear to be crucial for 
the reproductive endocrine system.15 Imbalance of the gut 
microbiota composition can lead to polycystic ovary syn-
drome (PCOS),16-18 endometriosis,19,20 ovarian dysfunc-
tion,21 and ovarian cancer.22 However, less is known 
about the exact role of diet and gut microbiota in ovarian 
physiology, and few studies have explored the causal re-
lationship between the gut microbiota and POF.23 

Although randomized controlled trials (RCTs) are the 
gold standard for establishing causal relationships, they 
can be costly, time-consuming and even impractical.24 On 

the other hand, observational studies may not robustly 
reflect causal relationships owing to many potential bias-
es, confounders and reverse causation.25 Mendelian ran-
domization (MR) is an approach that uses genetic variants 
associated with an exposure as instrumental variables 
(IVs) to examine the causality of exposure–outcome as-
sociations. MR can minimize potential confounders and 
reverse causality because genetic variants segregate ran-
domly and independently, preceding the outcome of in-
terest.24 Furthermore, during the last decade, the publica-
tion of a large volume of genome-wide association stud-
ies (GWASs) has enabled MR studies to be conducted 
without recruiting new patients. Therefore, MR provides 
a suitable method for inferring the causal effect between 
risk factors and POF. Here, we conducted an MR study to 
investigate the associations between dietary and metabol-
ic factors and gut microbiota with the risk of POF. 
 
METHODS 
We assessed the causal links between lifestyle-related 
exposure factors and POF using two-sample MR. An 
overview of the analytical approach is shown in Figure 
1A. 

 
Exposure data 
Diet-related exposure factors used in this study included 
cigarettes smoked per day, coffee intake, fresh fruit in-
take, and cooked vegetable intake. Metabolism-related 

 

 
 
Figure 1. Study design (A) Flowchart showing the process for the MR analyses, including data collection, IVs selection, and statistical 
analysis. (B) Directed acyclic graph showing the assumptions of the MR methodology. MR relies on three assumptions: the genetic var-
iants selected as instruments must (1) be associated with the exposures, (2) not be associated with confounders, (3) not directly affect 
the outcome, except through their effect on the exposures. SNP, single-nucleotide polymorphisms. 
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exposure factors used in this study included body mass 
index (BMI), fasting insulin, and fasting glucose. These 
GWAS summary-level data were extracted from IEU 
open GWAS project. We obtained genetic variant infor-
mation related to the human gut microbiome composition 
from the latest large-scale genome-wide meta-analysis 
conducted by the MiBioGen consortium 
(https://mibiogen.gcc.rug.nl/.) based on European-
dominated participants.26 This study analyzed genome-
wide genotypes and 16S fecal microbiome data from 
18,340 individuals from 24 cohorts. Accordingly, the 
genus level was the lowest. A total of 131 genera with a 
mean abundance greater than 1% were identified, 12 of 
which were unknown genera.26 As a result, we included 
119 genus-level taxa in this study. More information 
about the exposure datasets is presented in Table 1. 

 
Outcome data 
GWAS summary statistics related to POF were obtained 
from the FinnGen Consortium release data (https: 
//www.r8.finngen.fi/.), which is one of the largest na-
tionwide genetic studies with access to comprehensive 
electronic health register data of participants. Detailed 
information on used exposure datasets is presented in 
Table 1. 

 
Instrumental variable selection 
Single-nucleotide polymorphisms (SNPs) are used as IVs 
in MR analysis to provide evidence of causality between 
the exposure and outcome. To ensure the accuracy and 
robustness of the causal links, SNPs must satisfy three 
core assumptions to be used as IVs (Figure 1B).27 There-
fore, we selected independent SNPs (linkage disequilibri-
um R2 < 0.001 and clumping distance=10,000 kb, based 
on the European-based 1000 Genome Projects reference 
panel) associated with each exposure factor at a genome-

wide threshold of significance (p  <5× 10−8, diet-related 
and metabolism-related exposure factors) or at a locus-
wide threshold of significance (p  <1× 10−5, gut microbi-
ome-related exposure factors).  

 
Statistical analysis 
The inverse variance weighted (IVW) method was used 
as the primary statistical method and can provide the most 
accurate causal estimates provided that the pleiotropic 
effect is balanced and that all IVs meet the MR assump-
tions.28 Given the difficulty in verifying that IVs influ-
ence the outcome solely through the exposure of interest, 
we performed a series of sensitivity analyses under vari-
ous assumptions. These were designed to assess the ro-
bustness of the associations and to examine horizontal 
pleiotropy for exposures, using methods such as weighted 
median, MR-Egger, simple mode, and weighted mode. 
The weighted median of SNP-specific estimates provides 
valid results when more than 50% of the information is 
contributed by IVs.29 MR-Egger regression provides a 
valid estimate of causal estimates under the instrument 
strength independent of direct effect (InSIDE) assump-
tion.30 However, this approach was used to detect and 
adjust for unbalanced horizontal pleiotropy rather than to 
produce causal estimates due to the low statistical power 
of MR-Egger. A MR-Egger intercept significantly differ-
ent from 0 (p < 0.05) indicates the occurrence of direc-
tional pleiotropy and a potentially biased IVW estimate. 
To further test the robustness of our results, Cochran’s Q 
test was used to evaluate heterogeneity among the SNPs 
included in each analysis. Q statistics significant at p < 
0.05 provide evidence for heterogeneity between individ-
ual genetic variants and the existence of invalid instru-
ments.31 In addition, leave-one-out analysis was per-
formed to assess whether an outcome was driven by a 
single outlying SNP,32 indicating the presence of hetero-

 
Table 1. Information of the exposures and outcome datasets 
 
Exposure or outcome IEU GWAS id Consortium Cases Controls Sample size Population 

Cigarettes smoked per 
day 

ieu-b-142 GSCAN NA NA 249,752 European 

Coffee intake ukb-b-5237 MRC-IEU NA NA 428,860 European 

Fresh fruit intake ukb-b-3881 MRC-IEU NA NA 446,462 European 

Cooked vegetable 
intake 

ukb-b-8089 MRC-IEU NA NA 448,651 European 

BMI ukb-b-19953 MRC-IEU NA NA 461,460 European 
Fasting insulin ebi-a-

GCST90002238 
NA NA NA 151,013 European 

Fasting glucose ebi-a-
GCST90002232 

NA NA NA 200,622 European 

Gut microbiome NA MiBioGen 
consortium 

NA NA 18,340 European (N=13,266), 
Middle-Eastern (N=481), 

East Asian (N=811), 
American Hispanic/ 

Latin (N=1097), 
African American (N=114) 

multi-ancestry (N=2571) 
POF NA FinnGen 

consortium 
25,117 148,629 173,746 European 

 
BMI, body mass index; POF, premature ovarian failure 
 

https://mibiogen.gcc.rug.nl/.)
http://www.r8.finngen.fi/.),
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geneous SNPs. Furthermore, if the genetic variants do not 
explain enough of the variance, there will be significant 
weak instrumental bias toward the confounded estimate.33 
To address this concern, SNP-specific F-statistics, ap-
proximated by the square of the beta divided by the vari-
ance for the SNP-exposure association, were calculated to 
evaluate the strength of the instruments used, and values 
exceeding the standard threshold of 10 are indicative of 
strong genetic instruments.33  

All tests were two-sided and performed using R Ver-
sion 4.2.1 with the R packages “TwoSampleMR” and 
“MendelianRandomization”. A p value < 0.05 indicated 
statistical significance of the MR effect estimate. No ethi-
cal approval was required since we used publicly availa-
ble summary data. 
 
RESULTS 
SNP selection 
There were 22 SNPs associated with cigarettes smoked 
per day, 38 SNPs associated with coffee intake, 53 SNPs 
associated with fresh fruit intake, 17 SNPs associated 
with cooked vegetable intake, 414 SNPs associated with 
BMI, 37 SNPs associated with fasting insulin, 60 SNPs 
associated with fasting glucose, and 1508 SNPs associat-
ed with gut microbiota selected for the MR analyses ac-
cording to the IV selection criteria. The detailed infor-
mation and F-statistic for the selected instruments are 
shown in Supplementary Table 1. The overall instrument 
had a high F-statistic (>10), indicating the good strength 
of the genetic instruments used. 
 
MR analysis 
Figure 2 shows causal effect estimates of the dietary and 
metabolic factors and gut microbiota on POF from the 
IVW MR analyses. Associations for exposures using the 
different MR methods are presented in Supplementary 
Tables 2-4. Scatter and forest plots of the SNP-outcome 
associations against the SNP-exposure associations are 
shown in Supplementary Figures 1-6, allowing visualiza-
tion of the causal effect estimate for each individual SNP 
on POF. Leave-one-out plots are shown in Supplementary 

Figures 7-9 to evaluate the influential outliers. 
MR analysis via the IVW method showed that ciga-

rettes smoked per day  (OR = 1.00, 95% CI: 0.77–1.30, p 
= 0.982), coffee intake (OR = 2.05, 95% CI: 0.87–4.84, p 
= 0.103), cooked vegetable intake (OR = 3.13, 95% CI: 
0.37–26.09, p = 0.292), fasting insulin (OR = 1.61, 95% 
CI: 0.66–3.96, p = 0.298), and fasting glucose (OR = 
1.04, 95% CI: 0.67–1.60, p = 0.864) had no genetic caus-
al relationship with POF (Figure 2). However, fresh fruit 
intake (OR = 7.33, 95% CI: 2.36–22.71, p = 0.001) and 
BMI (OR = 1.99, 95% CI: 1.60–2.48, p < 0.001) were 
related to an increased risk of POF. In addition, six gut 
microbiome taxa were significantly associated with POF 
risk (Figure 2). IVW method revealed that Eubacterium 
(hallii group) and Eubacterium (ventriosum group) were 
negatively associated with the risk of POF (OR = 0.49, 
95% Cl: 0.26–0.90, p = 0.022; OR = 0.51, 95% Cl: 0.27–
0.97, p = 0.040), while Adlercreutzia, Intestinibacter, 
Lachnospiraceae (UCG008), and Terrisporobacter were 
positively associated with the risk of POF (OR = 3.01, 
95% Cl: 1.38–6.60, p = 0.006; OR = 1.82, 95% Cl: 1.04–
3.20, p = 0.037; OR = 1.73, 95% Cl: 1.08–2.76, p = 
0.023; OR = 2.47, 95% Cl: 1.14–5.36, p = 0.022) (Figure 
2).  
 
Sensitivity analyses 
The observed causal associations were consistent in sensi-
tivity analyses. MR-Egger regression showed no evidence 
of directional pleiotropic effect across the genetic variants 
(intercept, p > 0.05) (Table 2 and Supplementary Tables 
5-7). There was no evidence of heterogeneity in the IVW 
analysis using Cochran’s Q test (p > 0.05) (Table 2 and 
Supplementary Tables 5-7). Although there were outliers 
present on visual inspection in both scatter (Supplemen-
tary Figures 1-3) and forest plots (Supplementary Figures 
4-6), the results of the leave-one-out sensitivity analysis 
indicated that the associations between dietary and meta-
bolic factors and gut microbiota with POF were not sub-
stantially driven by any individual SNP (Supplementary 
Figures 7-9), suggesting the robustness of the results. 
 

 

 
 
Figure 2. Associations of genetically predicted dietary and metabolic factors and gut microbiota with risk of POF. BMI, body mass index; 
POF, premature ovarian failure; SNP, single-nucleotide polymorphisms. 
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DISCUSSION 
We conducted MR analyses by using the largest GWAS 
datasets to systematically investigate the causal relation-
ship between the dietary and metabolic factors and gut 
microbiota with risk of POF. Our results showed that 
fresh fruit intake and BMI was associated with an in-
creased risk of POF. Six gut microbiome taxa were asso-
ciated with the risk of POF. Eubacterium (hallii group) 
and Eubacterium (ventriosum group) appeared to confer a 
protective effect against POF, while Adlercreutzia, Intes-
tinibacter, Lachnospiraceae (UCG008), and Terrisporo-
bacter increased the risk of POF. This study could pro-
vide important insight into the genetic relationship be-
tween dietary and metabolic factors and gut microbiota 
with POF and shed new light on the potential causes and 
therapeutic strategies for POF. 

Altered gut microbial profiles have been observed in 
women with POF.21 Additionally, Elgart et al.34 reported 
that the gut bacteria of Drosophila can affect oogenesis 
and maternal-to-zygotic transition during embryo devel-
opment. In this study, we found that Eubacterium (hallii 
group) and Eubacterium (ventriosum group) had protec-
tive effects on POF. Eubacterium produces short-chain 
fatty acids (SCFAs). SCFAs, including propionate, ace-
tate and butyrate, are the main products of the fermenta-
tion of dietary fiber by the intestinal microbiota.35 Butyr-
ate can enhance the expression of tight-junction proteins 
and mucin to maintain the intestinal epithelial barrier,36 
which is the first line of defense in the intestine. The 
abundance of Eubacterium in the gut is strongly correlat-
ed with SCFA levels and the beneficial effects of SCFAs 
under a range of clinical conditions.37 Several studies 
have shown that SCFAs play a major role in the modula-
tion of inflammation through the inhibition of proinflam-
matory cytokines, such as interferon (IFN)-γ, interleukin 
(IL)-1β, IL-6, IL-8, and tumor necrosis factor receptor-α 
(TNF-α), while upregulating the expression of anti-
inflammatory cytokines, such as IL-10 and transforming 
growth factor-β (TGF-β).38,39 The human ovary is a ubiq-
uitous target for autoimmune attack, leading to the conse-
quent occurrence of POF.40 Autoimmunity is responsible 

for approximately 4–30% of POF cases.41,42 E. hallii and 
E. ventriosum may act as anti-inflammatory agents to 
protect the ovary from inflammation. On the other hand, 
we found that Adlercreutzia, Intestinibacter, Lachnospi-
raceae (UCG008), and Terrisporobacter increased the 
risk of POF. Other studies have shown that these 4 gut 
microbiome taxa are correlated with the risk of diabetic 
retinopathy, male infertility, periodontitis, and sepsis.43-46 
However, there is a lack of corresponding research evi-
dence to clarify the underlying mechanism by which 
these gut microbiome taxa contribute to POF, thus 
providing new directions for future studies. 

Smoking is a worldwide issue. Cigarette smoke con-
tains several toxicants, including polycyclic aromatic hy-
drocarbons (PAHs), such as benzoapyrene (BaP), nitros-
amines, heavy metals (cadmium), alkaloids and aromatic 
amines, which have different properties and targets. 
Therefore, these chemical compounds may exert hazard-
ous effects on the entire reproductive system in women.47 
It has been documented that active smoking was associat-
ed with earlier menopause.5-8 The tobacco-mediated ovar-
ian injury characterizes by a significant decline in 
steroidogenesis,47,48 and folliculogenesis.49-54 Evidence 
from experimental models have shown that a single high 
dose of PAHs led to the loss of primordial and primary 
follicles.55 In addition, in-vitro studies have demonstrated 
that BaP could induce follicular demise and alter the 
growth of rat and mouse follicles50,52, and exposure to 
nicotine could cause decrease estradiol production in cul-
tured granulosa bovine cells.56 The pathophysiological 
mechanism behind tobacco-mediated ovarian injury in-
volves a range of factors such as oxidative stress,57-60 

DNA damages,61 and follicle loss through autopha-
gy/apoptosis.62-65 However, a meta-analysis comprising 
15 studies found a relationship in earlier age of natural 
menopausal in current smokers but the association disap-
peared in former smokers.66 The results of this study show 
that there was no causal relationship between cigarettes 
smoked per day and POF at the genetic level. The associ-
ation between cigarettes smoked per day and premature 
ovarian failure (POF) might be attenuated due to the way 

Table 2. Heterogeneity and directional pleiotropy tests from MR analysis of the dietary and metabolic factors and gut 
microbiota with risk of POF 
 
Exposure Heterogeneity MR‒Egger 

Cochrane’s Q p Egger Intercept SE pintercept 
Dietary factors      
 Cigarettes smoked per day 12.09 0.937 0.000 0.02 0.990 
 Coffee intake 43.06 0.228 0.021 0.01 0.142 
 Fresh fruit intake 45.16 0.738 0.009 0.02 0.609 
 Cooked vegetable intake 24.40 0.081 0.000 0.13 0.999 
Metabolic factors      
 BMI 440.57 0.168 -0.006 0.01 0.233 
 Fasting insulin 43.27 0.189 0.002 0.02 0.944 
 Fasting glucose 50.14 0.788 0.003 0.01 0.758 
Gut microbiota      
 Eubacterium (hallii group) 9.01 0.773 -0.006 0.05 0.916 
 Eubacterium (ventriosum group) 10.02 0.761 -0.020 0.11 0.858 
 Adlercreutzia 9.55 0.215 0.279 0.14 0.085 
 Intestinibacter 12.90 0.535 -0.080 0.08 0.307 
 Lachnospiraceae (UCG008) 10.44 0.491 0.096 0.12 0.446 
 Terrisporobacter 2.93 0.570 0.050 0.12 0.703 
 
BMI, body mass index.  
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the smoking phenotypes are defined, as they include both 
current and former smokers. Although several studies 
were devoted to investigating the relationship between 
drinking coffee and the age of menopause, data are lack-
ing on POF. Current studies have suggested that there is 
no association between coffee intake and early meno-
pause or ovarian age indicators such as anti-Müllerian 
hormone (AMH) and FSH.9-11 Combined with the results 
of our study, we considered that there is no causal rela-
tionship between coffee intake and POF at the genetic 
level. A large prospective study involving 33,054 Shang-
hai women has found that a high level of fruit intake 
(>383.2 g/day) was associated with delayed menopause.12 
Another study also supported this finding.13 The associa-
tion of fruit intake with POF could, in part, be related to 
the antioxidant content in fruit. However, according to 
our study, fresh fruit intake was associated with an in-
creased risk of POF. Potential mechanisms underlying 
this association needs to be explored in mechanistic stud-
ies. The association between BMI and POF remains much 
less understood and even controversial. Both overweight 
and underweight had been reported to be associated with 
earlier menopause. Our study can provide evidence of 
causal association. Various mechanisms could explain 
how overweight might influence the development of 
ovarian aging. It is known that being overweight can in-
crease oxidative stress in the body through a number of 
potential mechanisms.67,68 In addition, obesity is related to 
chronic low-grade inflammation in the body.69 Adipose 
tissue is an important endocrine organ that produces adi-
pokines contributing to a state of inflammation.  

This study has several strengths. The major merit is 
MR design which can exclude the interference of con-
founding factors and reverse causality to a large extent. 
Furthermore, non-overlapping exposure and outcome 

summary-level data were used to avoid unnecessary bi-
as.70 In order to ensure the accuracy of MR analysis, hori-
zontal pleiotropy was detected and excluded by the MR-
Egger regression intercept test. Limitations should be 
considered when interpreting our results. First, our study 
analyzed only European populations, so the generalizabil-
ity of the results should be approached with caution when 
extending them to other populations. Secondly, our study 
was only conducted at the genetic level, and did not ex-
plore the exact mechanisms behind the association. Final-
ly, since genus was the lowest taxonomic level in the ex-
posure datasets, we were unable to further explore the 
causal association between gut microbiota and POF at the 
species level.  

 
Conclusion  
To conclude, we provided evidence to show that fresh 
fruit intake and BMI was associated with an increased 
risk of POF. Six gut microbiome taxa were associated 
with the risk of POF. Eubacterium (hallii group) and Eu-
bacterium (ventriosum group) appeared to confer a pro-
tective effect against POF, while Adlercreutzia, Intestini-
bacter, Lachnospiraceae (UCG008), and Terrisporobac-
ter increased the risk of POF. Our results provided poten-
tial therapeutic targets for POF. At the same time, it is 
necessary to validate these findings and explore the un-
derlying mechanisms in clinical trials and animal models. 
 
SUPPLEMENTARY MATERIALS 
All supplementary tables and figures are available upon request. 
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