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Background: Echocardiography can conveniently, rapidly, and economically evaluate the structure and 
function of the heart, and has important value in the diagnosis and evaluation of cardiovascular diseases 
(CVDs). However, echocardiography still exhibits significant variability in image acquisition and diagnosis, 
with a heavy dependency on the operator’s experience. Image quality affects disease diagnosis in the later 
stage, and even image quality assessment still has variability in human evaluation. This study aimed to 
develop an automated and real-time quality assessment system using deep learning (DL) techniques while 
decreasing the measurement error of left ventricular ejection fraction (LVEF).
Methods: This study involved over 5,000 echocardiography datasets from 2,461 participants across 
10 medical centers in China to build the model. A 5-point quality scoring system was used to assess the 
integrity, clarity, and alignment of anatomical structures in each echocardiogram view. Additionally, an 
innovative DL model was developed to autonomously detect these essential cardiac anatomical structures in 
real-time, subsequently providing quality score estimations and LVEF. A total of 175 participants from two 
distinct external medical centers were enrolled for model validation. This dataset was employed to assess the 
consistency and repeatability of quality score and ejection fraction (EF) measurements, and the assessments 
made by human experts were compared with those of our model.
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Introduction

Cardiovascular diseases (CVDs) are a group of disorders 
that affect the heart and blood vessels. CVDs represent a 
significant global health and economic concern and remain 
a leading cause of morbidity and mortality worldwide, 
accountable for approximately 20 million deaths in 2021. In 
China, CVDs are the cause of over 40% of deaths, with an 
estimated 330 million individuals experiencing CVDs (1). 
Given their substantial impact on public health, addressing 
CVD stands as a top priority for healthcare systems and 
society as a whole. Compared to medical interventions and 
clinical management, early detection is a more effective 
and foundational strategy for reducing the prevalence and 
burden of CVDs.

Echocardiography, a non-invasive ultrasound imaging 
technique, serves as a cornerstone in the assessment of 
cardiovascular health. It furnishes critical information 
and various parameters that are indispensable in clinical 
diagnosis, medical management, and long-term monitoring. 
Consequently, echocardiography has emerged as the 
foremost imaging modality for most CVDs (2). However, 
echocardiography is operator-dependent, particularly in 
critical situations such as cardiac arrest, tamponade, or 
complications during procedures such as percutaneous 
cardiac interventions. In such cases, prompt ultrasound 

scanning by an experienced clinician is required. In remote 
or rural healthcare settings, the prompt availability of 
echocardiography may be hindered by a lack of equipment 
and training.

One  o f  the  c r i t i c a l  pa rameter s  de r i ved  f rom 
echocardiography is the left ventricular ejection fraction 
(LVEF), which quantifies the heart’s pumping efficiency 
and plays a pivotal role in diagnosing and monitoring 
cardiac conditions. The conventional pipeline for LVEF 
assessment entails manual frame selection at the systolic end 
(ES) and diastolic end (ED), as well as the left ventricular 
(LV) segmentation before any subsequent analysis (3). 
This process is both user-dependent and time-consuming, 
requiring extensive practice to master. Moreover, 
complications can arise when electrocardiography (ECG) 
data is missing during the echocardiography examination, 
leading to a potential decrease in the precision of the ES 
and ED frames selection and subsequently impacting the 
LVEF accuracy. Another challenge associated with the 
utilization of echocardiography is the inherent complexity 
and procedural intricacies, which demand extensive training 
and clinical experience to consistently produce high-quality 
echocardiograms that meet the requisite LVFF (4).

In response to these challenges, there is a growing demand 
for efficient tools capable of real-time echocardiography 
quality control and the automation of LVEF calculation. A 

Results: The developed model demonstrated exceptional performance, achieving Intersection over 
Union (IoU) scores exceeding 0.8 for left ventricular (LV) segmentation, a mean average precision when 
IoU >0.5 (mAP50) of 0.91 for cardiac anatomical structures detection, and a 0.96±0.05 accuracy in view 
classification. The quality scores assessed by the model closely matched those of human experts, indicating 
strong agreement. The weighted average precision and weighted average recall scores fell within the range 
of 0.5 to 0.6. Notably, there was no statistically significant difference in LVEF assessments between human 
experts and our model (P=0.09), as demonstrated by an intraclass correlation coefficient (ICC) analysis of 
0.821, reflecting high-level consistency. When assessing echocardiograms with high-quality scores, the 
model demonstrated a significantly closer alignment and a higher correlation coefficient with human experts 
(R=0.90±0.04).
Conclusions: This study demonstrates that artificial intelligence-assisted echocardiography scoring system 
aligns well with manual quality scoring. Through the supervision of real-time echocardiogram quality, the 
artificial intelligence model can assist doctors in providing more reproducible and consistent assessments of 
cardiac function.
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quality control system can guide the operators, ensuring 
the attainment of standardized echocardiography views 
and thereby enhancing the consistency and accuracy of the 
cardiovascular function measurements, including LVEF.

Existing literature has introduced numerous solutions for 
assessing echocardiography quality and facilitating computer-
assisted LVEF calculation. In many of these algorithms, 
echocardiography quality assessment is achieved by 
performing an image-level classification task encompassing 
factors such as clarity (5-7), on-axis attributes (6), depth 
grain (6,7), and view types (5,8,9). However, these studies 
still exhibit certain limitations. Firstly, many studies often 
lack well-defined criteria or quality control indicators and 
also have a deficiency in model interpretability. Secondly, 
these algorithms are often not tailored for specific clinical 
purposes, including LVEF estimation. Lastly, some models 
are excessively large and inefficient, impeding their ability 
to achieve real-time quality assessment in clinical scenarios.

This research presents a pioneering endeavor aimed 
at establishing an automatic, efficient, and real-time 
quality scoring system coupled with LVEF calculation 
using deep learning (DL) techniques. Leveraging the 
power of artificial intelligence and a vast dataset of 
thousands of participants, our study strives to revolutionize 
echocardiography examination by reducing the burden on 
healthcare professionals and enhancing diagnostic accuracy. 
Additionally, junior operators benefit from improved 
image acquisition efficiency and the automated cardiac 
function assessment, which serves as a valuable reference 
for triage and management decisions. We present this 
article in accordance with the TRIPOD+AI reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-512/rc).

Methods

Participant cohorts and data preparation

The participants in this retrospective study were drawn 
from 10 separate top-level hospitals located within 
mainland China: the Second Hospital of Jiaxing, Panjin 
Liaoyou Gemstone Flower Hospital, the First Affiliated 
Hospital of Guangxi University of Chinese Medicine, the 
First Affiliated Hospital of Chongqing Medical University, 
the Second Affiliated Hospital of Guangxi University of 
Chinese Medicine, Shanghai General Hospital, Guizhou 
Liupanshui Shougang Shuigang Hospital, Shunde Hospital 
of Southern Medical University, the First Hospital of 

Lanzhou University, and Peking University Shougang 
Hospital. We included consecutive cases that met our 
inclusion and exclusion criteria between November 2022 
and July 2023. The patient inclusion criteria were as 
follows: (I) aged over 18 years; (II) had undergone or were 
planning to undergo echocardiographic examinations; and 
(III) there were no restrictions on the presence or type 
of diseases. The exclusion criteria were solely those who 
refused to participate in this study.

Firstly, the echocardiographic data of these participants 
spanning three consecutive cardiac cycles were collected 
and saved in the Digital Imaging and Communication in 
Medicine (DICOM) format. Secondly, we performed data 
filtering to select the apical 2-chamber (A2C) view and 
apical 4-chamber (A4C) view. Finally, ultrasound doctors 
selected images of the ES and ED stages of the cardiac 
cycle based on the electrocardiogram and manually labeled 
them. The regions of LV endocardium (LV-Endo) and LV 
epicardium (LV-Epi) were annotated through semantic 
segmentation. The LV, left atrium (LA), and mitral valve 
(MV) were delineated in both A2C and A4C views by 
bounding boxes. The right ventricle (RV), right atrium (RA), 
and tricuspid valve (TV) were only delineated in the A4C 
view. Each case was first annotated by two doctors (with 
5 or more years of experience in cardiac ultrasound), and 
the inconsistencies were then arbitrated by a senior doctor 
(with 10 or more years of experience). A total of 60 cardiac 
ultrasound doctors participated in the data annotation step.

Echocardiographic quality scoring system

After extensive discussions among 10 highly experienced 
echocardiographers, we quantified the qualitative quality 
assurance grading scales based on the “Emergency 
Ultrasound Standard Reporting Guidelines” (10). As a 
result, we introduced a 5-point quality scoring system 
that is well-suited for computer-aided calculation in 
echocardiography examination. This quality scoring 
system primarily evaluates the integrity and clarity of the 
key cardiac anatomical structures in the echocardiogram. 
Specifically, this system is based on the following criteria 
for quality scoring: (I) whether the ventricles and atria can 
be recognized; (II) whether the LV-Endo and LV-Epi can 
be fully segmented; (III) whether the ratio of LV to LA 
length is between 1.5 and 2.5; and (IV) whether there is a 
clear view of the LV. If all these criteria are met correctly, 
the frame has a quality score of 5, and if all these criteria 

https://qims.amegroups.com/article/view/10.21037/qims-24-512/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-512/rc
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are incorrect, the quality score for this frame is 1 (Figure 1). 
The average of all frame quality scores is used as the quality 
score for the entire echocardiogram.

To achieve automated and real-time quality assessment 
of echocardiograms, we constructed an efficient DL model 
to evaluate the above scoring criteria. This model consists 
of the following parts: (I) an encoder for extracting image 
features, derived from the backbone of YOLOX (11); 
(II) a decoder for providing the A2C and A4C view-class 
information, consisting of two layers of fully connected 
neural networks; (III) a decoder for detecting the regions 
of LV, LA, MV, RV, LV, and TV, derived from the detection 
head of YOLOX; (IV) a decoder for LV-Endo and LV-
Epi segmentation, constructed with several deconvolution 
layers; and (V) two classification networks for recognizing 
the segmentation continuity and block clarity of LV-Endo, 
composed of convolutional neural networks (Figure 2). In 
practice, we divide the LV-Endo into five blocks based on 
the segmentation results. We then assess the clarity of the 
ultrasound images of these five blocks. If at least three out 
of the five blocks are clear, the image is considered to have a 
clear view of the LV.

The annotated echocardiographic data were randomly 
split 7:1:2 into training, validation, and test sets. During 
the training phase, we employed various data augmentation 
strategies, including blur, rotation, and translation, to 

enhance the model’s generalization capabilities. These 
techniques have been shown to significantly expand the 
effective size of the dataset and improve the model’s 
robustness. The outputs of these decoders and classification 
networks are used to measure whether the scoring criteria 
are met.

Ejection fraction (EF) calculation

We have referenced Simpson’s biplane method to 
construct an automatic EF calculator (12). After obtaining 
the model outputs, we first compared the LV area of 
all echocardiogram frames. After applying the Kalman 
smoothing to the LV segmentation (13), we chose to label 
the frame with the smallest LV cavity area as the ES frame 
and the frame with the largest cavity area LV as the ED 
frame. Then, LV volume is calculated as:
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where L  is the long-axis length of LV. When LV is divided 
into n  equal parts, ia  and ib  are the short-axis lengths of LV 
in the A2C and A4C views, respectively. When obtaining 
the LV volume of ED ( EDVolume ) and ES ( ESVolume ), the 
LVEF is calculated as:
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When dealing with echocardiograms spanning multiple 
cardiac cycles, we consider the highest LVEF value within 
the sequence as the representative LVEF for that particular 
echocardiogram.

Comparing model performance to human experts

We conducted a two-center retrospective study to compare 
the performance of our model and human experts in 
echocardiographic quality score and LVEF calculation 
(Figure 3). The two centers were Guangdong Provincial 
People’s Hospital and Shenzhen People’s Hospital. Using 
the same inclusion and exclusion criteria as for model 
construction, External Dataset 1 comprised 65 participants 
who underwent echocardiogram examinations between 
February 2022 and June 2023. Similarly, External Dataset 
2 encompassed 110 participants who also underwent 
echocardiogram examinations within the same time frame, 
from February 2023 to June 2024.

Segment the
LV-Epi and LV-Endo

Detect the atria
and ventricles

Detect
nothing

Low score 

LV/LA length ratio 
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and 2.5
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High score
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Figure 1 The echocardiographic quality scoring system for A2C 
and A4C views. The indications of different colors in the diagram 
represent the criteria that each quality score needs to meet. If 
nothing can be detected, the echocardiographic quality score is 1. 
When meeting the criteria with orange, yellow, cyan, and green 
colors, the quality score is 5. LV, left ventricle; LA, left atrium; 
A2C, apical 2-chamber; A4C, apical 4-chamber.
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Figure 2 The architecture of the DL framework. Our model comprises six modules (trapezoid): one for feature extraction, three for 
decoding, and two for classification using lightweight DL networks. All six modules are learnable and designed for efficient and real-time 
inference. A4C, apical 4-chamber; DL, deep learning.
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We provided a set of paired echocardiograms, consisting 
of A2C and A3C views, covering two cardiac cycles, to two 
highly experienced doctors, each possessing over 10 years 
of clinical expertise in cardiac ultrasound. Their task was to 
conduct manual assessments of the echocardiogram quality 
scores based on our 5-point quality assessment system and 
perform LV segmentation. The manually segmented LV was 
used to calculate the LVEF by Simpson’s biplane method. 
If there were discrepancies in the assessment between the 
two doctors, the echocardiogram was arbitrated by a doctor 
with over 15 years of clinical experience to establish the 
gold standard. At the same time, our model automatically 
calculated the quality scores and LVEF. External Dataset 2 
was strategically utilized to assess the impact of our quality 

scoring system on the LVEF evaluation process conducted 
by human experts. In this dataset, LVEF was manually 
determined by two physicians, whereas the quality scores 
were concurrently evaluated by our model. Statistical 
analyses, including comparisons and consistency, were 
conducted among the two doctors, one arbitrator, and our 
model.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Research Ethics Committee of Guangdong 
Provincial People’s Hospital (No. QX2023-041-02). The 
requirement for informed consent was waived since this was 
a retrospective and observational study. All participating 
hospitals were informed of and agreed to the study, and all 
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65 participants
130 echocardiography videos 
(65 A2C and 65 A4C)

110 participants
220 echocardiography videos 
(110 A2C and 110 A4C)

Human evaluation
2 doctors with 10+ years experiences and  

1 arbitrator with 15+ years experiences

AI model evaluation
The analytical system  

we proposed

Image quality score
(Human evaluation)

Image quality score
(Model evaluation)

LVEF calculation
(Human evaluation)

LVEF calculation
(Model prediction)

LVEF calculation
(Human evaluation)

Image quality score
(Model evaluation)

External Dataset 1 External Dataset 2

Consistency analysis of quality score and LVEF 
evaluation in External Dataset 1

Value analysis of quality score system for LVEF 
assessment in External Dataset 2

Figure 3 Diagram of the performance comparison experiment between our model and human experts in two external datasets. One 
hundred and seventy-five participants within two external datasets were involved in this study. The echocardiographic quality score and 
LVEF were assessed by two doctors, and one arbitrator and our model. External Dataset 1 was primarily utilized for conducting consistency 
analysis between the assessments of human experts and our model. In contrast, External Dataset 2 was specifically employed to evaluate the 
contribution of the quality scoring system to the LVEF evaluation process by human. A2C, apical 2-chamber; A4C, apical 4-chamber; AI, 
artificial intelligence; LVEF, left ventricular ejection fraction.

were subject to ethical approval through application.

Statistical analysis

One-way analysis of variance (ANOVA) was employed to 
evaluate whether there were significant differences in the 
LVEF measurements among multiple groups. Meanwhile, 
one-way intraclass correlation coefficient (ICC) was 
utilized to gauge the reliability and consistency of LVEF 
measurements conducted by different groups. The joint 
hypotheses test (F-test) and Welch’s two-sample t-test were 
used to compare the variances and means of the two groups. 
Pearson’s correlation coefficient was calculated to measure 
the correlation. The comparison of the two correlations 
was performed with the R-package “cocor” (v1.1-4) (14), 
which embedded the multiple comparison algorithms. 
All these DL experiments and statistical analyses were 
conducted in Python (v3.10) and R (v4.3.1). The results of 
statistical analysis were deemed significant when the P value 
<0.05. The uncertainty of the estimate such as accuracy 
and correlation coefficient were quantified at the 95% 
confidence interval (CI).

Results

Participant characteristics

Two-dimensional (2D) echocardiography data from a total 
of 2,461 participants (1,132 females and 1,329 males) were 
involved in the model construction process. The basic 
characteristics of the participants and 2D echocardiography 
data collected are shown in Table 1. In summary, the mean 
age was 52.4 years and the standard deviation (SD) was 
15.9 years. Half of the participants (1,235, 50.2%) were 
from the eastern region of China, and the rest were from 
the northeast (285, 11.6%), western (255, 10.4%), and 
southern-central (686, 27.9%) regions. There were 4,736 
echocardiograms with A2C and A4C views collected 
during this study. A total of 8,055 frames from 4,052 
echocardiograms, at ED and ES, were annotated for LV-
Endo and LV-Epi segmentation. In addition, 1,368 frames 
out of 684 echocardiograms were selected and annotated for 
LV, LA, MV, RV, RA, and TV using bounding boxes. The 
annotated echocardiographic frames were randomly divided 
into training, validation, and test sets at a 7:1:2 ratio for 
model construction.

https://cn.bing.com/dict/search?q=statistic&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=analysis&FORM=BDVSP6&mkt=zh-cn
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Real-time and efficient model identification of cardiac 
anatomical structures

The model we constructed demonstrated excellent and 
efficient recognition capabilities for cardiac anatomical 
structures. Using a video capture card, our model was shown 
to be capable of real-time prediction during echocardiographic 
examinations. We presented two video examples to illustrate 
the model’s real-time prediction capabilities on A2C and A4C 
echocardiograms (Videos S1,S2). In Figure 4A,4B, two image 
examples, the A2C view and the A4C view, demonstrate the 
model’s segmentation and object detection performance. 
On the entire test set, our model achieved high accuracy in 
LV-Endo and LV-Epi segmentation with Intersection over 
Union (IoU) scores of 0.81±0.08 and 0.83±0.07 at ES, and 
IoU scores of 0.86±0.05 and 0.87±0.05 at ES, respectively 
(Figure 4C). We calculated the offset rate for the myocardial 
end positions (the red points in Figure 4A,4B), which mark 
the end of LV segmentation and play a crucial role in LVEF 
calculations. In the test set, the average root mean square 

deviation (RMSD) between the predicted key points and 
the ground truth was 2.39 pixels at ES and 2.68 pixels at 
ED. Additionally, the mean and SD of the offset rate for 
the key points was 1.07%±0.75% at ES and 1.19%±0.70% 
at ED (Figure 4D). For the detection of cardiac anatomical 
structures, our model achieved IoU scores of 0.80±0.08, 
0.83±0.07, and 0.66±0.12 for detecting LA, LV, and MV on 
A2C echocardiography (Figure 4E). Additionally, it achieves 
IoU scores of 0.79±0.13, 0.83±0.13, 0.80±0.10, 0.67±0.14, 
0.70±0.13, and 0.62±0.17 for detecting LA, LV, MV, RA, RV, 
and TV on A4C echocardiography, respectively (Figure 4F). 
In summary, our model achieved a mean average precision 
when IoU >0.5 (mAP50) score of 0.91 and exhibited 
a 0.96±0.05 classification accuracy of A2C and A4C 
echocardiograms at a 95% CI.

Echocardiography quality assessment for the study 
participants

A total of 65 participants (20 females and 45 males) were 
involved in the External Dataset 1, comparing the model’s 
performance to that of human experts. The basic and 
clinical characteristics of participants are displayed in Table 2. 
In summary, the mean age of the participants is 58.7 years, 
with an SD of 9.6 years. Among the participants, 29 had 
been diagnosed with coronary heart disease for whom the 
mean EF value was 56.80±9.87, 23 with LV hypertrophy 
(EF: 59.60±10.54), 27 with cardiac amyloidosis (EF: 
53.36±10.71), 35 with preserved EF (EF: 58.23±10.09), 25 
with pericardial effusion (EF: 57.23±10.48), 35 had been 
diagnosed with mitral regurgitation (EF: 55.37±10.11), 
and 7 with arrhythmia (EF: 57.81±10.00). In External 
Dataset 2, the mean age of the participants was 48.5 years, 
with an SD of 12.6 years. Among the participants, 25 had 
been diagnosed with coronary heart disease for whom the 
EF value was 66.67±8.65, 15 with LV hypertrophy (EF: 
65.65±13.19), 9 with preserved EF (EF: 58.55±15.44), 8 
with pericardial effusion (EF: 69.10±8.23), 35 had been 
diagnosed with mitral regurgitation (EF: 66.10±6.95), and 
10 with arrhythmia (EF: 62.03±10.31). There were no 
patients with cardiac amyloidosis in the External Dataset 2.

The 65 paired A2C and A4C echocardiograms were 
manually scored for quality and segmented for LV segment 
by two doctors, with arbitration by one arbitrator. Based on 
our 5-point quality scoring system, the distribution of samples 
as assessed by the two doctors and one arbitrator is illustrated 

Table 1 Basic characteristics of participants and dataset

Characteristics Data

Basic characteristics

Participants (cases) 2,461

Age (years) 52.4 (15.9)

Gender

Female 1,132

Male 1,329

Regional distribution

Eastern region of China 1,235

Northeast region of China 285

Western region of China 255

Southern-central region of China 686

Dataset characteristic

Echocardiogram videos (A2C and A4C views) 4,736

Frames for LV segmentation 8,055

Frames for cardiac structure detection 1,368

Data are presented as number or mean (SD). A2C, apical 
2-chamber; A4C, apical 4-chamber; LV, left ventricle; SD, 
standard deviation.

https://cdn.amegroups.cn/static/public/QIMS-24-512-Supplementary.pdf
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Figure 4 Model performance in cardiac anatomy recognition. (A) Model for LV-Endo (yellow region) and LV-Epi (red region) 
segmentation, and LV, LA, MV detection by bounding boxes at ED in echocardiographic A2C view. The numbers in the figure represent 
the confidence of the corresponding box. (B) Model for LV-Endo (yellow region) and LV-Epi (red region) segmentation, and LV, LA, MV, 
RV, RA, and TV detection by bounding boxes at the ES in echocardiographic A4C view. (C) The boxplot illustrates the IoU scores for LV-
Endo and LV-Epi segmentation at both ES and ED in the test set. The higher the score, the more accurate the detection position is. (D) 
The boxplot depicts the offset rate (RMSD/image length) of the myocardial end positions at both ES and ED in the test set. (E) The boxplot 
shows the IoU scores for LA, LV, and MV detection in the A2C view of the test set. (F) The boxplot displays the IoU scores for LA, LV, MV, 
RA, RV, and TV detection in the A4C view of the test set. The numbers accompanied by “±” represent the mean ± SD. LA, left atrium; LV, 
left ventricle; MV, mitral valve; A2C, apical 2-chamber; RA, right atrium; RV, right ventricle; TV, tricuspid valve; A4C, apical 4-chamber; 
ES, systolic end; ED, diastolic end; LV-Endo, left ventricular endocardium; LV-Epi, left ventricular epicardium; IoU, Intersection over 
Union; RMSD, root mean square deviation; SD, standard deviation.
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Figure 5 Distribution of quality scores in echocardiography across 65 participants. (A-D) The bar plots represent the distribution of 
echocardiographic quality scores for both the A2C view and the A4C view. These quality scores, which ranged from 1 to 5, were assessed by 
the two doctors, one arbitrator, and our model, respectively. A2C, apical 2-chamber; A4C, apical 4-chamber.

Table 2 Clinical characteristics of participants of a performance 
comparison study

Characteristics External dataset 1 External dataset 2

Basic characteristics

Participants (cases) 65 110

Age (years) 58.7 (9.6) 48.5 (12.6)

Female 20 64

Clinical characteristic

Coronary heart disease 29 25

LV hypertrophy 23 15

Cardiac amyloidosis 27 0

Preserved EF 35 9

Pericardial effusion 25 8

Mitral regurgitation 35 35

Arrhythmia 7 10

Data are presented as number or mean (SD). LV, left ventricular; 
EF, ejection fraction; SD, standard deviation.

in Figures 5A-5C, respectively. Additionally, Figure 5D  
displays the results of our automatic, real-time quality scoring 
model. In all assessments, the distribution of quality scores 
for the samples exhibited remarkable similarity: more than 
95% of the samples received quality scores of 3 or higher, 
with half of the samples receiving a score of 4.

Model quality assessment results consistent with human 
experts

To assess the consistency of echocardiographic quality 
scores between our model and human experts, we generated 
a multi-category confusion matrix comparing the results 
between the two doctors (Figure 6A), between the model 
and the two doctors (Figure 6B,6C), and between the model 
and the arbitrator (Figure 6D). In every confusion matrix, 
the weighted average precision and weighted average recall 
scores fell within the range of 0.5 to 0.6. The results indicate 
that the differences between our model and human experts 
are consistent with the difference between the two doctors.
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Figure 6 Multi-category confusion matrix comparing the evaluation of quality scores. The multi-category confusion matrix compares the 
quality scoring results between the two doctors (A), between the model and the two doctors (B,C), and between the model and the arbitrator 
(D). Consistency assessment was performed using the weighted average precision and weighted average recall score.

Efficient model computation of LVEF

After deriving the LV segmentation results, the LVEF for 
each participant was calculated using our automatic EF 
calculator. Subsequently, we performed one-way ANOVA 
and one-way ICC analysis to investigate the differences and 
consistency of LVEF measurements among the two doctors, 
one arbitrator, and our model. The results of the tests 
indicate that there is no statistically significant difference 
in the LVEF assessments conducted by the four groups, as 
evidenced by an ANOVA with a P value of 0.09. Moreover, 
there is a high level of consistency, as indicated by an ICC 
of 0.821 within a 95% CI, ranging from 0.752 to 0.877 
(Figure 7A).

Then, we performed Pearson correlation analysis on the 
LVEF measurements between cardiac cycles 1 and 2 within 
each group. Remarkably, our model exhibited the highest 
correlation coefficient of 0.95±0.03, at a 95% CI. Next, 
we conducted a comparative analysis of the differences 
among these four sets of correlation coefficients utilizing 
the Fisher’s z method from the R-package “cocor”. The 
statistical findings revealed that our model exhibited a 
stronger correlation in LVEF between cardiac cycles 1 and 
2 when compared to human experts. Specifically, the P value 
was 0.0002 for the statistical analysis between doctor 1 and 
the model, 0.055 for doctor 1 and the model, and 0.004 for 
the arbitrator and the model (Figure 7B). We computed the 
distance and correlation between the estimated LVEF of the 
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Figure 7 Model performance in LVEF calculation. (A) Boxplot of LVEF evaluated by the two doctors, one arbitrator, and our model. (B) 
The scatter plot and Pearson correlation of LVEF for cardiac cycles 1 and 2. The correlation coefficient (R) and statistical P values (P) are 
displayed at the top of the graph. (C) The boxplot indicates the distance between LVEF estimations made by our model and those by the 
arbitrator in echocardiogram with low- and high-quality scores. (D) The scatter plot and Pearson correlation of LVEF from our model and 
the arbitrator in echocardiogram with low- and high-quality scores. (E) The scatter plot and Pearson correlation between the variability in 
LVEF assessments by two doctors and the image quality scores assigned by our model within External Dataset 2. The numbers accompanied 
by “±” represent the correlation coefficient ± 95% CI. LVEF, left ventricular ejection fraction; ANOVA, analysis of variance; ICC, intraclass 
correlation coefficient; QS, quality score; A2C, apical 2-chamber; A4C, apical 4-chamber; CI, confidence interval.
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model and that of the arbitrator. Our analysis revealed that 
when making LVEF assessments using echocardiograms 
with high-quality scores, the model exhibited a significantly 
closer distance (P value of 0.01 as determined by a t-test) 
(Figure 7C) and a higher correlation coefficient (0.90±0.04) 
(Figure 7D) with human experts.

Furthermore, an additional external test set of 110 
participants was used to assess the impact of our quality 
scoring system on the LVEF evaluation process conducted 
by human experts (Figure 7E). The absolute difference in 
LVEF assessments between the two doctors was calculated 
and found to be significantly negatively correlated with 
the image quality scores determined by our model. This 
correlation was quantified with a Pearson’s Correlation 
coefficient of −0.44, which falls within a 95% CI ranging 
from -0.58 to −0.28. Samples with higher quality scores 
exhibited a tendency towards smaller variations in LVEF 
assessments by the two doctors.

Discussion

The present study represents a significant stride in the 
realm of echocardiography by introducing an automated 
and efficient quality scoring system coupled with LVEF 
calculation, powered by DL techniques. Our proposed 
model has undergone extensive training and validation on 
a diverse dataset of 2,461 of participants, encompassing a 
wide spectrum of cardiac conditions and image qualities. 
Additionally, we conducted a performance comparison 
study involving 175 participants within External Dataset 2, 
pitting our model against human experts to assess its clinical 
utility and accuracy.

This study boasts 2 standout achievements: the 
development of a 5-point quality scoring system and the 
provision of an automated real-time scoring and LVEF 
calculation tool. Among the parameters derived from 
echocardiography, LVEF holds paramount significance as 
it provides quantitative information regarding the heart’s 
pumping efficiency. Nevertheless, achieving a reliable 
estimation of LVEF poses a significant challenge owing to 
the considerable variability in echocardiography quality 
and cardiovascular anatomical structures. Historically, both 
the traditional quality assessment and LVEF calculations 
have been labor-intensive processes relying on the expertise 
of highly skilled human experts. The introduction of a 
DL-driven, automated quality scoring system, and LVEF 
calculation addresses the subjectivity and inefficiencies 

inherent in manual assessments.
There have been reports on automatic echocardiographic 

qual i ty  assessment  and computer-ass i s ted LVEF 
calculation. The majority of these studies employ image-
level classification strategies for echocardiographic quality 
assessment. Labs et al. reported a multi-classification 
model designed to assess the echocardiographic frames 
for tasks involving depth gain, chamber clarity, on-axis 
orientation, and foreshortening (6). Huang et al. developed 
a qualified scoring model based on the classification of 
echocardiography views, leveraging the capabilities of 
the DenseNet-121 convolutional neural network (8). 
Luong et al. constructed a clarity classification model for 
a series of temporal echocardiographic frames, utilizing a 
long short-term memory (LSTM) module in conjunction 
with a DenseNet convolutional neural network as the 
feature extraction backbone (5). These solutions are 
not well suited for real-time clinical quality assessment 
for echocardiography due to their large model size and 
computationally intensive calculations. Furthermore, 
another significant challenge lies in the “black box” 
problem associated with image-level DL classification 
methods, which further constrains their practical clinical 
application (15). In the majority of studies involving 
computer-assisted LVEF estimation, the preferred approach 
is the biplane Simpson’s method, which utilizes the cardiac 
chamber segmentation from both the A2C and A4C views. 
These studies have leveraged DL models to automate LV 
segmentation, subsequently applying Simpson’s formulas 
to assess LVEF (16-24). Additionally, several studies have 
designed a 4-level EF classifier on three-dimensional (3D) 
echocardiography (25) and 2D echocardiographic videos (26). 
To enhance robustness, Zhang et al. introduced an analytical 
framework that integrates view classification, cardiac chamber 
segmentation, and LVEF calculation (16). Similarly, Smistad 
et al. incorporated an apical foreshortening detection 
module into the LVEF calculation pipeline (19). However, 
none of these approaches possess the capability to conduct 
quality control before estimating LVEF.

The 5-point quality scoring system we introduce 
primarily focuses on evaluating the integrity and clarity of 
cardiac anatomical structures within the echocardiogram 
(Figure 1). Considering the need for high-efficiency 
calculations in clinical applications, our automatic quality 
scoring model has been designed with lightweight and 
efficient DL modules. To illustrate, YOLOX represents 
an enhanced version of the You Only Look Once (YOLO) 
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real-time object detection algorithm (11). We have integrated 
part of YOLOX modules into our automated quality scoring 
model, thereby achieving a more optimal trade-off between 
predictive accuracy and processing speed (Figure 2). To 
achieve real-time quality control, we have utilized the 
NVIDIA TensorRT module (NVIDIA, Santa Clara, CA, 
USA) to accelerate the algorithm’s inference. TensorRT is 
a high-performance DL inference optimizer and runtime 
engine that enables our model to run efficiently on graphics 
processing units (GPUs). The model’s processing speed was 
measured at an impressive 3 milliseconds per frame during 
testing on the NVIDIA Jetson Orin NX edge computing 
module. This translates to virtually no delay in our quality 
scoring model when deployed on most echocardiography 
equipment.

Our model was trained using a multicenter dataset 
that included data from commonly used echocardiogram 
devices such as Philips, GE, and Mindray. This ensures a 
broad applicability of our model across different clinical 
settings. Our model has demonstrated high performance 
across a wide range of tasks, boasting an impressive LV 
segmentation IoU score exceeding 0.8, an outstanding 
mAP50 score of 0.91, and an accuracy score of 0.96 on 
views classification. We have observed that the IoU score 
for MV and TV detection falls below 0.7 in both A2C and 
A4C views, as illustrated in Figure 4E,4F. IoU calculates 
the ratio of the area of overlap between the predicted and 
ground truth bounding boxes and is a critical metric in the 
field of object detection. Given that both the MV and TV 
are in continuous motion throughout the cardiac cycle, 
manual annotation as well as model-based detection pose 
significant challenges. Hence, we consider that a low IoU 
score in the MV and TV detection is acceptable, given that 
the quality score calculation is based on the presence of 
targets rather than their precise positional information. In 
the comparative performance analysis between our model 
and human experts, we found a high level of agreement 
in the quality assessments of echocardiograms from 65 
participants. This agreement was reflected in both a similar 
distribution (Figure 5) and comparable discrepancies 
between the model and human experts, as well as among 
the human experts themselves (Figure 6). When it comes 
to LVEF estimation, although there were no statistically 
significant differences in the LVEF calculations between 
the human experts and our model (Figure 7A), it is worth 
noting that the model demonstrated a stronger correlation 
in LVEF estimation between cardiac cycle 1 and 2 (Figure 7B).  

Previous research has shown a roughly 10% mean absolute 
deviation (MAD) in the manual evaluation of LVEF (27). 
In contrast, our model demonstrates an even more 
minimal variance when compared to human experts, with 
a 5% MAD (Figure 7C). This observation suggests that 
utilizing our model for LVEF estimation can yield more 
objective and consistently stable results. Consistent with 
prior research (28,29), we also identified the persistent 
impact of echocardiography quality on LVEF estimation 
(Figure 7C,7D). This underscores the critical importance 
and essential need for quality control within the LVEF 
assessment procedure. In our 5-point quality scoring 
system, we recommend that the operator utilize automated 
LVEF calculation when the quality score exceeds 3.0.

However, this work still has several limitations that 
require further enhancement. Firstly, the transition from 
research findings to clinical implementation requires 
rigorous validation in diverse clinical settings and among 
varied patient populations. Although our findings are 
promising, further validation in real-world clinical scenarios 
remains essential. Secondly, the current model is equipped 
with quality scoring modules for only A2C and A4C views, 
and the development of quality scoring modules for other 
echocardiography views is currently in process. Lastly, 
the limited number of participants in a single-center 
performance comparison study may have introduced bias. 
Additional efforts should be made to include a larger and 
more diverse participant pool in future studies.

Conclusions

This research represents a substantial stride in the realm 
of echocardiography, offering an automated, efficient, 
and real-time quality scoring system coupled with LVEF 
estimation through DL. Leveraging a comprehensive 
dataset encompassing diverse cardiac conditions and 
echocardiography qualities, the model exhibited its 
proficiency and reproducibility in not only assessing 
quality but also estimating LVEF with precision. This 
breakthrough holds significant promise for augmenting 
clinical workflows and expediting the formulation of timely 
diagnoses and treatment strategies for CVDs.
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