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Statistical Analysis of Radioimmunoassay Data
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The statistical processing of radioimmunoassay data is discussed, with special emphasis
on fitting the standard curve, screening the data for aberrant readings and combining
separate estimations from a single sample.

The immunochemical kinetics of radioimmuno-
assay are susceptible to theoretical analysis and this
theory has been developed by a number of authors
[see, for example, Meinert & McHugh (1968),
Rodbard et al. (1969), Ekins & Newman (1970),
Ekins (1970), Yalow & Berson (1970)]. However,
not all aspects of the method when used as a

routine can be covered by theoretical treatment
and it is of interest to introduce some statistical con-
cepts from the more familiar bioassay field (see, for
example, Finney, 1964), which has developed largely
without this kind of theoretical guidance. Some of
these concepts are not adequately implemented in
many of the packaged computer programs now
generally available.

Form of the Data

In a clinical context particularly, a single assay
usually involves a substantial number of unknowns.
These are accompanied by the set of standards aimed
to cover the concentration range of interest, by a zero-
concentration sample giving the maximum bound
concentration and by a reagent blank, which, in view
of the way the method works, corresponds to an
infinite concentration. Each of the standard and
unknown samples is normally run in duplicate and
this will be assumed in what follows. For convenience,
it is also assumed that only the bound fraction is
counted.

Shape of the Standard Curve

There has been some discussion about the mathe-
matical formula best suited to fit the standard curve.
The curve forms a descending sigmoid with the zero
concentration and blank values as the upper and
lower asymptotes. On a log-concentration scale, the
sigmoid is reasonably symmetric and a log-logistic
curve is commonly found to give a good fit (Rodbard
& Lewald, 1970).
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The log-logistic curve has the following rather
complicated formula, relating y, the expected radio-
activity count rate, to x, the concentration:

y = a+b[exp(c-dlnx)/{1+exp(c-dlnx)}] (1)

The structure of this formula is rather clearer if it is
written as:

where
y = a+bq

q =z/(1 +z)

(2)

(3)
and

z= exp (c - d In x) (4)

From a statistical viewpoint, the important aspect
of this curve is that it has four unknown parameters,
a, b, c and d, that require estimation from the data.
The blank and zero-concentration samples provide
information directly about the parameters a and b,
but this is subject to error just like the information
obtained from the other samples; moreover, extra
information about these parameters is available from
the other standard samples, particularly those at
high or low concentrations.

Currently, the method of analysis that is usually
recommended for fitting this type of curve involves
taking the zero-concentration and blank radioactivity
count rates as providing error-free estimates of a
and b. The other standard radioactivity count rates
are then corrected for the blank and expressed as
a proportion of the zero-concentration rate. This
in turn is transformed into a quantity p, given by
formula (5):

p = ln[(y- a)/{b - (y - a)}] (5)

A little algebra then shows that formula (1) can be
transformed to give, for the expected value ofp:

p C-d-lnx (6)

so that c and dcan be estimated by a linear regression
calculation. This approach has the disadvantage of
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ignoring the errors in the asymptote counts and also
some of the available information on the asymptotic
values; it is possible that some claims that formula
(1) fails to fit certain types of data may have been due
to methods of fitting which were inadequate in this
way. Its apparent simplicity is also somewhat decep-
tive. The variance ofp in formula (5) varies consider-
ably over the range 0-1 so that weighted regression is
required, and because the weights depend upon the
fitted values the procedure has to be iterative.

Fitting the four parameters of formula (1) is a non-
linear regression problem, but this presents no great
practical difficulty if good computing facilities are
available. The formula is linear in the parameters a
and b and it is most efficient to take advantage of this
fact. The procedure is then to start with trial values
of c and d, so that q in formula (3) can be evaluated for
each value of x, and to estimate a and b from formula
(2) by simple regression, calculating at the same time
the residual sum of squares. The values of c and dcan
then be successively adjusted so as to minimize this
sum of squares by a numerical technique such as that
of Nelder & Mead (1965). Convergence is usually
quite rapid in practice, even from crude initial esti-
mates.

In fitting the regression equation (2) it would be
feasible to allow for unequal variances in the y values
by some form of weighting. The actual variances
contain many sources of variation over and above
the Poisson-distributed errors associated with the
radioactivity counts. Rodbard & Cooper (1970)
(see also Rodbard & Lewald, 1970) give a theoretical
analysis of the errors in y and show that the higher
radioactivity count rates tend to have greater vari-
ability. In practice, however, the extent of this in-
crease in variance is not so great that weighting would
be expected to give worthwhile improvement in the
precision of the parameter estimates, especially when
the rate of increase is not known in advance but has
itself to be estimated from limited data. Note that the
position is quite different when the transformed
curve is fitted by using formula (6). The values ofp
derived from y values close to the asymptotes have
very high variability and it is essential to give such
values lower weights in the fitting process.

Preliminary Screening
The procedures involved in radioimmunoassay are

sufficiently complex that a certain proportion of
aberrant observations has to be expected in practice
and it is one objective of running all samples in dupli-
cate to detect and eliminate these. It is common
practice to calculate an estimated standard deviation
from the differences between duplicates and to screen
out any sample for which the difference exceeds some
multiple of the standard deviation. The difficulty, of

course, is that the excessive differences are liable to
enter into the estimated standard deviation and to
inflate it disproportionately, particularly if the usual
root-mean-square estimator is used. One simple
alternative possibility is to take the median of the
absolute values of the differences between duplicates;
computationally this is not too time-consuming if the
partial-sorting method of Hoare (1961) is used. The
result can be taken as a direct estimate a of the stan-
dard deviation of a single reading: the exact conver-
sion factor, assuming a normal distribution, is 0.984.

Further screening is advisable during the fitting of
the standard curve. The residual (observed minus
fitted value) can be calculated at each of the observed
points (including blank and background). If any
residual exceeds (say) three times its standard error
(which is &/AV2 for the mean of two duplicates), the
corresponding point can be omitted and the fitting
process repeated. This procedure should not be used
lightly, however; the occurrence (in duplicate) of
aberrant standard values must cast considerable
doubt on the validity of the assay as a whole.
The goodness of fit of the standard curve can be

roughly assessed by comparing the mean square of the
residuals (with n-4 degrees offreedom, where n is the
number of standard pairs) with the error variance 'a2.
This corresponds to the usual bioassay test of
linearity. The F distribution, which would provide
the usual means of assessing this comparison, is not
theoretically appropriate here for several reasons, but
F tables may be used with caution to give some indi-
cation of statistical significance. &P may be regarded
as having 0.6N degrees of freedom, where N is the
total number ofpair differences used in its estimation.

Combination of Estimates

There is no difficulty in reading off estimated con-
centrations from observed responses, by using the
formula x = exp {(c-p)/d}, with p given by formula
(5). Responses outside the range of blank to back-
ground obviously have to be excluded, but otherwise
there seems no reason to omit extreme responses,
unless the choice of standards has been unfortunate
so that a substantial part of the response scale is not
covered. However, it is clear that concentrations
estimated from the steeply sloping central portion of
the curve will be considerably more precise than
those corresponding to the near-horizontal stretches
near the asymptotes. If errors due to estimation
of the standard curve parameters are ignored, the
variance of an estimated log concentration (using
natural logarithms to the base e) can be shown to
be given approximately by:

V(lnx) =.d(y-a)*[b-(y-a)]) (7)
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where Ja2 is the variance of the mean of a pair of
duplicates. If a set of samples are in fact different
dilutions from a single original specimen, the corre-
sponding results can be combined by taking a
weighted mean of the quantities

g = ln x + ln(dilution factor) (8)
with the reciprocals of the variances used as weights.
The consistency ofthe several samples can be assessed
by calculating the weighted sum of squares (formula
9) and referring this to the ordinary tables of the X2
distribution.

YEwg2- (Ywg)2/Ew (9)

This test corresponds to the tests of parallelism and
curvature in straight-line bioassay. The weights
corresponding to formula (7) tend to be slightly too
large (and quoted standard errors based on them
slightly too small) because the errors in estimating
the standard curve have been ignored. In that no
extrapolation is involved, this effect is not likely to be
important; this is certainly true for the weights, for
which only relative values matter. However, formula
(7) deals only with within-assay variation. It is com-
mon experience that between-assay variation is
considerably in excess, so that the total weights of the
mean estimates from single assays may require ad-
justment when combining estimates made on separ-
ate occasions. A possible rule-of-thumb procedure
that makes approximate allowance for between-assay
differences is: (1) find the median of all the weights in
the assays to be combined; (2) reject all estimates
whose weights are less than 1/k times the median
weight as being too imprecise to be usable; (3) reduce
all weights greater than k times the median weight
so that they equal that value (k may be chosen to be
between, say, 3 and 10, the smaller values being appro-
priate for high between-assay variability). Estimates
formed in this way will not be unduly dominated by
individual values that are very precise on a within-
assay basis.

It will in any case usually be necessary to estimate
the precision of these combined values. A weighted
sum of squares can be calculated for each combined
estimate from formula (9) and the total of these sums
of squares divided by the corresponding degrees of
freedom. This produces an estimated variance per
unit weight, s2, analogous to the heterogeneity factor
of probit analysis (Finney, 1952). The variance
of a weighted mean is now estimated as S212W in the
usual way.
The presence of between-assay variability is too

often accepted without comment. The use ofstandard
preparations (Cotes, 1970) is aimed at eliminating this
source of variability and if this aim is not achieved an
opportunity for improving assay technique is being
overlooked. Often the potential improvement here
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would greatly outweigh that available from reductions
in within-assay variability, the topic usually treated
by theoretical approaches. In particular, the energetic
use of quality-control techniques should be an indis-
pensible part ofroutine assay practice (Rodbard et al.,
1969; Whitby et al., 1967).

Experimental Design
Questions of experimental design have been exten-

sively treated by R. Ekins and his colleagues (Ekins
& Newman, 1970). These authors show that the
parameters of the standard curve are to some extent
under the experimenter's control and indicate
methods of producing a curve, which (put fairly
crudely) is steep in the region of interest.
A matter which does not seem to have received

attention is the choice of the number of standard
concentrations. Normally 10-15 concentrations are
used with twofold or smaller dilution ratios between
them. The theory of experimental design for non-
linear curve-fitting situations is incomplete, but work
by Box (1968) makes it likely that the information
obtained from the standards would be increased if the
standard concentrations were reduced in number
with correspondingly greater replication on each. At
least four concentrations (including zero and blank)
are, of course, essential, and more are needed if
departures from the assumed form of the curve are
to be detectable.
The stability of the standard curve should not go

unquestioned: Welborn et al. (1970) have shown that
changes in both position and shape of the curve
can occur during a lengthy run. This suggests that
drift standards (of a kind familiar in automated bio-
chemical assays) should be inserted at intervals in the
run and that these should be at more than one con-
centration. The need for quality-control measures
mentioned above has also been stressed in many
published articles, though perhaps without the in-
fluence on practice that could be desired.

Conclusion

Although radioimmunoassay is a complex tech-
nique, its results do not differ statistically in any
fundamental way from those in other more familiar
fields. It is suggested that the use of a number ofmore
or less standard statistical techniques will lead to the
better utilization of assay values.
A computer program, in the form of a Fortran IV

subroutine, embodying some of the ideas outlined
above, is available from the author on request.

I am grateful to Dr. N. Veall and Mrs. S. Chalkley for
introducing me to radioimmunoassay and for discussing
its problems.
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APPENDIX

A Specimen Analysis: Assay of Thyrotrophin
1. Estimated standard deviation (from median absolute difference) - 316

Rejection limit (3 x S.D.) for differences = 1340
for residuals = 670

2. Standard curve
Obs. (c.p.m.)

Concn. Abs. Fitted
(uunits/ml) 1 2 Mean diff. values Residuals

0 37 5076 2557 5039* 5110 (-2553)
0.1 4789 4928 4859 139 5050 -191
0.5 4979 4961 4970 18 4896 +74
1.0 4769 5131 4950 362 4748 +202
2.0 4270 4571 4420 301 4514 -94
5.0 4462 3939 4201 523 4026 +175

10.0 3374 3500 3437 126 3512 -75
16.0 2793 2966 2879 173 3114 -234
20.0 2482 3423 2952 941 2918 +35
50.0 2111 2278 2195 167 2149 +46
100.0 1676 1904 1790 228 1677 +113
Blank 686 700 693 14 744 -51

Parameters of fitted curve: a = 744; b = 4366; c = 2.403; d= 0.805. Residual S.D. = 240.

3. Unknowns
Obs. (c.p.m.)

Abs. Concn. Wt. of
1 2 Mean diff. (punits/ml) ln concn.

4779 3913 4346 866 2.89 5.2
5599 4944 5272t 655 0
3799 3802 3800 3 6.91 10.9
70 8375 4222 8305* - 0

6305 5013 5659t 1292 0
4657 4602 4630 55 1.52 2.5

* Point rejected-difference too great.
t No estimate-mean count rate above upper asymptote.
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