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ABSTRACT: Aging is a natural process with varying effects. As we grow older, our bodies become more susceptible 

to aging-associated diseases. These diseases, individually or collectively, lead to the formation of distinct aging 

phenotypes. Identifying these aging phenotypes and understanding the complex interplay between coexistent diseases 

would facilitate more personalized patient management, a better prognosis, and a prolonged lifespan. Many studies 

distinguish between successful aging and frailty. However, this simple distinction fails to reflect the diversity of 

underlying causes. In this study, we sought to establish the underlying causes of frailty and determine the patterns in 

which these causes converge to form aging phenotypes. We conducted a comprehensive geriatric examination, 

cognitive assessment, and survival analysis of 2,688 long-living adults (median age = 92 years). The obtained data were 

clustered and used as input data for the Aging Phenotype Calculator, a multiclass classification model validated on 

an independent dataset of 96 older adults. The accuracy of the model was assessed using the receiver operating 

characteristic curve and the area under the curve. Additionally, we analyzed socioeconomic factors that could 

contribute to specific aging patterns. We identified five aging phenotypes: non-frailty, multimorbid frailty, metabolic 

frailty, cognitive frailty, and functional frailty. For each phenotype, we determined the underlying diseases and 

conditions and assessed the survival rate. Additionally, we provided management recommendations for each of the 

five phenotypes based on their distinct features and associated challenges. The identified aging phenotypes may 

facilitate better-informed decision-making. The Aging Phenotype Calculator (ROC AUC = 92%) may greatly assist 

geriatricians in patient management. 
 

Key words: long-living adults, longevity, aging phenotypes, patient stratification, machine learning, survival 

analysis 

 
INTRODUCTION 

      

Modern medicine has made great strides in extending life 

expectancy and mitigating the effects of chronic illnesses. 

However, the impact of aging varies from person to 

person. While some nonagenarians and centenarians 

maintain physical and cognitive health, others succumb to 

aging-associated diseases. Consequently, there is a 

growing recognition of the importance of patient 

stratification that enables precision therapy, personalized 

medicine, and, ultimately, improved quality of life. The 

term ‘aging phenotype’ encompasses both frailty and non-

frailty phenotypes.  In people with the frailty phenotype, 

it is crucial to precisely identify the specific frailty 

phenotype and determine the underlying conditions. 
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Passarino et al. examined aging phenotypes in two 

groups of individuals: S1 (n = 252; age = 65–85) and S2 

(n = 117; age = 90+). They identified three aging 

phenotypes in S2 (non-frail, intermediate, and frail) and 

only two in S1 (frail and very frail) [1]. Marcucci et al. 

identified four clusters in 2,841 patients aged 65+ years 

[2]: the healthiest individuals; individuals with multiple 

chronic conditions; functionally independent women with 

osteoporosis and arthritis; and functionally dependent 

older patients with cognitive impairment. We have also 

previously demonstrated that aging patterns vary greatly, 

with some older adults aging successfully and others 

aging unsuccessfully or even extremely unsuccessfully 

[3]. 

The frailty phenotype, also known as unsuccessful 

aging, has been found in all the above studies. Older 

patients are more prone to comorbidities, dependency, and 

poor outcomes [4]. However, the term frailty is not 

specific or indicative of the underlying causes of health 

conditions and functional decline. In an effort to address 

this issue, Liu et al. studied frailty in 1,008 participants 

aged 50+ years. They identified three mobility-based 

frailty sub-phenotypes: non-mobility type (loss and 

exhaustion); mobility type (slowness and weakness); and 

low physical activity. Participants with the mobility type 

had poorer body composition, bone health, cognitive 

function, survival rate, and overall outcomes [5]. 

In this study, we sought to challenge the binary 

approach to phenotyping frailty and expand our 

understanding of how the underlying health conditions 

form specific frailty phenotypes. Based on the existing 

research on frailty, including our previous findings, we 

hypothesized that a cluster analysis of extensive data on 

the underlying health conditions and socioeconomic 

backgrounds could reveal distinct aging phenotypes, 

while a one-year follow-up would allow us to assess the 

mortality rate. For this purpose, we conducted a 

comprehensive geriatric assessment of the participants for 

15 geriatric syndromes and examined their medical 

histories and socioeconomic background. To test our 

hypothesis, we conducted two-step data clustering and 

developed a personalized Aging Phenotype Calculator 

(APC), which is a machine learning (ML)-based 

multiclass classification model. The generated data 

clusters were used as input. The calculator produced five 

aging phenotypes. To validate our findings, we tested the 

model on an independent sample of older adults and used 

the area under the receiver operating characteristic curve, 

or ROC AUC, as a standard measure of accuracy. We 

obtained a ROC AUC of 92%. 

We developed the APC as a decision-making tool to 

aid geriatricians in providing optimal, timely, and 

individualized care to their patients. For this purpose, it 

also integrates phenotype-specific recommendations for 

better health outcomes. The APC is based on the analytic 

techniques and extensive patient data described below. 

However, as a new clinical tool, the APC needs a closer 

evaluation in real-world clinical settings to further verify 

the claimed benefits and improve its accuracy. 

 

MATERIALS AND METHODS 

 

Participant recruitment and examination 

 

We analyzed data from 2,688 individuals aged 90 years 

and older from the Central Federal District of Russia, 

recruited with the assistance of social and geriatric 

services of Moscow and the Moscow Region between 

2019 and 2023. We examined their medical histories, 

socioeconomic backgrounds, and the risk of chronic 

diseases. All participants provided informed consent for 

the collection of blood and biomaterial samples, as well 

as for two visits by a physician. 

The participants underwent a comprehensive geriatric 

assessment for the following 15 geriatric syndromes, in 

accordance with the clinical recommendations of the 

Ministry of Health of the Russian Federation 

[https://sudact.ru/law/klinicheskie-rekomendatsii-

starcheskaia-asteniia-utv-minzdravom-rossii/] (the 

methods of assessment are indicated in brackets): 

● Frailty syndrome (the Short Physical Performance 

Battery); 

● Cognitive impairment (the Mini-Mental State 

Examination (MMSE) and clock-drawing test); 

● Frontal lobe dysfunction (the Frontal Assessment 

Battery (FAB) test); 

● Chronic pain; 

● Anxiety disorder; 

● Risk of falls; 

● Sensory deficit; 

● Depression (the Five-Item Geriatric Depression 

Scale (GDS-5)); 

● Sarcopenia (the SARC-F questionnaire (strength, 

assistance walking, rise from a chair, climb stairs, 

and falls) and hand-held dynamometry); 

● Risk of malnutrition (the Mini Nutritional 

Assessment (MNA-scale)); 

● Fecal or urinary incontinence (self-reported); 

● Dependence in ADL (activity of daily living) (the 

Barthel index); 

● Dependence in IADL (instrumental activity of daily 

living) (the Lawton scale); 

● Polypharmacy, defined as the simultaneous 

administration of five or more medications; 

● Orthostatic hypotension (standard diagnostic 

procedure) [www.mayoclinic.org/diseases-

conditions/orthostatic-hypotension/diagnosis-

treatment/drc-20352553]. 
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In our previous study [3], we provided a detailed 

diagram of the above comprehensive geriatric assessment. 

For the one-year follow-up, we inquired about the 

participants’ health condition, health concerns, if any, in 

the past year, and, where appropriate, death and its causes. 

This information was obtained either through phone 

interviews or the examination of the participants’ medical 

records from outpatient or inpatient facilities. The 

survival data was available for 962. This data was used to 

create exponential curves for the survival analysis. 

 

Clustering and statistical analysis 

 

We clustered and analyzed the data from 2,592 

participants with morbidities associated with 

cardiovascular diseases (CVDs), diabetes mellitus (DM), 

chronic obstructive pulmonary disease (COPD), cancer, 

and polypharmacy in two steps using Scikit-Learn's [6] 

Agglomerative Hierarchical Clustering in Python 3.9.12. 

We factored in BMI, right handgrip strength, dementia, 

frontal lobe dysfunction, physical performance, ADL, 

IADL, and depression (Fig 1).  

 

 
Figure 1. The research designs. 

First, we clustered the data based on all the 

aforementioned parameters. Then, we chose the larger 

cluster and divided it into four smaller clusters based on 

CVDs, DM, COPD, cancer, dementia (mild to moderate; 

MMSE <20), and frailty (SPPB <8).  

We compared the five clusters using the Mann-

Whitney U test and the Kruskal-Wallis test for continuous 

variables and the chi-squared test and Fisher's exact test 

for categorical variables. The distribution of the 

quantitative variables was non-normal across all groups. 

Therefore, we used nonparametric tests for their 

comparison. 

To address the multiple testing problem, we applied 

the Bonferroni correction to all p-values. The significant 

threshold was 0.05. To simultaneously compare the five 

clusters, we conducted a total of 82 Kruskal-Wallis tests 

and chi-squared tests. Only significant associations are 

shown in Table 1 and Supplementary Table 1. For 

pairwise comparisons of the clusters, we conducted 440 

tests (Supplementary Tables S2, S3, and S5). The tables 
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show the results of the analysis of 44 variables across 10 

pairs of clusters.  

To test the associations between aging phenotypes 

and genetic, socioeconomic, and other risk factors, we 

carried out 40 iterations of logistic regression (five aging 

phenotypes, two associations with the APOE gene 

variants, and six socioeconomic factors). We used the 

aging phenotype as the target variable and the assessed 

factors, sex, and age as predictors and applied the 

Bonferroni correction to all obtained p-values. The tables 

below show adjusted p-values. 

 

One-year survival analysis 

 

The one-year survival rate in 926 participants was 

assessed using scikit-survival 0.20.0 in Python 3.9.12. The 

Kaplan-Meier curves were compared using the 

sksurv.compare.compare_survival function.  

To achieve the most accurate approximation, the 

curves were fitted using numpy.polyfit and the following 

equation: 

𝑦 = 𝑎 ∙ 𝑒𝑏∙𝑥  (1) 

The resulting curves were extrapolated up to 5,650 

days. The median survival rate for each phenotype was 

evaluated based on the extrapolation results. 

 

Development of the Aging Phenotype Calculator 

 

The Aging Phenotype Calculator (APC) is a machine 

learning-based multiclass classification model that was 

developed using a Support Vector Machine (SVM) from 

the scikit-learn library. As input for the ACP, we used the 

clustered data split into a training set (80%) and a test set 

(20%) and the following predictors: CVDs, DM, COPD, 

cancer, polypharmacy, BMI, right hand grip strength, and 

scores from MMSE, FAB, SPPB, ADL, IADL, and GDS-

5. All predictors were standardized using the 

StandardScaler tool from the scikit-learn library. To 

assess the accuracy of the classification model, we 

constructed a receiver operating characteristic (ROC) 

curve using the one-vs-rest (OvR) strategy and calculated 

the area under the curve (AUC). 

 

 

 

Table 1. Geriatric assessment results and health indicators in each cluster. 

 
Cluster  0 1 2 3 4 p-value 

(Kruskal test) Phenotype  Multimorbid frailty 

(n=1602) 

Non-frailty 

(n=309) 

Metabolic frailty 

(n=272) 

Cognitive frailty 

(n=234) 

Functional frailty 

(n=175) 

Scale  Me [Q1-Q3] Me [Q1-Q3] Me [Q1-Q3] Me [Q1-Q3] Me [Q1-Q3]  

MMSE  24.00 [22.00 - 27.00] 26.00 [24.00 - 

28.00] 

24.00 [20.00 - 

26.00] 

16.00 [14.00 - 

18.00] 

17.00 [11.00 - 

23.50] 

8.6*10-154 

FAB 14.00 [11.00 - 16.00] 14.00 [12.00 - 

16.00] 

13.00 [10.00 - 

16.00] 

8.00 [6.00 - 

11.00] 

6.00 [3.00 - 11.00] 3.6*10-88 

Short MNA 10.00 [9.00 - 11.00] 11.00 [9.00 - 

12.00] 

10.00 [9.00 - 

11.00] 

9.00 [7.00 - 

10.00] 

7.00 [5.00 - 9.00] 4.2*10-57 

SPPB 4.00 [2.00 - 6.00] 9.00 [8.00 - 

10.00] 

3.00 [1.00 - 5.00] 2.00 [1.00 - 3.00] 0.00 [0.00 - 1.00] 8.8*10-244 

Barthel scale 85.00 [75.00 - 90.00] 95.00 [90.00 - 

100.00] 

85.00 [75.00 - 

90.00] 

70.00 [60.00 - 

85.00] 

25.00 [15.00 - 

35.00] 

3.1*10-168 

Lowton scale 4.00 [3.00 - 5.00] 5.00 [4.00 - 

7.00] 

4.00 [3.00 - 5.00] 2.00 [1.00 - 4.00] 1.00 [0.00 - 1.00] 2.2*10-123 

GDS-5 1.00 [0.00 - 2.00] 1.00 [0.00 - 

1.00] 

1.00 [0.00 - 2.25] 2.00 [1.00 - 3.00] 3.00 [2.00 - 4.00] 1.4*10-56 

Assistance in social 

and everyday living 

scale 

1.00 [0.00 - 2.00] 0.00 [0.00 - 

1.00] 

1.00 [0.00 - 2.00] 2.00 [1.00 - 4.12] 12.50 [6.00 - 

18.00] 

1.2*10-132 

Right hand grip 

strength 

13.00 [10.00 - 16.00] 13.00 [10.00 - 

18.50] 

13.00 [10.00 - 

16.50] 

10.00 [7.00 - 

13.50] 

7.50 [4.00 - 11.50] 4.9*10-46 

BMI 25.50 [23.40 - 28.30] 24.80 [23.10 - 

27.60] 

26.60 [24.20 - 

30.40] 

25.15 [22.92 - 

27.70] 

24.20 [21.00 - 

27.50] 

1.7*10-8 

 

Note. MMSE: mini-mental state examination; FAB: frontal assessment battery; MNA: mini nutritional assessment; SPPB: short physical performance 

battery; GDS-5: geriatric depression scale, version 5; BMI: body mass index. 

Validation of the aging phenotype calculator 

 

The APC was validated on a sample of 96 older adults 

recruited in 2023, following the established protocol. The 

APC calculated the probability of each of the five aging 

phenotypes for every participant. The APC assigned to 

each participant the phenotype with the highest 

probability.  

The aforementioned data were shared with 

geriatricians from both outpatient and inpatient 

departments of the Russian Clinical Research Center for 

Gerontology. Their task was to determine the aging 

phenotype of each participant. To evaluate the accuracy, 
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precision, recall, and F-score, their conclusions were 

compared with the results produced by the APC. 

Additionally, ROC curves were generated using the OvR 

strategy. 

 

RESULTS 

 

Clustering 

 

The initial step of clustering generated two distinct 

clusters that significantly differed in all the above-

mentioned indicators (Supplementary Fig. 1A). The larger 

cluster was further clustered (see the Methods section), 

which generated four additional clusters (see 

Supplementary Fig. 1B). To facilitate comparison, each of 

the five obtained clusters was assigned a number: 0, 1, 2, 

3, and 4 (Supplementary Fig. 1). 

 

Cluster description 

 

The resulting clusters were compared based on the 

parameters reflecting the participants’ current health 

condition. Figure 2 shows the aging-associated diseases in 

each cluster. Based on the data shown in Figure 2 and the 

geriatric assessment results (Table 1), the clusters are 

classified as follows: Cluster 0, multimorbid frailty; 

Cluster 1, non-frailty; Cluster 2, metabolic frailty; Cluster 

3, cognitive frailty; and Cluster 4, functional frailty. 

 

 
Figure 2. Aging-associated diseases in Clusters 0, 1, 2, 3, and 4. *Note: CVD: cardiovascular diseases; DM2: type 2 diabetes 

mellitus; COPD: chronic obstructive pulmonary disease. 

The clusters were compared based on their sex and 

age composition. The percentage of women was 59.9% in 

the non-frailty cluster, 74.5% in the multimorbid frailty 

cluster, 80.1% in the metabolic frailty cluster, 84.6% in 

the cognitive frailty cluster, and 82.3% in the functional 

frailty cluster. Pairwise comparisons (the chi-squared test) 

showed that the non-frailty cluster significantly differed 

from the multimorbid, metabolic, cognitive, and 

functional clusters with the following p-values: p-value = 

1.4*10-4, p-value = 5.5*10-5, p-value = 8.7*10-8, and p-

value = 1.2*10-4, respectively. Expectedly, participants in 

the functional frailty cluster were significantly older (Fig. 

3) than in other clusters, except for the cognitive frailty 

cluster, with the following p-values of the difference from 

non-frailty, multimorbid frailty, metabolic frailty, and 

cognitive frailty: p-value =2.1*10-4, p-value =0.016, 3.8 * 

10-4, and p-value = 0.36, respectively. Other pairwise 

comparisons did not show significant differences. 

 

Table 2. The APC validation results.  

 
Geriatrician 1  

Phenotype  Multimorbid  Non-frail Metabolic  Cognitive  Functional  

Accuracy 0.82 0.91 0.95 0.93 0.96 

Precision 0.8 0.67 0.78 0.78 1 

Recall 0.93 0.62 0.7 0.58 0.33 

F-score 0.86 0.64 0.74 0.67 0.5 

Geriatrician 2 

Phenotype Multimorbid  Non-frail Metabolic  Cognitive  Functional  

Accuracy 0.93 0.97 0.98 0.94 0.98 

Precision 0.89 1 0.89 0.89 0.5 

Recall 1 0.8 0.89 0.62 0.5 

F-score 0.94 0.89 0.89 0.73 0.5 
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Figure 3. Sex and age composition in each cluster. 

The phenotypes also differed in the levels of 

biochemical indicators (Fig. 4) and other parameters 

(Supplementary Tables 1 and 2). Notably, glucose and 

glycated hemoglobin levels were significantly elevated in 

the metabolic frailty cluster (Fig. 4F; Supplementary 

Tables 1 and S). The levels of creatinine and albumin were 

considerably lower in the functional frailty cluster (Fig. 

4C and 4H; Supplementary Tables 1 and 2). 

  

 
Figure 4. Biochemical indicators in each cluster. Note. *: 0.01< p <= 0.05; **; 0.001 

< p <= 0.01; ***: 0.0001 < p <= 0.001; ****: p <= 0.0001. All p-values were obtained 

using the Mann-Whitney test and adjusted using the Bonferroni correction for multiple 

testing. Cluster 0, multimorbid frailty; Cluster 1, non-frail; Cluster 2, metabolic frailty; 

Cluster 3, cognitive frailty; Cluster 4, functional frailty. 
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Homocysteine levels were higher in the cognitive 

frailty cluster than in the non-frailty, multimorbid frailty, 

and metabolic frailty clusters (Fig. 4B; Supplementary 

Tables 1 and 2). Although total bilirubin levels were 

notably higher in the non-frailty cluster (Fig. 4A), they 

remained within the normal range across all clusters. 

High-sensitivity C-reactive protein (hsCRP) levels were 

higher in the functional frailty cluster (Fig. 4G). The 

levels of hsCRP in Clusters 0–3 were in the average range, 

i.e., above normal. The median hsCRP level in Cluster 4 

increased to over 3 mg/l, which is typical for CAD and 

chronic illnesses if left untreated. 

 

Risk factors 

 

Additional factors related to specific aging phenotypes 

were also evaluated. The APOE genotypes are recognized 

indicators of aging-associated diseases (Supplementary 

Tables 3 and 4). Having just one APOE-ε4 variant nearly 

doubled the likelihood of cognitive frailty (OR = 1. 9, p-

value = 0. 01). No statistically significant associations 

were found for other clusters or the APOE ε2 variant. 

The results of the analysis of the socioeconomic 

backgrounds and demographic indicators are shown in 

Supplementary Tables 5 and 6. The chi-square test 

showed statistically significant associations between the 

clusters and the place of residence (urban or rural), 

education level, occupation type (intellectual or physical), 

peak earnings, and life-long hobby. Gender- and age-

adjusted logistic regression (Supplementary Table 6) was 

used to determine which factors were strongly associated 

with each cluster. Functional frailty was associated with a 

lifetime residence: urban residents were less likely to be 

functionally frail (OR = 0.34; p-value = 6.2*10-4). 

Education played a significant role in cognitive frailty, 

with even unfinished higher education (college or 

university) reducing the risk of cognitive impairment by 

half (OR = 0.58; p-value = 0.013). Having a life-long 

hobby had a similar effect (OR = 0.53; p-value = 0.006). 

Former high-income individuals were 72% more likely to 

be non-frail (OR = 1.72; p-value = 0.041), while former 

low-income individuals were more likely to be 

functionally frail (OR = 2.65; p-value = 7*10-4). 

 

 

 
 

Figure 5. The one-year survival rates in Clusters 0–4: real data (A); extrapolated data (B). Cluster 0, multimorbid frailty; Cluster 

1, non-frailty; Cluster 2, metabolic frailty; Cluster 3, cognitive frailty; Cluster 4, functional frailty. 

Survival analysis 

 

The one-year mortality was known for 962 participants. 

The survival curves for Clusters 0–4 (Fig. 5) differed 

significantly (p-value = 1.4*10-6). Expectedly, the highest 

survival rate (90.4%) was characteristic of the non-frailty 

cluster. All frailty clusters had similar survival dynamics 

in the first 100–110 days after enrollment. By the end of 

the observation period, the differences became more 

noticeable: 82.4% of older adults with metabolic frailty, 

77.4% with multimorbid frailty, 72.6% with cognitive 

frailty, and 67% with functional frailty survived up to 365 

days after enrollment.  

The coefficients of determination reflecting the 

accuracy of the approximation of the exponential 

functions were 0.899 for non-frailty (Cluster 1), 0.996 for 

multimorbid frailty (Cluster 0), 0.953 for metabolic frailty 

(Cluster 2), 0.978 for cognitive frailty (Cluster 3), and 

0.949 for functional frailty (Cluster 4). The predicted 

survival rates based on the extrapolated data were 2,300 

days for non-frailty, 1,249 days for metabolic frailty, 926 

days for multimorbid frailty, 694 days for cognitive 

frailty, and 597 days for functional frailty. 
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Figure 6. Quality of the validation sample classification by Geriatrician 1 (A) and Geriatrician 2 (B). 

Aging phenotype calculator 

 

The APC was trained on 90% of the clustered data. The 

APC testing on the remaining 10% of the data generated 

an average ROC AUC of 0.9992. The OvR-based ROC 

AUC was 1.0 for non-frailty, 0.9996 for multimorbid 

frailty, 1.0 for metabolic frailty, 0.9999 for cognitive 

frailty, and 0.9967 for functional frailty (Supplementary 

Fig. 2). 

For validation, the phenotype of 96 additionally 

recruited older adults was determined by geriatricians 

(Table 2, Fig. 6). The error matrices are shown in 

Supplementary Figures 3 and 4. The average ROC AUC 

of phenotyping was 0.923 for Geriatrician 1 (Fig. 6A) and 

0.954 for Geriatrician 2 (Fig. 6B).  

 

DISCUSSION 

 

In this study, we focused on frailty to demonstrate how 

comorbidities cause variations in aging phenotypes. The 

targeted clustering approach enabled the identification of 

five clinically significant aging phenotypes: non-frailty, 

multimorbid frailty, metabolic frailty, cognitive frailty, 

and functional frailty. The assessment of the APC's 

accuracy allowed us to recommend it as a clinically 

applicable geriatric decision-making tool for geriatric 

medicine. 

 

Non-frailty 

 

People exhibiting no signs of frailty (the main criteria) 

were assigned to the non-frailty phenotype (Cluster 1). 

These are highly functional individuals with no diagnosed 

illnesses who score highly on all geriatric scales. 

However, a small percentage of them may develop health 

conditions, such as COPD, cancer, type 2 diabetes, and 

even dementia. Overall, 96% of the entire cohort had 

CVDs, suggesting a high prevalence of these diseases 

even in the non-frailty phenotype. Despite CVDs, non-

frail older adults are independent and do not require 

assistance in daily living. Another important criterion for 

non-frailty is good performance on the Barthel scale 

(ADL, over 85 points) and the Lowton scale (IADL, a 

minimum of 4 points). Expectedly, the non-frail 

phenotype had the highest survival rate (median = 2,300 

days from the assessment date).  

There was a relatively high percentage of men in the 

non-frail cluster. Women are generally more likely to live 

to the age of 90. However, they tend to suffer from 

functional decline, whereas their male counterparts tend 

to stay healthier [7]. 

 

Multimorbid frailty 

 

The multimorbid frailty phenotype (Cluster 0) also 

included highly functional individuals. However, people 

with this aging phenotype show signs of frailty (SPPB < 

8). The prevalence of CVDs is also high. Some of them 

have COPD, cancer, diabetes mellitus, and dementia. 

Interestingly, the multimorbid frail cluster was the largest 

in our study. Aging and age-related chronic diseases are 

underlain by the same mechanisms; hence, 

multimorbidity is widely viewed as a marker of aging [8]. 

Multimorbidity refers to the presence of two or more 

health conditions that may not be causally related. It 

implies the coexistence of multiple diseases rather than 

one underlying disease. Studies have shown that some 

populations are highly susceptible to multimorbidity, 
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while others appear to be very resilient. Some disease 

comorbidities may not be accidental. A well-known 

example of the comorbidity of chronic conditions is 

COPD. It occurs in people with systemic inflammatory 

response syndrome and is associated with the progressive 

development of atherosclerosis [9], osteoporosis [10], 

chronic kidney disease [11], and lung cancer [12]. 

Multimorbidity is associated with a poor prognosis 

and a high risk of disability [13]. In our study, the survival 

rate in the multimorbid frail phenotype was 2.5 times 

lower than in the non-frail phenotype, with the median 

survival rate decreasing to 926 days. 

On the one hand, multimorbidity requires 

simultaneous treatment of each comorbid condition. On 

the other hand, such treatment may become cumbersome 

for the patient. For example, an 80-year-old woman with 

six chronic diseases (osteoporosis, osteoarthritis, type 2 

diabetes, hypertension, dyslipidemia, and COPD) may be 

prescribed 12 medications to be taken five times a day. 

Polypharmacy increases the risk of side effects from drug 

interactions. This results in a so-called prescribing 

cascade when the side effects of a drug are mistaken for a 

new disease, leading to additional prescriptions. 

Given the challenges of managing patients with 

multimorbid frailty, an individualized patient-specific 

management approach should be adopted, prioritizing the 

disease that needs to be treated first to improve the quality 

of the patient’s life and health prognosis. At the same 

time, it is necessary to de-prescribe medications and 

discontinue those offering limited benefits or having side 

effects. 

 

Metabolic frailty 

 

The main characteristic of people with the metabolic 

frailty phenotype (Cluster 2) is type 2 diabetes, in addition 

to CVDs and frailty. The metabolic phenotype is similar 

to the metabolic syndrome, which is associated with an 

increased risk of simultaneously developing severe 

arterial hypertension (AH), diabetes mellitus, lipid 

metabolism disorders, and ischemic heart disease [14, 15]. 

Interestingly, older adults in this cluster often had 

dementia as a comorbidity. Many studies have reported 

the comorbidity of dementia and diabetes mellitus [16–

18]. 

As expected, metabolically frail participants had a 

higher BMI and were more obese. They also had 

increased levels of carbohydrate metabolism indicators, 

such as glycated hemoglobin and glucose. Although this 

biomarker was not an inclusion criterion, all participants 

with a glycated hemoglobin level of over 6% were 

assigned to the metabolic phenotype.  

Despite the known correlation between frailty and 

metabolic syndrome in older people [19], participants 

with the metabolic phenotype in our study did not show 

serious functional decline. The survival rates in these 

participants were the highest of all the frailty groups, with 

a median survival rate of 1,249 days. 

The treatment of metabolically frail people should 

also be individualized due to possible comorbidities. 

Managing carbohydrate metabolism in these individuals 

may not be the best solution for improving their quality of 

life. Greenfield et al. showed that in patients with type 2 

diabetes and comorbidities, intensive glucose-lowering 

therapy is less effective in decreasing the risk of CVDs, 

and other options should be considered to improve the 

patient’s prognosis [20]. The metabolic phenotype should 

be managed, among other things, with lifestyle changes 

and the adoption of a non-pharmacological approach as a 

viable alternative to drug therapy. 

 

Cognitive frailty 

 

Importantly, all clusters in our study included some 

proportion of older adults with cognitive impairment. 

Older individuals with cognitive impairment who also 

suffered from diabetes were assigned to the metabolic 

phenotype. Those who had cognitive impairment without 

signs of frailty were assigned to the non-frail phenotype. 

The cognitive phenotype (Cluster 3) included only those 

who had cognitive impairment as an independent disease 

that was not associated with other geriatric syndromes. 

Cognitively frail participants had increased 

homocysteine levels, which is consistent with the 

consensus statement made by a group of researchers in 

2018 [21]. Managing homocysteine levels may reduce the 

risk of cognitive impairment in older people. Treatment of 

patients with cognitive frailty should incorporate medical 

therapy and other treatment options. It should also address 

other non-cognitive neuropsychiatric disorders 

(behavioral, psychotic, affective, etc.). A critical step in 

the treatment of the cognitive phenotype, as well as 

functional frailty, would be a new paradigm of medical 

care, including the establishment of specialized facilities, 

such as memory rooms and clinics, geriatric 

psychological and social aid offices, boarding houses for 

individuals with cognitive impairment, and other 

solutions. 

Cognitive stimulation is essential for cognitively frail 

patients—it helps them tap into their cognitive potential. 

Many cognitive stimulation techniques have been 

proposed, such as cognitive training and neurointerfaces. 

Cognitive training consists of attention, concertation, and 

focus exercises, multisensory interactions, and 

mnemonics [22, 23]. Neurointerfaces immerse users in 

sensory-stimulating virtual environments [24]. Virtual 

cognitive training has been shown to improve not only 



 Mamchur A., et al.                                                                         Machine learning-based decision-making in geriatrics

   

Aging and Disease • Volume 16, Number 1, February 2025                                                                              574 

 

cognitive functions but also emotional well-being and 

daily functioning [24, 25]. 

 

Functional frailty 

 

The functional frailty phenotype (Cluster 4) includes 

people with severe frailty (SPPB < 2) who are in critical 

need of daily assistance. Interestingly, the participants 

with this aging phenotype had increased levels of ferritin 

in their blood (Supplementary Table 1). Previously, 

higher ferritin levels, much higher than in our study, have 

been associated with an increased risk of mortality in 

different populations [26]. They also had increased 

hsCRP levels (Fig. 4G), which indicates chronic 

inflammation and, as expected in functionally frail 

individuals, a large number of aging-associated diseases. 

However, it is important to note that participants with 

other aging phenotypes also had above-normal hsCRP 

levels. The survival rate in the functionally frail 

phenotype was, expectedly, much lower, with a median 

survival rate of less than two years. Participants with the 

functional frailty phenotype were older than those with 

other phenotypes. It is safe to assume that all of the above 

aging phenotypes eventually progress into the functional 

frailty phenotype. However, this hypothesis requires a 

longitudinal study. 

Life expectancy is a key parameter in selecting the 

best treatment for functionally frail patients. It should be 

balanced against the priorities (survival, autonomy, pain 

and symptom relief, and palliative care needs) of patients 

and their relatives or caregivers. The expected benefits 

must be carefully weighed against possible disadvantages 

and side effects. Prognosis is primarily determined by the 

degree of functional dependence and the severity of 

physical, cognitive, biological, and social impairment. 

Given the diversity of issues, the paradigm of medical 

care should include collaboration between multiple 

services, such as social services, long-term care 

institutions, nursing homes, boarding houses, palliative 

care facilities, and hospices. 

Similar aging phenotypes have been described in 

other studies. Marcucci et al. identified four aging 

phenotypes in 2,841 patients 65 years of age and older [2]. 

Their healthiest phenotype may correspond to our non-

frailty phenotype; multimorbidity to our multimorbid 

frailty phenotype; functional dependence with cognitive 

impairment to our cognitive frailty phenotype. The 

authors obtained similar mortality rates in participants 

with multimorbid and cognitive frailty, which were 

significantly higher than in healthy participants [2]. Bekić 

et al. divided 263 older participants at least 60 years of age 

into four groups: (1) highly functional, (2) cognitively 

impaired, (3) cognitively frail, and (4) physically frail 

[27]. Groups 1 and 2 would have been assigned to the non-

frail phenotype in our study; Group 3 would have been 

assigned to the cognitively frail phenotype; and Group 4 

would have included the rest. The differences in the 

identified aging phenotypes may primarily result from the 

differences in clustering techniques, key parameters, and 

participant recruitment criteria. 

 

Risk factors 

 

Aging is affected by both genetic and non-genetic factors. 

Some gene variants are known to be associated with 

longevity. In our study, we assessed the frequency of the 

APOE alleles as an aging phenotype predictor. Our 

finding on the statistical significance of APOE ε4 for the 

cognitive frailty phenotype is consistent with the 

published data on its involvement in cognitive 

impairment, particularly neurodegenerative diseases such 

as Alzheimer's disease [28]. We have demonstrated this 

association in a sample of older adults [29].  

However, genetic predisposition accounts for about 

20–30% of the likelihood of longevity [30], whereas the 

remaining 70–80% is determined by non-hereditary 

factors, such as lifestyle, socio-economic background, 

education, etc. The cognitive frailty phenotype in our 

study had the smallest number of people with higher 

education (Supplementary Table 6). Even in participants 

with unfinished higher education, the risk of cognitive 

frailty was two times lower (Supplementary Table 7). This 

is mainly because the cognitive assessment in our study 

was based on MMSE scores, which consistently show an 

association with the level of education [31, 32]. The 

association between MMSE scores and education can be 

interpreted in two ways: 1) education contributes to the 

preservation of cognitive functions; 2) people with a 

lower level of education may not be able to understand the 

MMSE questions and, therefore, perform worse. 

Similarly, those who had a life-long hobby were two times 

less likely to be cognitively frail. 

High earners at the peak of their professional career, 

who generally had a better quality of life, were 72% more 

likely to have the non-frail aging phenotype. Low income, 

on the contrary, increased the risk of multimorbidity and 

the functional frailty phenotype. People with a lower 

income may often be malnourished, which negatively 

affects their overall health. Despite their long lifespan (≥ 

90 years), they are susceptible to many chronic diseases. 

 

Aging phenotype calculator and survival prediction 

 

Despite numerous studies on aging phenotypes, their 

findings have not yet been effectively incorporated into 

geriatric healthcare. Attempts have been made to integrate 

various machine learning solutions into geriatric care not 

only for medical decision-making (e.g., decision-making 
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algorithms used in cancer treatment [33, 34]) but also for 

improving the quality of patients’ lives. Accelerometers 

built into wearable devices can feed into an algorithm that 

notifies physicians or caregivers of patients with 

neurological disorders about frequent falls or other critical 

changes in their functioning [35]. 

Quality of life questionnaires have been used in 

combination with neural networks that factor in all 

parameters simultaneously [36].  

The Aging Phenotype Calculator presented in this study 

enables assessing the current functional status of older 

adults based on the results of their examination and 

geriatric assessment. It calculates the probability of each 

of the five aging phenotypes. Using the generated data and 

practical recommendations, coupled with their 

professional experience, geriatricians can make well-

informed decisions about appropriate management or 

treatment strategies. The aging phenotype calculator may 

serve as the basis of a comprehensive machine learning-

based geriatric decision-making system. 

 

Limitations 

 

The main limitation of this study is the lack of long-term 

follow-up. With a one-year follow-up, we could not 

obtain reliable data on long-term survival and had to 

mathematically extrapolate the survival curves. 

Moreover, the identified aging phenotypes reflect the 

current state and do not take into account aging dynamics. 

Aging phenotypes are specific to the time of the 

assessment and may change over time.  

 

Conclusion 

 

Geriatric decision-making entails a complex process of 

weighing out treatment options against patients’ 

priorities, such as quality of life and survival. The aging 

phenotype reflects the specific aging pattern characteristic 

of an individual. It serves as an instructive basis for health 

management and treatment prioritization. Here, we 

present five aging phenotypes found in a sample of long-

living adults: non-frailty, multimorbid frailty, metabolic 

frailty, cognitive frailty, and functional frailty. Each of the 

five aging phenotypes is an indicator of the underlying 

processes with distinct clinical manifestations that require 

specialized patient management. The aging phenotype 

also affects the survival of older adults. Non-frail older 

adults have the highest survival rate, whereas functionally 

frail older adults have the lowest survival rate. This 

indicates that establishing the aging phenotype of a patient 

may assist geriatricians in personalizing and optimizing 

treatment or management strategies and improving 

quality of life. The presented machine-learning-based 

calculator estimates the aging phenotype with an accuracy 

of 92% and may simplify geriatric decision-making. The 

calculator provides an objective and accurate assessment 

of the patient's aging phenotype. This offers two major 

benefits. The calculator can be used to streamline 

prioritizing options for preventative care, lifestyle 

changes, and medical interventions, which leads to more 

individualized, strategic, and effective healthcare for 

older individuals. It also enables efficient and reliable 

patient stratification, which is critical both for geriatric 

medical practice and for more focused fundamental 

research into the phenomena of longevity and successful 

aging. 
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