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Abstract
Background: Many classification approaches have been applied to analyzing transcriptional
regulation of gene expressions. These methods build models that can explain a gene's expression
level from the regulatory elements (features) on its promoter sequence. Different types of features,
such as experimentally verified binding motifs, motifs discovered by computer programs, or
transcription factor binding data measured with Chromatin Immunoprecipitation (ChIP) assays,
have been used towards this goal. Each type of features has been shown successful in modeling gene
transcriptional regulation under certain conditions. However, no comparison has been made to
evaluate the relative merit of these features. Furthermore, most publicly available classification
tools were not designed specifically for modeling transcriptional regulation, and do not allow the
user to combine different types of features.

Results: In this study, we use a specific classification method, decision trees, to model
transcriptional regulation in yeast with features based on predefined motifs, automatically identified
motifs, ChlP-chip data, or their combinations. We compare the accuracies and stability of these
models, and analyze their capabilities in identifying functionally related genes. Furthermore, we
design and implement a user-friendly web server called CAGER (Classification Analysis of Gene
Expression Regulation) that integrates several software components for automated analysis of
transcriptional regulation using decision trees. Finally, we use CAGER to study the transcriptional
regulation of Arabidopsis genes in response to abscisic acid, and report some interesting new results.

Conclusion: Models built with ChlP-chip data suffer from low accuracies when the condition
under which gene expressions are measured is significantly different from the condition under
which the ChIP experiment is conducted. Models built with automatically identified motifs can
sometimes discover new features, but their modeling accuracies may have been over-estimated in
previous studies. Furthermore, models built with automatically identified motifs are not stable with
respect to noises. A combination of ChlP-chip data and predefined motifs can substantially improve
modeling accuracies, and is effective in identifying true regulons. The CAGER web server, which is
freely available at http://cic.cs.wustl.edu/CAGER/, allows the user to select combinations of
different feature types for building decision trees, and interact with the models graphically. We
believe that it will be a useful tool to facilitate the discovery of gene transcriptional regulatory
networks.
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Background
A major challenge in computational biology is to reveal
the cis-regulatory logics of gene expression through analy-
sis of high-throughput genomic data, for example,
genomic sequences and microarray gene expression data.
A common practice is to first identify putatively co-regu-
lated genes by clustering gene expression patterns [1-3],
and then search for common motifs from the promoter
sequences of these genes [4-6]. However, motif finding
methods are often sensitive to noises and usually do not
consider combinatorial nature of cis-regulation. Further-
more, these methods by themselves do not reveal the
actual transcription factors (TFs) that bind to particular
sequence motifs.

Recently, many researchers attempted to build quantita-
tive or qualitative models to associate a gene's expression
level with regulatory motifs on its promoter sequence. Pil-
pel et al. [7] explicitly analyzed the combinatorial effects
of motif pairs on gene expression profiles and identified
many significant motif combinations. Bussemaker et al.
[8] and others [9,10] modeled the expression levels of
genes as a linear regression of putative binding motifs,
and applied feature selection techniques to find the most
significant motifs. Hu et al. [11] used decision trees to find
motif combinations that best separate two sets of genes.
Phuong et al. [12] applied multivariate regression trees to
model the transcriptional regulation of gene expressions
over several time points simultaneously. Middendorf et al.
[13] used an ensemble of decision trees to model gene
expression levels by combining putative binding motifs
and the expression levels of putative TFs. Simonis et al.
[14] combined a string-based motif finding method and
linear discriminant analysis to identify motif combina-
tions that can separate true regulons from false ones. Segal
et al. [15] and Beer and Tavazoie [16] built probabilistic
graphical models, e.g., Bayesian networks, to explain gene
expression patterns from motifs. In these models, the pre-
dictors (features) are the matching scores of promoter
sequences to putative binding motifs, and the predictions
(responses) can be continuous or discrete gene expression
levels or categorical cluster labels.

The features used in these models generally come from
one of the following sources. First, one can use computer
programs to automatically find motifs from the promot-
ers of the genes to be modeled [10,11,14-16]. Second, pre-
defined motifs can be obtained independently from
sources such as databases of experimentally verified or
putative motifs [12,13]. Third, one can enumerate all
words up to a certain length as features [8,9]. In addition,
TF binding data derived from Chromatin Immunoprecip-
itation (ChIP) assays [17] have been used as a substitution
of motif scores. For example, Banerjee and Zhang [18]
directly applied the method of Pilpel et al. [7] to ChIP-

chip data to identify TF combinations; Gao et al. [19]
replaced the variables in the linear model of Bussemaker
et al. [8] with ChIP-chip data and identified significant
regulators for many experimental conditions. We recently
applied a decision tree method to S. cerevisiae ChIP-chip
data and identified all known TFs and many interesting TF
combinations for yeast cell cycle [20].

Each type of the features discussed above (motifs or bind-
ing data) has its advantages and disadvantages in mode-
ling gene transcriptional regulations. As to our
knowledge, no comparison has been made to evaluate
their relative merits. Modeling accuracy is largely affected
by the type of features considered in model construction.
If all relevant features are included correctly, many mode-
ling algorithms may have equally high accuracies. On the
other hand, if most significant features are omitted, no
model can achieve satisfactory accuracy. Furthermore, the
inclusion of many irrelevant features may significantly
decrease modeling accuracy. Therefore, a comparative
study can identify limitations of these feature types, and
provide some guidelines and justifications.

Although many classification tools are publicly available
(for example, WEKA [21]), most of them are not designed
specifically for modeling transcriptional regulation, and
are not convenient for biological applications. The only
related software is a web server called REDUCE [22],
which combines linear regression and feature selection
methods to identify significant motifs for specific biolog-
ical events. It uses enumerated words up to a certain
length as features, but does not allow other types of fea-
tures such as position specific weight matrices [23] or
ChIP-chip data to be used. Moreover, the linear model
used in REDUCE assumes that each motif contributes lin-
early to gene expressions, and therefore is unable to repre-
sent complex cis-regulatory logics such as AND and OR
relations [16,24].

In this study, we apply a well-studied classification
method, decision tree [25-27], to model significantly up-
or down-regulated genes in each of 250 microarray exper-
iments of S. cerevisiae. The utilization of decision trees in
modeling transcriptional regulation has been explored
previously by others [11-13] and in our own research
[20]. Here we focus on analyzing the extent to which the
expression of these genes can be predicted using different
features. We compare the cross-validation accuracies of
the models built with different features or feature combi-
nations. We also compare the robustness of these models
by introducing noises into training data. Furthermore, we
analyze the enrichment of functional categories of the
genes that can pass model tests comparing to those fail the
tests, and show that decision tree models can be used to
detect true regulons. Finally, we present the design and
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implementation of a user-friendly web interface that com-
bines multiple information sources for automated analy-
sis of gene transcriptional regulations using decision trees.
As an example, we also present a case study on the tran-
scriptional regulation of genes in Arabidopsis thaliana in
response to abscisic acid (ABA) treatment.

Results and discussion
Modeling gene transcriptional regulation with decision 
trees
Here we briefly introduce the modeling of gene transcrip-
tional regulation with decision trees. For a detailed treat-
ment of decision trees, the reader is referred to related
literature [20,25-27]. Suppose that there are N genes
(instances), each of which is represented by a feature vec-
tor F = f1, f2,..., fm  and has a class label c, where fi is a
real number and c is a category. A decision tree is built as
follows. Initially, the tree has only one node, the root,
which contains all the genes. Then for each node that has
no child node,

1. Examine every possible binary split of the genes in the
node based on each feature i, such that all genes in one
subset have fi <x and those in the other subset have fi ≥ x.

2. Select the best split, and create two child nodes that
contain the two subsets of genes respectively.

Steps 1 and 2 are then recursively applied to each of the
child nodes until no split is possible, or until all genes in
the current node have the same label. Finally, some
branches of the tree may be pruned to prevent over-fitting.
Nodes with or without child node are called internal
nodes or leaf nodes, respectively. For examples and bio-
logical interpretations of decision trees, see Figure 4 and
Figure 5.

Each entry fi in the feature vector of a gene corresponds to
the matching score of the gene's promoter to the ith bind-
ing motif, or the binding data of the ith TF to the gene's
promoter, depending on the type of features used. A split
is equivalent to a test for a gene in the form of, for exam-
ple, "is the matching score of the gene's promoter to motif
A greater than x?" or "is the binding affinity of the gene's
promoter to TF B greater than y?" The exact split point x or
y is determined by maximizing an objective function that
reflects the purity of the child nodes. Information gains
and gain ratios are two frequently used objective func-
tions [26]. Here we used information gains (see
Methods).

The class label of a gene represents a property of the gene
that we want to model. For example, one can cluster genes
according to expression patterns, and then assign the
same label to genes in the same group. Labels can also be

derived from other sources such as functional annota-
tions. In this work, we assign labels to genes according to
the change of their expressions under certain conditions
relative to some reference state (see Experimental setup),
and focus our attention on the comparison of different
features. This modeling approach is based on the assump-
tion that co-regulated genes very often share common reg-
ulatory elements on their promoters. This approach, on
the other hand, will not capture post-transcriptional mod-
ifications, and will ignore genes that share no regulatory
elements with other genes. Note that the underlying
assumption may not always be met, since not all co-
expressed genes are co-regulated. Moreover, genes may be
mislabeled due to noises in their expression data. The pur-
pose is, therefore, to identify rules of thumb for the regu-
lation of the majority genes, while tolerating to some
extent the failure in modeling particular genes. As we will
see later, decision tree models can indeed be used to
detect the true regulons from putatively co-regulated
genes.

Experimental setup
We collected data for 250 microarray experiments on
yeast S. cerevisiae, of which 77 were for cell cycle [28,29]
and 173 were for responses to various stress conditions
[30]. We built decision trees for each condition with two
classes of instances: positive genes that are differentially
expressed (up- or down-regulated) with respect to the ref-
erence state, negative genes that are neither up- nor down-
regulated. For each experiment, we selected up to 50 up-
or down-regulated genes as positive instances and sam-
pled negative instances from non-differentially expressed
genes. (See next subsection for selecting candidate genes).
Once the genes were selected, we modeled the regulation
of up- and down-regulated genes separately. There may be
common regulatory motifs shared by up- and down-regu-
lated genes, which may not be revealed if they were mod-
eled together.

Since most genes are not differentially expressed, the
number of negative instances is far greater than the
number of positive instances. Previous researches have
shown that class distribution is an important factor for
successful modeling [31]. In general, a skewed class distri-
bution will lead to a degraded modeling accuracy. There-
fore, for a set of n positive instances, we randomly
sampled µn instances from all possible negative instances
to obtain a desired class distribution. The sampling was
repeated 10 times, and each set of sampled negative
instances was combined with the set of positive instances
to build a decision tree. The accuracy of each model was
estimated with a ten-fold cross-validation and measured
by the kappa statistic (see Methods). As shown in Figure
1A, the highest accuracy was achieved when µ = 3, which

〈 〉
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is consistent with the results of Simonis et al. [14]. There-
fore, we used µ = 3 in all subsequent analysis.

We considered three types of features. The first type con-
tained 356 known and putative motifs compiled by Pilpel
et al. [7] (referred to as predefined motifs). Of the 356
motifs, 25 were obtained from literature, and the rest were
discovered from the promoters of genes sharing similar
MIPS functional categories [32]. The second type of fea-
tures included motifs identified from the promoter
sequences of positive genes by the AlignACE program [5]
(referred to as auto motifs). The third type of features was
derived from the in vivo binding data of 113 transcription
factors [17] (referred to as ChIP data). For the first two
types of features, each motif was represented as a position
specific weight matrix. A promoter was scanned with
ScanACE [5] for all motifs in the feature set, and the high-
est matching score for each motif was used. For the third
type of features, the binding affinity of each TF (p-value <
0.001, according to [17]) to a promoter sequence was
used.

In general, the inclusion of a large number of irrelevant
features in training data decreases the accuracy of most
classification algorithms. Therefore, feature selection
methods are usually applied to reduce the number of fea-
tures. Most feature selection methods can be categorized
as wrappers [33] or filters [34]. A wrapper method
searches for a subset of features that maximize the cross-
validation accuracy of a given classification algorithm.
This strategy is guaranteed to improve the classification
accuracy if the same algorithm is used in feature selection
and model training. However, it may over-fit to the spe-
cific classification algorithm. Furthermore, the method is
computationally expensive since many iterations of the
classification algorithm need to be executed. In a filter
method, features are selected independently of any classi-
fication algorithm. Individual features or feature subsets
are ranked according to certain scoring functions, and the
top ones are selected. This approach is efficient in remov-
ing a large number of irrelevant features, but may some-
times eliminate low-ranked, nevertheless important,
features. In this study, we used a filter method because of
its efficiency in computation. The method ranks individ-
ual features according to their information gains and
selects the top d features (see Methods and [35]). As
shown in Figure 1B, the best kappa was achieved with as
few as 5 features. This agrees with the fact that a transcrip-
tional regulation only involves a few transcription factors
in general. Careful inspections on individual decision
trees show that with 5 features, the performance of some
trees may be worse than those with more features, due to
the loss of some significant features. With 10 features, the
modeling accuracies were almost never worse than those
with more features. Therefore we used d = 10 in all subse-

quent analysis. The accuracy of each classification model
was estimated using a ten-fold cross-validation procedure.
First, a training set was randomly divided into ten equal-
sized subsets. Each subset was then used in turn as a vali-
dation set to test the accuracy of the model built with the
other nine subsets. We calculated kappa [36] to measure
model accuracies (see Methods). The kappa statistic, writ-
ten κ, measures the agreement between the class labels
and the predictions made by the classifier, corrected by
the amount of agreement that may be achieved by chance.
Therefore, it reflects the extent to which the differential
expression between positive and negative genes can truly
be explained by the classification model. For example,
given a data set containing 20 positive and 80 negative
genes, a model that simply guesses all genes as negative
agrees with the true labels on 80% of cases, as does
another model that makes five mistakes in positive and 15
in negative genes. Taking into account the amount of
agreement that we would expect by chance, the value of κ
is 0.0 for the former model, while 0.47 for the latter.

It is known that κ depends on the class distribution and
the number of categories in the test data [37]. This, how-
ever, was not a problem in our case, since the models in
our test all had binary classes and the same class distribu-
tions. Another difficulty associated with κ is its lack of
interpretability, although some relations between κ and
model quality have been suggested [36]. Therefore, in
addition to κ, we calculated sensitivity (SS) and specificity
(SP) for each model (see Methods). SS is the proportion
of positive genes that are correctly predicted by the model,
i.e., the proportion of up- or down-regulated genes that
can be explained by the regulatory elements identified. SP
is the proportion of negative genes that are correctly pre-
dicted by the model, and 1 - SP represents the proportion
of negative genes that cannot be separated from the posi-
tive genes based on the regulatory elements.

Methods for identifying DEG candidates
Microarray data are noisy and often measured with lim-
ited or no replication, which makes the identification of
differentially expressed genes (DEGs) difficult. In most
early microarray analysis, a fixed fold-change threshold
(generally two-fold) was used to identify DEGs, while
more sophisticated methods have emerged recently [38-
41]. Although it is not the focus of this paper, we consid-
ered and compared several different DEG identification
methods to show that our conclusions on the classifica-
tion models are unlikely to be affected by the specific DEG
identification method used.

For the first method (referred to as the vanilla method),
we downloaded the transformed and normalized log
ratios for the 250 microarray experiments. The data set
had been corrected for background noises, and globally
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normalized by constant factors such that the mean
log2(cy5/cy3) value is zero within each slide [40]. For
expression data in cell cycle conditions, the log ratios were
further normalized such that the mean log ratio for each
gene across all cell cycle conditions is zero [28]. Several
rules were also applied to remove spurious data points
[28]. For each column (condition) of this data set, we
selected the genes with log2(cy5/cy3) ≥ 1 (more than two-

fold induction) as up-regulated genes. In cases there were
more than 50 up-regulated genes, we selected the top 50
with the highest fold changes, or until ties were broken.
Likewise, down-regulated genes with log2(cy5/cy3) ≤ - 1
were selected. Genes with |log2(cy5/cy3)| ≤ 0.6 (less than
1.5 fold expression change) were considered as non-DEGs
and were used to sample negative instances. Note that we
intentionally used two different thresholds for DEGs and

Effects of class distribution and feature selection on the accuracies of modelsFigure 1
Effects of class distribution and feature selection on the accuracies of models. Models were built with ChIP-chip 
data for up- and down-regulated genes in yeast cell cycle. Each data point is an average of the kappa values of 10 × 77 = 770 
models. (A). Effects of class distribution. X-axis ratio of the number of negative instances to the number of positive instances; 
y-axis: kappa in ten-fold cross-validations; (B). Effects of feature selection. X-axis: number of features selected; y-axis: kappa in 
ten-fold cross-validations.
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non-DEGs, in order to exclude genes whose labels may be
ambiguous.

For the second to fifth methods, we downloaded the raw
intensity data. However, we only found raw data for 216
of the 250 conditions, and it was sometimes unclear how
to match the name of a raw data file with a column in the
log ratio data. The intensity data were background cor-
rected, without any other normalization or transforma-
tion. We removed low quality data points that were
annotated by the authors with failed status or non-zero
flags.

The second approach (referred to as the global normaliza-
tion method [40]) was similar to the vanilla approach,
except that no per-gene normalization was made. The
third approach (referred to the lowess normalization
method) was similar to the second approach, except that
within-slide normalization factors were intensity depend-
ent, obtained through a locally weighted regression
approach [40]. The fourth method (referred to as the vsn
method) transformed the intensities with a generalized
logarithm function, in order to stabilize the variances
which were originally intensity dependent [39]. We
applied the same thresholds as in the vanilla approach to
the transformed data. The fifth method (referred to as the
EDGE method) quantified the heteroscedasticity as a
function of intensity and then taking it into account to
identify DEGs [41]. The EDGE method assigned each gene
a p-value based on its distance from the line of equiva-
lence (cy5 = cy3), corrected for multiple tests. We ranked
genes according to their corrected p-values, and selected
up to 50 up-regulated or down-regulated genes with false
discovery rate (FDR) < 0.002 [42]. The FDR threshold was
used to ensure that the number of DAGs selected by EDGE
was approximately equal to those chosen by the other
approaches. It had no impact for most experiments, where
all top 50 genes had FDRs less than 0.002. Genes with
FDR > 0.5 were considered as non-DEGs. The programs
for vsn and EDGE were obtained from their original
authors.

We used each of the five methods to select DEGs and non-
DEGs for each microarray. DEG sets with less than 20
genes were not used. Table 1 lists the average group size
and the number of DEG sets identified by each method.

The accession numbers for the genes in each set can be
viewed on the supplementary website [43].

For each set of positive genes (up- or down-regulated), we
randomly sampled threefold negative genes from the cor-
responding non-DEGs to construct a decision tree and
performed a ten-fold cross validation. The random sam-
pling was repeated for ten times for each DEG set. The
cross-validation accuracies for all models are included in
Supplementary Table 1 (see Additional file 1). Figure 2
shows the values of κ, SS and 1 - SP averaged across all
gene sets obtained by each method. The five different
methods showed similar accuracies in all three measures.
Although two of the methods (global and lowess) seemed
to have slightly better SS and kappa, the difference is not
significant. We therefore restricted our subsequent analy-
sis on the DEGs identified using the vanilla method,
which resulted in the largest number of DEG groups.

A comparison of the prediction power of different features
We compared the cross-validation accuracies of the mod-
els built with three types of features that we discussed
early: ChIP-chip data, predefined motifs and auto motifs.

Table 1: Statistics of DEG sets identified by different methods. The ranges represent one standard deviation from the means.

EDGE global lowess vanilla vsn

Number of down-regulated sets 215 202 194 223 204
Number of down-regulated sets 215 210 200 223 195
Number of genes per set 48 ± 3 47 ± 8 45 ± 6 49 ± 7 46 ± 6

The accuracies of models built for DEGs identified by differ-ent methodsFigure 2
The accuracies of models built for DEGs identified by 
different methods. The three groups of bars show the 
mean SS, 1 - SP and kappa values of the models built for 
genes selected by five different DEG identification methods. 
The error bars represent individual 95% confider interval for 
the means.
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The combination of ChIP-chip data with predefined
motifs was also tested. For each type of features or feature
combinations, 446 × 10 = 4460 decision tree models were
built (446 sets of DEGs and 10 sets of negative genes ran-
domly sampled for each set of DEGs). We randomly
exchanged the labels for positive and negative genes to
serve as controls. Note that we carried out two types of
cross-validations for models built with auto motifs. In the
first method, promoter sequences of genes in both train-
ing data and test data were combined to find motifs. In
other words, motifs were identified from all positive
genes, and the same set of motifs was used to train models
for each fold in a cross-validation. In the second method,
genes were first divided into ten subsets without
constructing the actual feature vectors. A subset was cho-
sen for testing, and the other nine subsets were used for
motif finding. In other words, motifs were identified from
only the training genes, and a different set of motifs was
used to train models for each fold in a cross-validation.
The second method provided a more stringent estimation
of the generalization accuracy of a model, since it com-
pletely hided the test data from the learning algorithm
until they were tested. The first method, however, was
used in several previous studies [11,16], probably because
it is simple to implement and convenient to test. Here we
analyzed the results of both cross-validation methods to
compare auto motifs with other feature types. In the next

two subsections, we used only the first method to show
other aspects of the models based on auto motifs.

A complete list of the cross-validation accuracies of mod-
els for each microarray experiment is included in Supple-
mentary Table 2 (see Additional file 2). The mean cross-
validation accuracies of models for genes in cell cycle and
stress conditions are shown in Figure 3.

As shown in Figure 3A, when the first cross-validation
method is used, the models using auto motifs have the
highest kappa values (~0.53) among the three individual
feature types. However, it is important to note that these
models also have the highest kappa values on randomly
selected genes (~0.4).

Furthermore, the accuracies measured by the second
cross-validation method are much lower: the average
kappa values are 0.15 for models in cell cycle and 0.22 for
models in stress response experiments, and are approxi-
mately zero for models of randomly selected genes. There-
fore, the first method considerably over-estimates the
accuracies of the models built with auto motifs. This is
because that, with the first cross-validation method, the
feature set contains some information about the test
instances, even though the models are built only on train-
ing instances. Consequently, although the results reported
in previous studies utilizing automatically identified

Table 2: Stability of decision tree models. Up: the models built for up-regulated genes. Down: the models built for down-regulated 
genes. Noise: the number of noisy instances added into the training set. TP: the number of true positive genes predicted by models 
built on the original data. TP': the number of true positive genes predicted by models built on the noisy data. Loss: the number of 
positive instances correctly classified in the original data but mis-classified in the noisy data. Rescue: the number of positive instances 
correctly classified in the noisy data but mis-classified originally. FP: the number of newly added noise genes classified as positive. Each 
value is an average across 223 up-regulated or 223 down-regulated gene sets. The standard errors for loss, rescue and FP are all less 
than 0.2.

Predefined motifs Auto motifs

Noise TP TP' Loss Rescue FP TP TP' Loss Rescue FP

Up 0 16.6 16.6 0.0 0.0 0.0 26.4 26.4 0.0 0.0 0.0
5 16.6 17.1 2.5 2.4 0.6 26.4 27.7 7.8 7.6 1.5
10 16.6 17.4 3.6 3.2 1.1 26.4 28.9 8.1 7.7 2.9
15 16.6 17.7 4.0 3.5 1.6 26.4 30.3 8.2 7.7 4.4
20 16.6 18.8 4.2 4.1 2.4 26.4 31.7 8.3 7.8 5.8
25 16.6 19.3 4.5 4.2 3.0 26.4 32.6 8.5 7.8 6.8
50 16.6 21.2 5.8 4.6 5.7 26.4 37.8 9.1 7.2 13.3

0 19.1 19.1 0.0 0.0 0.0 27.9 27.9 0.0 0.0 0.0
Down 5 19.1 19.6 2.0 2.0 0.5 27.9 29.1 7.3 7.0 1.5

10 19.1 20.5 2.7 2.9 1.1 27.9 29.6 8.0 6.8 2.9
15 19.1 20.7 3.2 3.2 1.6 27.9 30.6 8.1 6.6 4.1
20 19.1 20.9 3.8 3.5 2.1 27.9 30.9 8.8 6.5 5.3
25 19.1 21.2 4.1 3.6 2.6 27.9 32.8 8.5 6.6 6.9
50 19.1 22.6 5.3 3.6 5.2 27.9 37.8 9.7 6.2 13.4
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motifs [11,16] may still be valid qualitatively, the exact
accuracies may need to be re-evaluated. Nevertheless, an
apparent advantage of using automatically identified
motifs is that it may be able to discover new features not
included in predefined motifs and ChIP data.

In cell cycle experiments, the models using ChIP data or
predefined motifs have similar kappa values (0.27 and
0.29, respectively; p-value = 0.15 in a paired t-test). In
contrast, in stress response experiments, the models using
ChIP data alone have very low kappa values than that
using predefined motifs (0.15 vs. 0.33, p-value = 10-47 in a
paired t-test). The ChIP data used in this study were meas-
ured under normal cell growth conditions. However, it is
known that TF binding may change with environmental
conditions [44]. While the cell cycle expression data were
measured under conditions relatively similar to normal
cell growth conditions, stress treatment dramatically
changes the environmental conditions and thereby alters
the binding of TFs. It is thus expected to observe lower
prediction accuracies in stress response experiments than
in cell cycle experiments when using ChIP data alone.

Figure 3B and Figure 3C show the mean SS and 1 - SP for
the models built with different features.

Figure 3B for SS shows almost identical trends as Figure
3A, which means that with combined features, the models
can better explain the co-regulation of the genes. On the
other hand, Figure 3C shows that models built with ChIP
data have higher specificity than those built with prede-
fined or auto motifs (p-value = 10-68 in a paired t-test
between ChIP data and predefined motifs). This can be
explained by the fact that ChIP data are more reliable than
motif scores as an indicator of co-regulations, since ChIP
data explicitly measure the binding affinities of gene pro-
moters to TFs. There are also other advantages in using
ChIP-chip data as features. For example, the number of
features is well bounded by the number of TFs, which is
estimated to be around 200 in yeast [44], comparing to
thousands of putative binding motifs. As a result, the cor-
relations and redundancies among features are low in
ChIP-chip data, which makes it possible to build simple
models for better interpretability. Furthermore, the mod-
els built with ChIP-chip data directly suggest regulatory
relations between TFs and genes, which can be used to
construct regulatory networks. Our results indicate that,
however, the conditions of microarray experiments and
ChIP assays must be considered with special care.

In cell cycle experiments, the models built with a combi-
nation of predefined motifs and ChIP data have substan-
tially better kappa values than those with ChIP data or
predefined motifs alone (Figure 3D). The p-value is 10-14

in a paired t-test for results of ChIP data (0.27) and

The accuracies of models built with different featuresFigure 3
The accuracies of models built with different fea-
tures. (A), (B) and (C) show kappa, SS and 1 - SP for models 
built with different features, respectively. ChIP: ChIP-chip 
data, pre: predefined motifs, auto: automatically identified 
motifs using AlignACE. The first cross-validation method was 
used for models in autol and the second cross-validation 
method was used for models in auto2 (see text). White bar: 
average accuracy of models for true DEGs. Grey bar: average 
accuracy of models for random genes. The error bars repre-
sent individual 95% confident interval for the means. (D) and 
(E) show kappa values for models built with different types of 
features for stress conditions and cell cycle conditions, 
respectively. X-axis: kappa for models built with predefined 
motifs; y-axis: kappa for models built with a combination of 
ChIP-chip data and predefined motifs.
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combined features (0.34), and 10-12 for predefined motifs
(0.29) and combined features (0.34). In stress
experiments, the kappa values for models based on
combined features (0.35) are only marginally better than
that for predefined motifs (0.33), due to limited usage of

ChIP data as pointed out above. Nevertheless, the models
using combined features perform significantly better
(improvement of kappa > 0.1) in 33 cases, while the mod-
els using predefined motifs are never better by more than
0.1 in kappa (Figure 3E). A paired t-test yields a p-value 10-

Screenshots of the input and output interfaces of CAGERFigure 4
Screenshots of the input and output interfaces of CAGER. (A). The input consists of four steps. First, the user provides 
ORF identifies or promoter sequences for positive and negative genes. Second, the user selects a type of features or some of 
their combinations. Third, the user can change parameters for decision tree learning. The user then provides an email address 
for notification of results and finally submits the job. (B). On the top of the output page is a graphical representation of a deci-
sion tree. Each oval of the decision tree represents an internal node and each box represents a leaf node. The text inside an 
internal node is the name of a feature, and the text associated with an edge is a test of the feature. The text inside a leaf node 
gives the predicted label (p: positive, n: negative) for genes inside the leaf, and the number of supporting and counter-instances, 
if any. A path from the root to a leaf node defines a possible regulatory rule. For example, the rightmost path can be read as "if 
the binding affinity of Mbpl to a gene's promoter is at least 1.75, the gene is positive (i.e., up-regulated under the condition that 
the decision tree models)." The numbers "16/1" enclosed in parenthesis means that 16 training instances have feature 
Mbpl_bind ≥ 1.75, of which 15 are positive and one is negative. On the bottom of the output page are related statistics for 
training and cross-validation of the decision tree model.

(A) (B)
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5, which is still statistically significant. Putative binding
motifs and ChIP data represent two distinct and comple-
mentary sources of evidence of regulation. Therefore, a
combination of them can provide a better discriminative
power than either of them does.

Since the role of decision tree models is exploratory, there
is no need to be restricted to any specific type of features.
Indeed, one should try a variety of them to identify the
most relevant features for a particular set of genes. A good
strategy in choosing feature types is probably as follows:

Decision tree and motifs learned for ABA-responsive genes in ArabidopsisFigure 5
Decision tree and motifs learned for ABA-responsive genes in Arabidopsis. (A). A decision tree model learned for 
the transcriptional regulation of abscisic acid-induced genes in Arabidopsis. (B). Sequence logos of the three most significant 
motifs used by the decision tree model.
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first use a combination of TF binding data and predefined
motifs for modeling; if a model with good cross-valida-
tion accuracy can not be found, then consider using auto-
matically identified motifs. Obviously when predefined
motifs or TF binding data are unavailable or insufficient,
using automatically identified motifs as features is the
only option.

Stability of models
To analyze the stability of decision tree models, we intro-
duced some noises into positive training data and tested
whether the models can separate the true positives from
the noises. For each microarray experiment we randomly
selected 5 to 50 negative genes and deliberately misla-
beled them as positive. The original data and the addi-
tional fake positive instances were then combined to
build a decision tree model. We compared the results of
the new models to the results of the original models in
ten-fold cross-validations and counted the numbers of
losses, rescues and false positives (FPs). According to [14],
a loss is a positive instance that is mis-classified in the
noisy data but correctly classified in the original data. A
rescue is a positive instance that is correctly classified in the
noisy data but mis-classified originally. An FP corre-
sponds to a newly added noise gene that is classified as a
(false) positive gene.

As shown in Table 2, the models built with predefined
motifs are more robust than the models built with auto
motifs. Even at 100% noise level (50 randomly selected

genes added), almost 90% of the introduced noises

 can be correctly filtered out by the

models built with predefined motifs. In comparison, the
models built with auto motifs can only filter out ≈ 75% of
the noises. This is because the motif finding program was
distracted by the wrongly labeled genes so that the discov-
ered motifs became less effective to discriminate the true
positives from false ones.

Furthermore, the predictions made by the models built
with predefined motifs are more stable, as reflected by the
smaller values of loss + rescue in Table 2. The addition of a
small amount of noises may result in, dramatic change to
the predictions by the models built with auto motifs.
When as few as 5 noisy instance were added, the models
based on auto motif changed their predictions by

 ≈ 58%, while the models based on predefined

motif changed their predictions by only  ≈ 30%.

Functional enrichment in correctly classified positive genes
As mentioned early, there may be errors in the labels of
training instances, i.e., some genes assigned with the same
label may actually not be co-regulated. Here we test
decision tree models' capabilities of identifying "true" reg-
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Table 3: Functional enrichment in correctly predicted positive genes. Predefined motifs: the models built with predefined motifs. Auto 
motifs: the models built with auto motifs. Up: the models built for up-regulated genes. Down: the models built for down-regulated 
genes. #Gp: the number of Gp genes (positive genes that are predicted as positive by a model). #Gn: the number of Gn genes (positive 

genes that are predicted as negative by a model). : the number of enriched functional categories in the set of Gp genes. : the 

number of enriched functional categories in the set of Gn genes. : the number of enriched functional categories in the set of Gp' 

genes (see text). The sample sizes for up- and down-regulated genes in cell cycle are 56 and 59, respectively, and 167 and 164 in stress 
conditions. The ranges represent individual 95% confidence interval for the means.

Model #Gp #Gn

Predefined 
motifs

Cell cycle Up 17.2 ± 2.2 27.1 ± 2.7 15.1 ± 2.9 8.2 ± 2.6 12.3 ± 3.5

Down 14.0 ± 2.1 31.0 ± 2.5 14.5 ± 3.7 9.6 ± 3.4 8.4 ± 3.3
Stress Up 16.4 ± 1.0 33.1 ± 1.1 13.4 ± 2.3 10.6 ± 1.8 10.3 ± 1.9

Down 21.0 ± 2.0 30.7 ± 1.7 17.1 ± 2.4 7.8 ± 1.7 14.7 ± 2.3

Auto motifs Cell cycle Up 24.9 ± 1.8 19.3 ± 1.8 16.9 ± 3.2 7.9 ± 2.5 13.9 ± 3.2
Down 23.6 ± 1.9 21.4 ± 1.8 15.6 ± 3.7 8.4 ± 2.9 11.8 ± 3.5

Stress Up 27.0 ± 0.8 22.6 ± 0.8 16.2 ± 2.3 9.1 ± 1.9 15.2 ± 2.4
Down 29.4 ± 1.3 22.2 ± 1.1 18.2 ± 2.3 6.6 ± 1.5 16.4 ± 2.4
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CGp
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CGp ’
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ulons from such genes. Given a set of putatively co-regu-
lated genes as positive instances and randomly sampled
genes as negative instances, we used a leave-one-out
strategy to predict which of the positive genes are indeed
co-regulated. To this end, a positive instance was removed
from the training data, and tested on the decision tree
model built without it. This was repeated for each positive
gene. Consequently, the positive genes were categorized
into two groups: those that were predicted as true posi-
tives and those as negatives, which we refer to as Gp and
Gn, respectively. We hypothesized that the genes in Gp are
more functionally coherent than the genes in Gn, since
according to the decision tree model, the genes in Gp
share some common regulatory elements. To test this
hypothesis, we counted the number of Gene Ontology
(GO) functional categories [45] that are statistically
enriched in each group with a false discovery rate < 0.05
(see Methods). The above procedure was applied to the
up- and down-regulated genes in each of the 250 microar-
ray experiments and the average results were calculated.
As shown in Table 3, the models built with predefined
motifs and with auto motifs both succeed in retaining
functionally related genes and filtering out unrelated
genes. For example, in the models built with predefined
motifs for up-regulated genes in cell cycle, there are in
average 15 enriched GO categories in 17 Gp genes, while
there are only 8 enriched GO categories in 27 Gn genes. A
similar trend can be observed for down-regulated genes
and for the models built with auto motifs. A paired t-test

between  and  combining all cases yields a p-

value 10-43.

Furthermore, we tested whether a similar degree of func-
tional enrichment can be achieved without decision tree
models. Suppose a decision tree model predicted 25 out
of 50 positive genes as true positives, and GO analysis
showed that these 25 genes were functionally more coher-
ent than the remaining 25 genes. We want to know
whether there is another way to select 25 genes that have
higher degree of functional enrichment than those pre-
dicted by decision trees. For example, we may simply pick
genes that are top ranked according to their expressions.
We used the following procedure to test this hypothesis.
For each set of up-or down-regulated genes, A, which has
p predicted true positive genes, we selected p top ranked
genes from A based on the absolute log ratios of their
expressions. We denoted this set of genes as Gp', which
has the same number of genes as Gp, and counted the
number of enriched GO categories in it. The average
results over all microarray experiments are shown in the

 column of Table 3. As shown, the genes in Gp

contain more enriched functional categories than genes in

Gp'( ). A paired t-test between  and 

combining all cases has a p-value 10-16. Therefore, we can
conclude that both models built with auto motifs and
with predefined motifs are more effective in selecting
functionally related genes than the naive differential
expression model.

CAGER web server
Several previous studies have shown that decision tree is a
valuable tool in analyzing transcriptional regulation of
gene expressions [11-13,20]. Although there are many
publicly available software packages for building decision
trees (for example, [21,25,26]), they are not specifically
designed for biological applications, and are not conven-
ient for biologists to use. Therefore, to make a good use of
the results from this study, we designed and implemented
a user-friendly web server and interface for building deci-
sion trees to analyze transcriptional regulation. The server
integrates several software components that allow the user
to select from different types of features and to interact
with the constructed models.

The interface for user inputs is shown in Figure 4A. To sub-
mit a job to CAGER, the user is first asked to provide pos-
itive and negative genes as either ORF identifies for one of
the supported organisms, which currently includes yeast
S. cerevisiae and Arabidopsis thaliana, or promoter
sequences in FASTA format. These can be copy-pasted to
the web form or uploaded from files in the user's local
computer. Given ORF identifiers, the promoter sequences
in a supported genome are retrieved automatically from a
local database. Second, the user specifies some feature
sets, which may be ChIP-chip data for yeast S. cerevisiae
[17], predefined motifs from Pilpel et al. [7], motifs auto-
matically identified from the promoter sequences by Alig-
nACE [5], or a combination of them. The user can also
specify whether features should be identified from nega-
tive instances as well as from positive instances, whether
feature filters should be used, and the minimum number
of instances per node. Finally, the user fills in his or her
email address and submits the job. After a job is com-
pleted, the user will be notified by email for instructions
about how to access the results.

On the output page, a decision tree is displayed as a port-
able network graph (PNG), along with related statistics for
the tree in training and cross-validation processes (Figure
4B). The text inside an internal node of the tree gives the
name of a feature, and the text inside a leaf node shows
the predicted label for genes inside the node, as well as the
number of supporting and counter-instances for the pre-
diction. Each node of the decision tree can be clicked to
show some details. For example, if an internal node
contains a feature derived from ChIP-chip data for a TF in
yeast, clicking on it leads the user to SGD [46] for detailed
information about the TF. If the feature is a binding motif,
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a click opens a new window to display the sequence logo
[47] and the position specific weight matrix of the motif.
A click on a leaf node brings up a window for displaying
the identifiers of the positive and negative genes in the
leaf.

Application to ABA-responsive genes in Arabidopsis
Here we show an example of using the web server to study
the regulation of genes expressed in response to abscisic
acid (ABA) in Arabidopsis. ABA is a phytohormone that
plays important roles in many stages of plants, such as
seed development and stress responses (see [48] for a
review). Seki et al. [49] identified about 250 genes in Ara-
bidopsis that are induced by at least 5-fold after ABA treat-
ment. Since Arabidopsis is one of the supported organisms
in our current server, its promoter sequences are available
in our database.

Therefore, we provided as positive instances the list of
ORF names corresponding to the up-regulated genes, and
as negative instances a list of randomly selected genes that
are not up-regulated. Promoter sequences were retrieved
for 152 of the positive genes. We used auto motifs identi-
fied from these promoters as features. The decision tree
and the sequence logos for the most interesting motifs are
shown in Figure 5. AlignACE identified a total of 37
motifs with default parameters, five of which were
selected by the decision tree (Figure 5A). Three motifs,
ace_m2, ace_m9, and ace_18 (Figure 5B) together cor-
rectly classified 35 (= 13 + 6 + 22 - 6) positive genes (the
rightmost three leaves labeled with 'p'), while as many as
107 positive genes were classified as negative. This may be
due to the fact that ABA triggers a lot of down-stream
responsive genes, many of which are not co-regulated
with direct targets of ABA. The motif ace_m2 has a con-
served CACGTG core, which is very close to the known
ABA responsive elements (ABREs) identified in many
other plants [50-56]. It is known that an ABRE often func-
tions together with a coupling element (CE), but the con-
sensus sequence of CE in Arabidopsis is elusive. Here, the
decision tree suggests that ace_m18 and ace_m9 may be
two possible CEs. Motif ace_m18 has a CGTGTG core
which partially resembles the CE in rice OSEM gene
(GACGCGTGTC) [57], and CE3 in barley HVA1 gene
(ACGCGTGTCCTC) [55]. Note that ace_m18 has a weak
second copy of the GTGTG core, whicl may be important
for enhanced binding activity. Motif ace_m18 is also
remotely similar to CE3 in maize RAB28 gene
(ACGCGCCTCCTC) [53], although in maize the CGT-
GTG core is replaced by CGCGCC. Motif ace_m9 is a weak
but significant motif that consists of a series of G's sepa-
rated by one or two A's. This motif is not similar to any
known motif in the database of Plant Cis-acting Regula-
tory DNA Elements (PLACE) [58], and therefore may be a
new motif for Arabidopsis.

Conclusion
In this research, we compared the effect of using different
features to study transcriptional regulation of gene expres-
sions by classification methods. We considered features
based on ChIP-chip data, predefined motifs, automati-
cally identified motifs, and their combinations. We found
that TF binding data from ChIP assays are effective in
modeling gene expressions only under the same condi-
tions where ChIP-chip experiments were conducted. Our
results also indicate that many previous studies may have
over-estimal the cross-validation accuracies of models
built with automatically identified motifs. Furthermore,
the models built with automatically identified motifs are
not robust with respect to noises, comparing to those built
with predefined motifs. A combination of ChIP-chip data
with predefined motifs seems to be superior to either one
of them applied separately.

We also showed that the positive genes correctly predicted
by decision tree models are more functionally related than
those that are not correctly predicted. Therefore, decision
tree models can be used to refine putative regulons and
detect new genes of a regulon. Simonis et al. [14] have
showed this by testing on known regulons, while we con-
firmed this through analyzing the functional enrichment
of predicted regulons. We presented a web service that
integrates motif finding and decision tree learning for
analyzing transcriptional regulation of gene expressions.
Its usefulness was illustrated with an example of studying
the regulation of ABA-responsive genes in Arabidopsis. We
identified two motifs that are similar to known ABA-
responsive elements (ABREs) and coupling elements
(CEs), and suggested a new CE, which may deserve further
studies. As demonstrated by the example, the web inter-
face combines a number of software components and
hides most specific parameters from the user, while still
allows some flexibilities. The graphical representation of a
decision tree makes it easy to visualize and extract signifi-
cant regulatory rules. We believe that it can significantly
reduce the learning curve for those who are interested in
applying classification methods to analyzing transcrip-
tional regulation, and will be a useful tool to facilitate the
discovery of transcriptional regulatory networks by com-
bining multiple information sources.

Methods
Datasets
Yeast gene expression data were downloaded from from
Expression Connection [59]. ABA-induced gene expres-
sion data for Arabidopsis were obtained from [49]. ChIP-
chip data for yeast transcription factors were downloaded
from [60]. Putative binding motifs for yeast genome were
obtained from [61]. Upstream sequences of yeast and Ara-
bidopsis ORFs were obtained from RSA-tools [62] by
retrieving up to 800 and 1500 bases, respectively, from
Page 13 of 16
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translation start sites. Overlaps with other ORFs were
truncated, and upstream sequences shorter than 100 bases
were discarded. For yeast ORFs, the upstream sequences
were used as promoters. For Arabidopsis ORFs, the
upstream sequences were used as inputs to a promoter
prediction program, TSSP [63], to predict transcription
start sites (TSSs). Promoters of Arabidopsis ORFs were
defined as from 350 bases upstream to 50 bases down-
stream relative to the predicted TSSs, where most known
ABREs and CEs were discovered.

Feature filters and decision tree learning
Given a training set, features were ranked according to the
restricted information gains that can be achieved by using
individual features to separate positive and negative
instances. Suppose that there are p positive instances and
n negative instances, and by selecting a splitting point x on
feature fi, the numbers of positive and negative instances
on the left (fi <x) and right (fi ≥ x) child nodes are p1, n1,
p2, and n2, respectively. The restricted information gain

 due to feature fi with respect to this split can be cal-

culated by:

where Igain is the normal information gain computed from
entropies [26]. The restriction to the information gain cal-
culation ensures that a selected feature is more over-repre-
sented in positive instances than in negative instances,
which is necessary since negative instances were chosen
randomly and therefore should not be co-regulated. Fea-

tures were ranked by  and the top d features were

selected for decision tree building (d is denned by the user
and is default to 10 in this study). Decision trees were

built with C4.5 algorithm [26], except that  instead

of Igain were used.

Measuring model accuracy
Let TP, TN, FP, and FN be the numbers of true positive,
true negative, false positive and false negative predictions
made by a binary classifier, respectively, and N = TP + TN

+ FP + FN. Sensitivity is defined as . Specif-

icity is defined as . The kappa static κ of the

classifier is defined as , where  is

the percentage of correctly predicted instances, and C is
the expected percentage of instances that a classifier can
predict correctly by chance.

Note that when A = 100% and C ≠ 100%, κ = 1.0, corre-
sponding to a perfect classifier; when A ≤ C, κ ≤ 0, mean-
ing that the classifier does not perform better than
random guessing.

GO functional enrichment
GO annotations were retrieved from SGD (version Sep-
tember 2004) [46]. Go functional enrichment were calcu-
lated with accumulative hyper-geometric distribution.
GO::TermFinder perl module [64] was used to search for
significantly enriched functional categories with a false
discovery rate (FDR) < 0.05 [42].

Software and implementation
Motifs were identified with AlignACE [5] and scanned
against promoter sequences with ScanACE [5]. Decision
trees were built with the J48 program, which is a java
implementation of the C4.5 decision tree learning algo-
rithm [26], included in the WEKA machine learning pack-
age [21]. Decision trees were drawn with the dot program
in Graphviz 1.0 [65] and displayed with webdot in the
same package. Sequence logos of motifs were drawn with
the seqlogo program [47]. The CAGER web service was
implemented in perl and run on an apache web server
with dual AMD Athlon 1600 MHz CPUs and 2 GB of
RAM.
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