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Abstract
Esophageal cancer is a grave malignant condition. While radiotherapy, often in conjunction with chemotherapy, 
serves as a cornerstone in the management of locally advanced or metastatic cases, patient tolerance and 
treatment resistance frequently hinder its efficacy. Cell-in-cell structures, prevalent in various tumors, have been 
linked to prognosis. Hence, investigating the prognostic significance and regulatory mechanisms of genes related 
to these intracellular structures in esophageal cancer is imperative. The Cancer Genome Atlas (TCGA) Esophageal 
Cancer (ESCA) dataset served as the training set for the analysis. Differentially expressed genes (DEGs) in ESCA 
samples were identified, with those related to intercellular structures designated cell-in-cell-related differential 
expression genes (CIC-related DEGs). Cox regression analysis was employed to identify prognostic genes, 
categorizing samples into high- and low-risk groups based on median risk scores. Validation was conducted using 
the GSE53624 risk model. Established methodologies included morphological mapping, enrichment analysis, 
immune infiltration analysis, prognostic gene expression validation, molecular docking, and Reverse Transcription 
Polymerase Chain Reaction (RT-PCR) validation. Thirty-eight intersecting genes were identified between the disease 
and normal groups in ESCA samples. Stepwise multivariate Cox analysis pinpointed three prognostic genes: 
androgen receptor (AR), C-X-C motif chemokine ligand 8 (CXCL8), and epidermal growth factor receptor (EGFR). The 
risk model’s applicability was confirmed in the GSE53624 dataset, revealing eight significantly different immune-
related gene sets. Prognostic gene expression validation demonstrated significant differences between the disease 
and normal groups in both datasets. The proteins corresponding to the three prognostic genes interacted with 
gefitinib and osimertinib. RT-PCR results corroborated the differential expression of prognostic genes in esophageal 
cancer tissues. This study identified AR, CXCL8, and EGFR as prognostic genes and demonstrated their molecular 
interactions with gefitinib and osimertinib, providing a foundation for ESCA diagnosis and treatment.
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Introduction
Esophageal cancer (ESCA) ranks as the seventh most 
common cancer and the sixth leading cause of cancer-
related deaths globally [1]. Despite recent advances in 
comprehensive treatments, the prognosis for esopha-
geal cancer remains dismal [2]. Radiotherapy, a standard 
treatment modality for ESCA, effectively kills cancer 
cells, alleviates symptoms, and extends patient survival 
[3]. Although radiotherapy plays an integral role in the 
multimodal treatment approach for esophageal cancer, 
treatment-related toxicity, and patient intolerance can 
affect its effectiveness, especially when used in conjunc-
tion with chemotherapy [4]. Perioperative or palliative 
radiotherapy often leads to treatment failure and pres-
ents a significant challenge in the clinical management 
of patients with ESCA [5]. Therefore, understanding the 
molecular mechanisms underpinning radiotherapy tol-
erance in esophageal cancer and identifying molecular 
targets for radiotherapy sensitization to develop new 
therapeutic strategies is imperative.

Cell-in-cell (CIC) structures, wherein one or more liv-
ing cells internalize into another living cell, forming a 
“bird’s eye cell,” have been observed in various tumors 
and are linked to poor prognosis in cancers such as 
breast, lung, and pancreatic cancer [6, 7]. Assessing CIC 
status is an effective method for evaluating prognosis [8]. 
The formation of CIC structures may be influenced by 
various factors, including cell adhesion molecules, cyto-
skeletal reorganization, and the regulation of apoptotic 
pathways [9]. In some cases, CIC structures may lead to 
programmed death of phagocytic cells, thereby inhibit-
ing tumor growth; in other cases, they may help tumor 
cells evade immune recognition and promote tumor pro-
gression [10]. Therefore, CIC structures are not only an 
interesting phenomenon in the process of cancer devel-
opment but also may become a key indicator for predict-
ing cancer patients’ prognosis and guiding therapeutic 
strategies. Understanding the mechanisms of CIC struc-
tures in esophageal cancer is of great clinical significance 
for developing new therapeutic approaches. This study 
used the cancer genome atlas (TCGA) ESCA dataset as 
the training set and differentially expressed gene analysis 
was used to screen differentially expressed genes related 
to the CIC structure. The prognostic value of these genes 
was then analyzed using the Cox proportional hazards 
model. Subsequently, we validated the applicability of the 
risk model in the dataset and explored the mechanisms 
of these prognostic genes in esophageal cancer through 
multidimensional means, including enrichment analysis, 
immune infiltration analysis, and Q-reverse transcription 
polymerase chain reaction (RT-PCR).

Materials and methods
Data extraction
In this study, the TCGA-ESCA RNAseq - HTSeq - 
Counts matrix was downloaded from the University of 
California, Santa Cruz (UCSC) Xena database  (   h t  t p s  : / / x  
e n  a b r o w s e r . n e t / d a t a p a g e s /     ) to serve as the training set. 
Concurrently, the corresponding clinical phenotype and 
survival information data were obtained. The dataset, 
downloaded in December 2022, comprised 173 samples: 
162 disease samples, 11 normal control samples, and 161 
disease samples with survival information.

The GSE53624 dataset was downloaded from the Gene 
Expression Omnibus (GEO) database  (   h t  t p s  : / / w  w w  . n c 
b i . n l m . n i h . g o v / g e o /     ) , containing transcriptome data of 
238 samples, including 119 disease samples (with corre-
sponding survival information) and 119 normal samples, 
used as a validation set. Additionally, 101 cell-to-cell 
related genes were sourced from existing literature [6].

Differential expression analysis between disease group 
and normal group
To identify genes with significant differences in gene 
expression between the different sample groups, the R 
software package “DESeq2” (version 3.52.4) [11] was uti-
lized to analyze the differentially expressed genes (DEGs) 
between ESCA samples and normal group samples in the 
training set, with screening criteria of |log2FoldChange| 
> 0.5 and P-value < 0.05. Using the online jvenn tool 
(http:// jvenn.t oulouse .inr a.fr/app/example.html), DEGs 
obtained from the analysis were intersected with the 101 
cell-related genes sourced from literature. The differen-
tially expressed genes related to cell-in-cell structures 
were then identified as cell-in-cell-related differential 
expression genes ( CIC-related DEGs).

Risk model construction and prognostic gene analysis
Univariate Cox was performed to obtain signature genes 
(pvalu < 0.2) for CIC-related DEGs in the disease group 
of the training set. Subsequent stepwise forward mul-
tifactorial Cox analyses were performed, and the step 
function was used to process the feature genes to obtain 
prognostic genes (direction = “both”). In this process, the 
akaike information criterion (AIC) was used as a crite-
rion for model selection, and the current optimal model 
configuration was determined by continuously adding 
or removing variables to find the regression equation 
with the smallest AIC value (K = 2). Afterwards, correla-
tions between prognostic genes were calculated using the 
spearman method and risk models were constructed. We 
used normalised gene expression data to assess the prog-
nostic value of risk models. Expression levels of three 
prognostic genes were obtained in the TCGA-ESCA 
dataset, and DESeqDataSet objects were created using 
the DESeqDataSetFromMatrix function in the DESeq2 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://jvenn.toulouse.inra.fr/app/example.html
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package (version 3.52.4) [11]. Next the low expressed 
genes were removed and the size factor for each sample 
was estimated using the estimateSizeFactors function 
for normalisation and then the counts function was used 
to return the normalised count data. Finally, the risk 
score for each patient was calculated using the following 
formula:

 Riskscoresample =
∑ n

n=1
(coef i ∗ xi)

(Note: Coefi represents the multivariate regression coef-
ficient of the ith gene, xi represents the expression value 
of the ith gene, and n represents the number of model 
genes.)

Patients were stratified into high- and low-risk groups 
based on the median risk score, followed by Kaplan-
Meier (K-M) survival curve analysis to compare survival 
between these groups. The accuracy of the survival curve 
scoring model was validated using the receiver operating 
characteristic (ROC) curve, generated by survival ROC 
package (version 1.42.0) [12]. Additionally, risk curves 
and expression heat maps of prognostic genes in the 
high- and low-risk groups were created. The results were 
further validated using the GSE53624 dataset.

Construction of nomogram model for prognostic factors
Based on the risk score, age, gender, and tumor-node-
mMetastasis (TNM) stage, we used the “RMS” package 
(version 6.0–1) [13] to construct line plots of 1-year and 
3-year survival rates for the clinical factors in the risk 
model. The “pROC” package (version 1.18.0) [14] was 
used to plot the ROC curves at 1 and 3 years, and the 
“rmda” package (version 1.6)  (   h t  t p s  : / / C  R A  N . R - p r o j e c t . o 
r g / p a c k a g e = r m d a     ) was used to plot the decision curves. 
The closer the slope of the calibration curve is to 1, the 
more accurate the prediction will be.

Enrichment analysis of high- and low-risk groups
Using the grouping information for high- and low-risk 
groups, DESeq2 software (version 3.52.4) [11] analyzed 
the DEGs between these groups in the training set, with 
a screening threshold of |log2FoldChange| > 0.5 and 
P-value < 0.05. The ClusterProfiler package (version 4.4.4) 
[15] conducted Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analy-
ses of the DEGs, while the R package “ggplot2” (version 
3.3.2) [16] visualized the enrichment results.

Analysis of immune infiltration in the high- and low-risk 
groups
In this study, we used the gene set file immune-v29.gmt 
containing 29 immune cell types, which provides infor-
mation about the gene sets associated with each immune 

cell. The cell types are: B cells naive, B cells memory, 
plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 
memory resting, T cells CD4 memory activated, T cells 
follicular helper, T cells regulatory (Tregs), T cells gamma 
delta, NK cells resting, natural killer (NK) cells activated, 
monocytes, macrophages M0, macrophages M1, mac-
rophages M2, dendritic cells resting, dendritic cells acti-
vated, mast cells resting, mast cells activated, eosinophils, 
and neutrophils.

We utilized the getGmt function in the GSEABase 
package (version 1.64.0)  (   h t  t p s  : / / d  o i  . o r g / 1 0 . 1 8 1 2 9 / B 9 . b i 
o c . G S E A B a s e     ) to extract gene set information from the 
immune-v29.gmt file. This step was performed in prepa-
ration for gene set enrichment analysis (GSEA) for subse-
quent immune infiltration analysis.

Based on the categorical information of the high- and 
low-risk groups, we used the single-sample gene set 
enrichment analysis (ssGSEA) method in the training 
set to analyze the immune infiltration between the two 
groups. The ssGSEA is a modified GSEA method that 
allows for gene set enrichment analysis of individual 
samples to assess the activity levels of each immune cell 
type in different risk groups. With this approach, we 
looked at the composition of immune cells in the train-
ing set and identified immune cell types that were dif-
ferentially expressed between the high- and low-risk 
groups. In addition to ssGSEA analysis, we further quan-
tified the relative abundance of immune cells using the 
CIBERSORT algorithm, which accurately estimates the 
composition and distribution of different cell types from 
complex mixed tissue samples through non-negative 
matrix factorization (NMF) and linear regression tech-
niques that utilize known cell type-specific gene expres-
sion patterns. The CIBERSORT algorithm provides a 
powerful tool to gain insight into immune cell infiltration 
in the tumor microenvironment, which is important for 
unraveling disease mechanisms and evaluating treatment 
response.

Prognostic gene expression validation
Expression matrices of prognostic genes were extracted 
from the training and validation sets, which were subse-
quently normalised. Then, expression analyses were per-
formed and t-tests were used to compare the two sets of 
samples: one group of tumor samples and the other group 
of control samples. The main purpose of this comparison 
is to determine whether there are significant differences 
in the expression levels of specific prognostic genes dur-
ing tumor development and progression. Through this 
differential expression analysis, we aim to identify genes 
that may play a key role in disease prognosis.

https://CRAN.R-project.org/package=rmda
https://CRAN.R-project.org/package=rmda
https://doi.org/10.18129/B9.bioc.GSEABase
https://doi.org/10.18129/B9.bioc.GSEABase
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Molecular docking analysis
The crystal structures of the prognostic genes were 
obtained from the protein data bank (PDB) database 
(https://www.rcsb.org/), and molecular docking with 
gefitinib and osimertinib was executed using AutoDock 
software (version 4.2) [17].

Reverse transcription polymerase chain reaction (RT-PCR)
Five pairs of frozen esophageal cancer samples, along 
with five pairs of cancer tissues and five pairs of adjacent 
tissues, were collected from the Department of Thoracic 
Surgery at Gansu Provincial People’s Hospital. From each 

sample, 50  mg of tissue was used for total ribonucleic 
acid (RNA) extraction. The SureScript First-Strand com-
plementary deoxyribonucleic acid (cDNA) Synthesis Kit 
facilitated reverse transcription and detection. Relative 
RNA quantities were calculated using the comparative 
cycle threshold (Ct) method (2−△△CT). The primers and 
their sequences are detailed in Table 1.

Statistical analysis
Statistical analyses and graphical representations were 
conducted using R software (version 4.2.0) and GraphPad 
Prism (version 8.0). Data were expressed as mean ± stan-
dard deviation, and differences were evaluated using 
the Wilcoxon rank-sum test. Multiple corrections were 
not performed in order to maintain high sensitivity and 
not miss signals that might be biologically significant. 
A P-value of less than 0.05 was considered statistically 
significant.

Results
Identification of CIC-related DEGs
The distribution of DEGs is illustrated in Fig. 1A and B. 
A total of 12,985 DEGs were identified, comprising 6,617 

Table 1 Primers and their sequences
Primers Sequences
AR F  A G G C A G T G T C G G T G T C C A T G
AR R  C C T T T G G T G T A A C C T C C C T T G A
CXCL8 F  T C T G C A G C T C T G T G T G A A G G
CXCL8 R  T T C T C A G C C C T C T T C A A A A A C T
EGFR F  G C C A A G G C A C G A G T A A C A A G C
EGFR R  A G G G C A A T G A G G A C A T A A C C A G
GAPDH F  C G A A G G T G G A G T C A A C G G A T T T
GAPDH R  A T G G G T G G A A T C A T A T T G G A A C

Fig. 1 Analysis of differentially expressed genes. ((a) Volcano plot of differentially expressed genes. (b) Heat map of DEGs between sample groups. (c) 
Venn diagram showing the intersection of DEGs and related genes between cells
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up-regulated and 6,368 down-regulated genes. Taking the 
intersection of DEGs and 101 cell-related genes, a total of 
38 genes were identified as CIC-related DEGs (Figue. 1 C, 
Supplementary Table 1).

Construction of risk models
Univariate COX regression analysis
The TCGA-ESCA dataset was utilized as the training set 
to perform univariate Cox proportional hazards regres-
sion analysis on 38 CIC-related DEGs, with a univariate 
P-value threshold of 0.2, identifying a total of five genes. 
The results and corresponding forest plots are presented 
in Table 2; Fig. 2A, respectively.

Multivariate COX regression analysis
Three prognostic genes (androgen receptor (AR), C-X-C 
motif chemokine ligand 8 (CXCL8), and epidermal 
growth factor receptor (EGFR)) were identified through 
stepwise multivariate Cox analysis using the step func-
tion. The multivariate coefficient (coef ) for each prog-
nostic gene was calculated to construct the survival risk 
model. The multivariate results and corresponding forest 
plots are displayed in Table 3; Fig. 2a-b, respectively.

In the ESCA group of the training set, the expression 
matrix of the prognostic genes (AR, CXCL8, EGFR) 
was extracted. The correlation between these prognos-
tic genes was calculated using the “spearman” method, 
and a correlation chord diagram was generated using the 
R software “circlize” package (version 0.4.15) [18]. The 
results are illustrated in Fig. 2c.

Effect of prognostic genes on survival
The risk value for each patient was calculated, and 161 
patients with survival information in the training set were 
stratified into high- and low-risk groups based on the 
median risk value (1.047788). The high-risk group con-
sisted of 80 samples, while the low-risk group included 81 
samples. As shown in Fig. 2d, survival analysis revealed a 
significant difference in survival between the high- and 
low-risk groups in the TCGA-ESCA dataset (P < 0.05).

ROC curve and risk curve
The multivariate Cox model was employed to calculate 
the RiskScore. Using the survival ROC package (ver-
sion 1.42.0) [12], false positive and true positive rates 
were computed, and the ROC curve was plotted based 

on these results. The area under curve (AUC) was cal-
culated, as depicted in Fig. 2e, with AUC values of 0.74 
for 1-year and 0.62 for 3-year survival, demonstrating the 
efficacy of the risk regression model as a prognostic tool. 
The risk curve, shown in Fig.  2g, stratifies samples into 
high- and low-risk groups based on the median value.

Expression heatmap of prognostic genes in the high- and 
low-risk groups
The R package “pheatmap” (version 1.0.12)  (   h t  t p s  : / / r  d r  r . 
i o / c r a n / p h e a t m a p /     ) was utilized to visualize the expres-
sion levels of prognostic genes in the high- and low-risk 
groups. The resulting heatmap is displayed in Fig. 2f.

Survival risk model validation
Effect of prognostic genes on survival
The risk value for each patient was calculated, and 119 
patients in the training set were stratified into high- 
and low-risk groups based on the median risk value 
(0.9625565), resulting in 59 samples in the high-risk 
group and 60 samples in the low-risk group. The survival 
analysis results for these groups are presented in Fig. 3a, 
demonstrating a significant survival difference between 
the high- and low-risk groups in the GSE53624 dataset 
(P < 0.05).

ROC curve and risk curve
The multivariate Cox model was employed to calculate 
the RiskScore. Using the survival ROC package (ver-
sion 1.42.0) [12], false positive and true positive rates 
were computed, and these results were used to plot the 
ROC curve. The AUC values, shown in Fig.  3b, were 
both above 0.6 for 1-year and 3-year survival, indicating 
the efficacy of the constructed risk regression model as 
a prognostic tool. As illustrated in Fig. 3c, samples were 
stratified into high- and low-risk groups based on the 
median value.

Expression heatmap of prognostic genes in the high- and 
low-risk groups
The R package “pheatmap” (version 1.0.12)  (   h t  t p s  : / / r  d r  r . 
i o / c r a n / p h e a t m a p /     ) was utilized to visualize the expres-
sion levels of prognostic genes in the high- and low-risk 
groups. The resulting heatmap is displayed in Fig. 3d.

Construction of nomogram model for prognostic factors
Using the “RMS” package (version 6.0–1) [13], survival 
nomograms for 1 and 3 years were constructed based on 
risk score, age, sex, and TNM stage. Each factor corre-
sponds to a score, and the total score is the sum of these 
individual scores. The 1-year and 3-year survival rates 
were predicted based on the total score, with higher 
scores indicating lower survival rates. The nomogram 
(Fig. 4a) and calibration curve (Fig. 4b) were developed. 

Table 2 Results of univariate analysis
id pvalue HR HR.95 L HR.95 H
EGFR 0.025465674 0.816222106 0.683036621 0.975377463
AR 0.032093467 0.816018744 0.677565483 0.982763448
CXCL8 0.051096995 1.154841387 0.999313898 1.334574283
HTT 0.06904872 0.699816164 0.476290936 1.028242669
TP53 0.164783007 0.867781691 0.710418302 1.060002342

https://rdrr.io/cran/pheatmap/
https://rdrr.io/cran/pheatmap/
https://rdrr.io/cran/pheatmap/
https://rdrr.io/cran/pheatmap/
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Fig. 2 Construction of the risk model (a) Forest plot of univariate COX results. (b) Forest plot of multivariate COX results. (c) Chord diagram depicting 
the correlation between prognostic genes, with line color indicating the strength of the correlation (redder lines denote stronger positive correlations). 
(d) K-M survival curve of RiskScore, indicating a significant difference (P < 0.05) between the high-risk and low-risk groups. (e) ROC curve evaluating the 
effectiveness of the risk model. (f) Heatmap showing the expression of prognostic genes between high- and low-risk groups. (gg) Risk curve of the valida-
tion set for high- and low-risk groups
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The 1-year and 3-year ROC curves of the nomogram 
were generated using the “pROC” package (version 
1.18.0) [14], which showed that the AUC values for the 
1-year and 3-year ROC curves of the nomogram were 
both greater than 0.7, underscoring the model’s high 
prognostic accuracy (Fig. 4c). The decision curve analy-
sis (DCA) was performed using the “rmda” package (ver-
sion 1.6) (https:/ /CRAN.R -projec t.or g/package=rmda), 
which revealed that within the high-risk threshold range 
of 0–1, the nomogram model provided significant clinical 
benefit, surpassing the clinical benefits of individual fac-
tors such as “age,” “riskScore,” “T,” “N,” “M,” and “gender” 
(Fig. 4d). The calibration curve demonstrated a minimal 
error between the actual and predicted risks, indicating 
high predictive accuracy of the nomogram model for 
ESCA.

Enrichment analysis of high- and low-risk groups
Based on the expression matrix in the TCGA-ESCA 
dataset, 80 high-risk samples and 81 low-risk samples 
were extracted. The “DESeq2” package (version 3.52.4) 
[11] was employed for differential expression analysis 
with screening criteria set at |log2FoldChange| > 0.5 and 
P-value < 0.05. This analysis identified 5,727 significantly 
differentially expressed genes between the high- and 
low-risk groups, including 2,965 up-regulated and 2,762 
down-regulated genes. Figure  5a displays the volcano 
plot, illustrating the distribution of these DEGs, while 
Fig.  5b presents a heat map depicting their expression 
across sample groups.

The ClusterProfiler package (version 4.4.4) [15] in R 
was used to perform functional enrichment analyses 
(GO and KEGG) of the DEGs between the high- and 
low-risk groups. The screening thresholds were set at 
P-value < 0.05, identifying a total of 887 GO Biological 

Table 3 Results of multivariate analysis
id coef HR HR.95 L HR.95 H pvalue
AR -0.178187505 0.836785507 0.699135927 1.001536265 0.051989207
CXCL8 0.137065624 1.14690341 0.985768463 1.334377678 0.075996366
EGFR -0.199620941 0.819041159 0.688642196 0.97413203 0.024059355

Fig. 3 Survival risk model validation. (a) Kaplan-Meier (K-M) survival curve of RiskScore in the validation set. The P-value < 0.05 indicates a significant dif-
ference between the high- and low-risk groups. (b) ROC curve of the validation set, used to assess the effectiveness of the risk model. (c) Risk curve of the 
validation set, depicting high- and low-risk groups. (d) Expression heatmap of prognostic genes in the high- and low-risk groups
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Processes (BP), 67 GO Cellular Components (CC), 178 
GO Molecular Functions (MF), and 53 KEGG pathways. 
The enrichment results were visualized using the R pack-
age “ggplot2,” (version 3.3.2) [16] as shown in Fig.  5c 
and d. The top 10 descriptions of GO and KEGG were 
selected for display, ranked by P-value.

Analysis of immune infiltration in high- and low-risk 
groups
Based on the expression matrix and grouping infor-
mation of high- and low-risk groups in the training set 
(TCGA-ESCA), ssGSEA was performed to determine 
the expression levels of 29 immune gene sets (compris-
ing 16 immune cells and 13 immune-related pathways) 
in each sample. The t-test revealed eight significantly 
different immune-related gene sets in the training set: B 
cells, iDCs, Macrophages, Mast cells, NK cells, T cell co-
inhibition, T helper cells, and Type II IFN Response. The 
results are depicted in Fig. 6a.

Prognostic gene expression validation
The expression matrices of the prognostic genes (AR, 
CXCL8, EGFR) were extracted from both the training set 
(TCGA-ESCA) and the validation set (GSE53624). Utiliz-
ing the grouping information from each dataset, a t-test 
was performed. The R software package “ggplot2” (ver-
sion 3.3.2) [16] was employed to create boxplots of the 
prognostic gene expressions in both datasets. Significant 
differences were observed between the disease group and 
the normal group for the three prognostic genes in both 
datasets, with consistent trends in the expression of the 
remaining two genes, except for EGFR. The results are 
depicted in Fig. 6b and c.

Molecular docking analysis
Docking analysis was conducted for three prognostic 
genes (AR, CXCL8, EGFR) with two drugs (gefitinib and 
osimertinib). The crystal structures for AR, CXCL8, and 
EGFR were retrieved from the PDB database  (   h t t p s : / / w w 

Fig. 4 Construction of a nomogram model for prognostic factors. (a) Nomogram model incorporating clinical factors. (b) Calibration curve evaluating the 
predictive accuracy of the nomogram model. A slope closer to 1 indicates higher predictive accuracy. (c) ROC curves depicting 1-year and 3-year survival 
rates as predicted by the nomogram model. (d) Decision Curve Analysis (DCA) curves evaluating the clinical applicability of the nomogram model. The 
nomogram curve surpasses the gray line, as well as the “age,” “riskScore,” “T,” “N,” “M,” and “gender” curves, indicating the nomogram model’s benefit within 
the high-risk threshold range of 0–1
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w . r c s b . o r g /     ) with PDB IDs AR-1T7R, CXCL8-7JNY, and 
EGFR-1IP0, respectively.

Molecular docking using AutoDock revealed specific 
interactions: [1] Docking between AR-1T7R and gefitinib 
formed two hydrogen bonds and involved two residues; 
[2] Docking between AR-1T7R and osimertinib formed 
one hydrogen bond and involved one residue; [3] Dock-
ing between CXCL8-7JNY and gefitinib formed three 
hydrogen bonds and involved two residues; [4] Docking 
between CXCL8-7JNY and osimertinib formed three 
hydrogen bonds and involved two residues; [5] Docking 
between EGFR-1IP0 and gefitinib formed two hydrogen 
bonds and involved two residues; [6] Docking between 
EGFR-1IP0 and osimertinib formed four hydrogen bonds 
and involved four residues.

All three prognostic genes exhibited interactions with 
both drugs. Figure 7a and b illustrate the docking results 
for EGFR-1IP0 with gefitinib and osimertinib, respec-
tively, while additional molecular docking results are pro-
vided in the supplementary material.

RT-PCR
Five pairs of frozen esophageal cancer samples were 
obtained from the Department of Thoracic Surgery, 
Gansu Provincial People’s Hospital, for RT-PCR experi-
ments. As shown in Fig. 8a-c, AR expression was signifi-
cantly lower in esophageal cancer tissues (P < 0.0001), 
while CXCL8 and EGFR expressions were significantly 
higher (P < 0.05). These RT-PCR results were consistent 
with previous analyses.

Discussion
Esophageal cancer arises from the abnormal proliferation 
of esophageal squamous or glandular epithelium and is 
among the most prevalent malignant tumors worldwide 
[19]. It ranks sixth in cancer mortality [20]. The early 
symptoms of esophageal cancer are often subtle, leading 
to diagnosis at advanced stages; 38% of cases are diag-
nosed in the late stage, missing the optimal treatment 
window. Currently, the 5-year survival rate for patients 
with esophageal cancer stands at 10% [21]. Hence, under-
standing the mechanisms underlying esophageal can-
cer development and exploring new treatment methods 

Fig. 5 Enrichment analysis of high- and low-risk groups. (c) Volcano plot of DEGs between high- and low-risk groups in the training set. (b) Heat map of 
DEGss between high- and low-risk groups in the training set. (c) Bubble plot of GO TOP10 enrichment results of DEGs between high- and low-risk groups. 
The vertical axis represents the enriched GO terms, while the horizontal axis shows the GeneRatio, which indicates the proportion of genes related to 
each term among the total DEGs. (d) Bubble plot of KEGGTOP10 enrichment results of DEGs between high- and low-risk groups. The ordinate represents 
the enriched KEGG pathways, and the abscissa shows the GeneRatio
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is essential. During tumor cell culture, some large cells 
with internal vacuoles and multiple nuclei, indicat-
ing one cell inside another (cell-in-cell structures), have 
been observed in various tumors and shown to correlate 
with prognosis [8]. Studying the prognostic value and 
regulatory mechanisms of intracellular structure-related 
genes in esophageal cancer is therefore essential [22]. 
Cell-in-cell (CIC) structures have been noted in vari-
ous tumor types and are associated with poor progno-
sis. For instance, a clinical study linked CIC structures 
with aggressive features and cancer-related mortality in 

tongue cancer [23]. However, the role of CIC structures 
in esophageal cancer remains unclear.

The GDC TCGA Esophageal Cancer (ESCA) dataset 
was utilized as the training set for this study, while the 
GSE53624 dataset was downloaded from the GEO data-
base and used as the validation set. A total of 101 cell-
related genes were sourced from existing literature. 
Based on these data, a series of bioinformatics analyses 
were conducted.

First, differential expression analysis was performed 
between the disease and normal groups. The intersection 

Fig. 6 Immune infiltration analysis and prognostic gene expression visualization. (a) Box plot illustrating the abundance of 29 immune gene sets in the 
high- and low-risk groups of the training set. The vertical axis denotes the infiltration level, while the horizontal axis represents the immune cell gene sets. 
(b) Box plot showing the expression levels of prognostic genes in the training set. (c) Box plot showing the expression levels of prognostic genes in the 
validation set. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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of the DEGs and the 101 cell-related genes yielded 38 
intersection genes, designated as CIC-related DEGs. 
These 38 genes underwent univariate and multivariate 
analyses, identifying three prognostic genes: AR, CXCL8, 
and EGFR. This study employed the TCGA esophageal 
carcinoma (ESCA) dataset as the training set and down-
loaded the GSE53624 dataset from the GEO database 
as the validation set. Three prognostic genes related to 
intercellular communication (AR, CXCL8, and EGFR) 
were screened out through univariate and stepwise mul-
tivariate Cox regression analyses, and a prognostic model 
for esophageal carcinoma was constructed. Subsequently, 
based on the risk scores of patients in the prognostic 
model, they were classified into high-risk and low-risk 
groups. Immune infiltration analysis was carried out to 
investigate changes such as the distribution of immune 
cells within different risk groups. Additionally, functional 
enrichment analysis was performed to offer novel insights 
and grounds for the prognosis judgment and treatment 
strategy of esophageal carcinoma. Currently, multivariate 
Cox regression analysis is one of the frequently utilized 
approaches in constructing prognostic models [24–26], 
featuring strong applicability and the ability to effectively 

handle cases with missing survival time data, rendering 
the analysis results more reliable. In this study, the step-
wise multivariate Cox regression analysis was adopted. It 
can automatically select the independent variables that 
have a significant impact on survival time and to a certain 
extent, reduce the influence of multicollinearity, thereby 
enhancing the predictive performance of the prognostic 
model and providing robust scientific evidence and new 
perspectives for the prognosis determination and treat-
ment strategy formulation of esophageal carcinoma.

AR is a type I nuclear receptor related to cell classifica-
tion, differentiation, apoptosis, proliferation, and angio-
genesis [27, 28]. Studies have pointed out that during the 
process of prostate tissue transforming from a benign 
state to a malignant one, along with the structural and 
genomic changes in stromal cells, the expression level 
of AR shows a gradual downward trend [29]. Further-
more, when exploring the role of AR in breast cancer, 
researchers found that AR is expressed in normal breast 
tissue, but its expression level gradually decreases during 
the transition from ductal carcinoma in situ (DCIS) to 
invasive cancer as the disease progresses [30]. Currently, 
research on AR in cancer mainly focuses on prostate 

Fig. 7 Molecular docking analysis. (a) Docking results of 1IP0 with gefitinib. (b) Docking results of 1IP0 with Osimertinib. In the figure, the cyan ring 
model represents the active molecule 1IP0. The stick structures near 1IP0 indicate amin o acid residues with hydrogen bond interactions with the active 
molecule. The yellow dotted lines depict the hydrogen bonds formed between the active molecule and the amino acid residues, while the red parts 
highlight the amino acid residues

 



Page 12 of 15Cao et al. BMC Cancer          (2025) 25:105 

cancer [31, 32], while studies on AR in esophageal can-
cer are still scarce. The multivariate Cox analysis in this 
study revealed that AR is a protective factor for ESCA, 
and its expression level in ESCA patients is significantly 
lower than that in the control group. This finding pro-
vides new clues for our understanding of the role of AR 
in ESCA, but its specific mechanism of action in ESCA 
still requires further research to be revealed.

CXCL8 and EGFR were significantly up-regulated in 
esophageal cancer. CXCL8, also known as interleukin-8 
(IL-8), acts as a neutrophil-activating factor and is pri-
marily produced by neutrophils, monocytes, macro-
phages, T cells, epithelial cells, and endothelial cells. This 
gene shows a similar expression trend in ovarian, breast, 
and liver cancers [33–35] and head and neck squamous 
cell carcinoma and holds considerable prognostic and 
diagnostic value [36].

Silencing CXCL8 in esophageal cancer cells can inhibit 
their proliferation and invasion [37]. Research by Helen 
et al. revealed that CXCL8 expression is closely linked to 
epithelial-mesenchymal transition and cell-matrix vascu-
larization, promoting tumor cell invasion and metastasis, 
thereby explaining CXCL8’s predictive ability for tumor 
metastasis [38].

EGFR predominantly resides in the stroma, epider-
mis, and certain smooth muscle cells. Upon activation, 
EGFR can initiate the downstream mitogen-activated 
protein kinase (MAPK) signaling pathway, inhibit cell 
apoptosis and DNA repair, accelerate cell invasion [39], 

and contribute to the progression of lung, colorectal, and 
breast cancers [40–42]. The study discovered that EGFR 
is a crucial downstream target of NAT10. Overexpression 
of EGFR in ESCA cells with NAT10 deficiency could par-
tially restore the migration and invasion capabilities of 
NAT10-deficient ESCA cells and promote the oncogenic 
function of NAT10 to facilitate ESCA progression [43]. 
In this study, it was found that the expression of EGFR 
significantly increased in ESCA patients. Therefore, we 
can infer that the increased expression of EGFR might 
promote the disease progression of ESCA by enhancing 
the migration and invasion abilities of ESCA cells.

In this study, 29 immune-related gene sets were 
selected. Immune infiltration analysis of high- and 
low-risk groups identified eight significantly different 
immune-related gene sets in the training set: B cells, 
iDCs, Macrophages, Mast cells, NK cells, T cell co-inhibi-
tion, T helper cells, and Type II IFN Response. IDCs exist 
in peripheral tissues and are key targets for stimulating 
tumor immunity, specializing in antigen capture [44, 45], 
and are related to the tolerance and induction of regula-
tory T cells (Tregs) [46]. This study discovered that the 
infiltration of iDCs cells decreased in the high-risk group, 
which might weaken the body’s ability to recognize and 
present tumor-related antigens, thereby influencing the 
anti-tumor effect of the immune system. Hence, enhanc-
ing the function of iDCs or promoting their infiltration 
into tumor sites might offer significant insights for devel-
oping novel tumor immunotherapy strategies.

Fig. 8 RT-PCR results. (a) AR expression level in cancer tissues and adjacent tissues (b) CXCL8 expression level in cancer tissues and adjacent tissues (c) 
EGFR expression level in cancer tissues and adjacent tissues (*P < 0.05, **** P < 0.0001)
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In recent years, molecular docking methods have 
emerged as a pivotal technique in computer-aided drug 
research. Molecular docking facilitates drug design by 
analyzing the characteristics of receptors and their inter-
actions with drug molecules, employing theoretical sim-
ulation to study molecular interactions (such as ligands 
and receptors) and predict their binding modes and affin-
ities [47].

AutoDock, an open-source molecular simulation soft-
ware, is primarily utilized for ligand-protein molecular 
docking. It employs a semi-flexible docking method that 
allows conformational changes in small molecules, using 
binding free energy as the basis for evaluating docking 
results [48]. Molecular docking of the three prognostic 
genes with gefitinib and osimertinib revealed interac-
tions, suggesting that these genes may influence drug effi-
cacy or that the drugs may affect gene expression.

Osimertinib, a third-generation EGFRr-tyrosine kinase 
inhibitor (TKI), is used in the treatment of lung cancer 
[49]. However, its use can lead to severe complications, 
including lung injury and interstitial lung disease (ILD), 
potentially exacerbating pulmonary inflammation due 
to impaired epithelial healing [50]. Gefitinib, a specific 
small molecule EGFR tyrosine kinase inhibitor, inhibits 
esophageal cancer cell growth by blocking EGFR tyro-
sine kinase signal transduction and phosphorylation. It 
also impedes tumor angiogenesis and metastasis, serv-
ing as a therapeutic agent for various cancers [51]. Gefi-
tinib’s inhibitory effects on metastatic non-small cell 
lung cancer, ovarian cancer, and other tumors are well-
documented [52]. Our study discovered that gefitinib and 
osimertinib not only interact with EGFR but also with AR 
and CXCL8, which may have significant implications for 
future targeted drug development.

Conclusion
In this study, bioinformatics analysis of the TCGA-ESCA 
transcriptome data identified three prognostic genes: 
AR, CXCL8, and EGFR, which were further validated by 
RT-PCR. Molecular docking of these prognostic genes 
with gefitinib and osimertinib revealed significant inter-
actions, suggesting that further attention and in-depth 
studies are essential to understanding the pathogen-
esis of the disease and enhancing therapeutic outcomes. 
Consequently, this research provides a valuable refer-
ence for the future diagnosis, mechanism exploration, 
and treatment of esophageal cancer. However, Owing 
to the imbalance of disease and control sample sizes in 
the dataset, in future studies, multiple covariates (such 
as age, gender, disease stage, etc.) need to be incorpo-
rated in the DESeq2 analysis stage for adjustment, in the 
hope of reducing confounding effects and revealing the 
differences in gene expression between disease and con-
trol samples more accurately.Additionally, the impact of 

the “cell-in-cell” structure on the biological behavior of 
esophageal cancer cells and the body’s immune response 
requires confirmation through in vivo studies. Finally, 
the molecular docking results need further validation 
through subsequent related experiments.
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