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A general class of dynamic models on scale-free networks is
studied by analytical methods and computer simulations. Each
network consists of N vertices and is characterized by its degree
distribution, P(k), which represents the probability that a randomly
chosen vertex is connected to k nearest neighbors. Each vertex can
attain two internal states described by binary variables or Ising-like
spins that evolve in time according to local majority rules. Scale-
free networks, for which the degree distribution has a power law
tail P(k) � k��, are shown to exhibit qualitatively different dynamic
behavior for � < 5�2 and � > 5�2, shedding light on the empirical
observation that many real-world networks are scale-free with 2 <
� < 5�2. For 2 < � < 5�2, strongly disordered patterns decay within
a finite decay time even in the limit of infinite networks. For � >
5�2, on the other hand, this decay time diverges as ln(N) with the
network size N. An analogous distinction is found for a variety of
more complex models including Hopfield models for associative
memory networks. In the latter case, the storage capacity is found,
within mean field theory, to be independent of N in the limit of
large N for � > 5�2 but to grow as N� with � � (5 � 2�)�(� � 1) for
2 < � < 5�2.

random network � Boolean dynamics � cellular automata �
associative memory

The biosphere contains many complex networks built up from
rather different elements such as molecules, cells, organisms,

or machines. Despite their diversity, these networks exhibit some
universal features and generic properties, a topic of much recent
interest (1–6). One important result of this recent activity is a
classification scheme for the structure of networks in terms of
their topology and connectivity (5, 6). The basic elements of each
network can be represented by nodes or vertices and their
interrelations by edges between these vertices. By definition, the
degree, k, of a given vertex is equal to the number of edges
connected to it. In this way, each network is characterized by its
graph, a well defined mathematical object (7). Four large subsets
of network graphs have been characterized in terms of their
connectivity properties: regular ordered and random networks,
which have been studied for a long time, as well as small-world
(1) and scale-free (4) networks. The latter types of networks are
characterized by a degree distribution, P(k), that decays as
P(k) � 1�k� with decay exponent �.

Many biological, social, and technological networks are found
to be scale-free (5, 6). To explain this abundance, several
mechanisms have been proposed, some of which are related to
the growth of networks with preferential attachment rules (5, 8).
The impact of network architecture on network integrity or
resilience has also been investigated (6, 9–11). Upon random
removal of a finite fraction of vertices, a scale-free network with
decay exponent 2 � � � 3 will always keep a giant component.
In contrast, if a tiny fraction of the most highly connected
vertices is selectively removed, such a network will also break up
into many small components. Applying this insight to the case of
disease spreading on networks, one realizes that infective dis-
eases have a high probability to affect the whole network (12)
unless one immunizes the most highly connected vertices (13).

Random removal of vertices is equivalent to the process of site
percolation on the initial network (9, 10). Likewise, disease
spreading is intimately related, in the long time limit, to bond

percolation (6, 10). In general, the elements of real networks are
dynamic and exhibit various properties that change with time. A
more detailed description of the network dynamics is then
obtained in terms of dynamical variables associated with each
vertex of the network. We will consider processes on networks
that evolve fast compared with any changes in the network
topology, which is therefore taken to be time-independent. Two
examples for such dynamical processes are provided by the
regulation of genetic networks that exhibit a changing pattern of
active and inactive genes (see, e.g., ref. 14) or by neural networks
that can be characterized by firing and nonfiring neurons (see,
e.g., ref. 15).

To identity universal features and generic properties, it is
often convenient to use discrete dynamical variables and to allow
each vertex to attain several distinct states. The network is then
characterized, at each moment in time, by a certain pattern of
these internal vertex states, and the time evolution of these
patterns represents the global dynamics of the whole network.

The study of discrete dynamical processes on ordered and
random networks has a long history. Ordered networks have been
studied in the context of neural computation (16, 17), cellular
automata or Boolean dynamics (18, 19), and dynamic Ising
models (20). Random networks with random Boolean dynamics
were introduced in the context of gene expression and studied as
prototypes of random cellular automata (21–23). Discrete dy-
namic processes on small-world networks were discussed in ref.
2, whereas analogous processes on scale-free networks have only
been addressed rather recently (24–26).

Random networks as originally studied in mathematics (5–7)
are characterized by a Poissonian degree distribution as given by
P(k) � �k�ke��k��k!, where �k� � �kP(k) denotes the mean value
of the vertex degree k. In contrast, scale-free networks are
characterized by P(k) � k�� with decay exponent � for an
intermediate range of k-values that can be defined as follows. To
avoid disconnected subgraphs, it is useful to introduce a certain
minimal degree k0 	 0. Furthermore, a large but finite network
containing N vertices is also characterized by a certain maximal
degree kN. These two ‘‘cutoffs’’ can be incorporated in a
particularly simple way via the explicit form (9)

P
k� � 
1�A�k�� for k0 � k � kN

� 0 otherwise [1]

with the normalization factor A � �P(k) and kN � k0N1/(� � 1)

(see Degree Distribution and Maximal Vertex Degree in Supporting
Text, which is published as supporting information on the PNAS
web site).

Many scale-free networks are characterized by decay expo-
nents � that fall into the narrow range 2 � � � 5�2 as observed
in ref. 24. Indeed, table 2 of ref. 5 contains a list of ten scale-free
networks with 2 � � � 5�2, one with � � 2.5, and only three with
2.5 � � � 3. The lower boundary value � � 2 is easy to
understand since it ensures that the mean vertex degree �k� �
�kP(k) remains finite in the limit of large N. The upper boundary
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value � � 5�2 is less obvious. To gain some insight into this latter
value, Aldana and Cluzel (24) studied the Kauffman model, i.e.,
random Boolean dynamics for binary variables or Ising-like spins
(21, 22) on scale-free networks. They suggested the criterion that
scale-free networks with decay exponent 2 � � � 5�2 are located
on the boundary between order and chaos (24). However, for
random Boolean dynamics, the phase boundary between order
and chaos turns out to be independent of the network architec-
ture but depends only on the mean vertex degree �k�. Indeed, this
phase boundary is determined by the simple relation 2�k��(1 �
�) � 1 between �k� and the model parameter �, which represents
the probability that the output of a Boolean function with
random input will be equal to 1 (22). As long as �k� 	 2, this
equation has two solutions in the physical range 0 � � � 1 that
determine the boundaries between the ordered and the chaotic
phases. Since scale-free networks with � 	 5�2 as well as random
Poissonian networks can have �k� 	 2, all of these networks can
exhibit transitions between ordered and chaotic phases if the
binary patterns evolve according to random Boolean dynamics
(21, 22).

In this article, we consider dynamic network models for binary
variables or Ising-like spins which evolve in time according to
local majority rules on scale-free networks. The latter rules are
equivalent to the so-called Glauber dynamics (20) for Ising-
models at zero temperature. In addition, we extend our study to
finite temperature in the context of Hopfield models (17, 27) for
associative memory networks and to networks with directed
edges. The main results of our study are as follows.

First, using mean field theory and computer simulations, we
show that scale-free networks with � � 5�2 represent a sharp
boundary for the local majority dynamics. This boundary is
defined with respect to the decay of strongly disordered patterns
and the associated growth of order within these patterns. For � �
5�2, the disordered patterns decay within a finite time even in the
limit of infinite networks. For � 	 5�2, on the other hand, this
decay time diverges as ln(N) with the vertex number N. The latter
behavior is consistent with recent results for opinion spreading
on social networks (28). The different dynamic behavior of
scale-free networks with � � 5�2 and � 	 5�2 provides a new
light on the empirical observation that most real-world networks
are scale-free with 2 � � � 5�2.

Second, our simulations give strong evidence that, for scale-
free networks, disordered patterns typically evolve toward the
two completely ordered patterns (or ground states) provided the
networks are connected, the minimal vertex degree k0 	 1, and
the mean vertex degree �k� is sufficiently large. This is rather
different from the behavior found previously for tree-like net-
works (29) and for d-dimensional hypercubic networks with d �
3 (30), where the evolving patterns are typically trapped in
metastable states with many domain boundaries and ‘‘blinkers,’’
but is consistent with the behavior observed in random Poisso-
nian networks (31).

Third, we determine the minimal fraction of spins which one
has to flip to transform the all-spin-down pattern into another
pattern that evolves toward the all-spin-up pattern under the
local majority dynamics. We derive an analytical expression for
this minimal fraction and show that it vanishes very rapidly as �
exp(��const��(� � 2)) as the decay exponent � approaches the
value � � 2. This sensitivity of ordered spin patterns to selective
spin flips has been independently observed in ref. 25. In contrast
to the behavior of the decay time for strongly disordered
patterns, the minimal fraction varies smoothly with the decay
exponent � in the vicinity of � � 5�2.

Fourth, when extended to Hopfield models on scale-free
networks, our mean field theory predicts that � � 5�2 represents
a sharp boundary for these models as well. For � 	 5�2, the
maximal storage capacity of the network does not grow with the
network size N in the limit of large N. In contrast, for 2 � � �

5�2, the maximal storage capacity grows as N� with � � (5 �
2�)�(� � 1) for large N. Very recently, it has been argued that
functional networks in the human brain resemble scale-free
networks with � � 2.1 (32). For the latter networks, our mean
field theory predicts the storage capacity to grow as N� with � �
0.73. This growth of the storage capacity with network size N is
almost as fast as in the original Hopfield model (17) on complete
graphs with vertex degree k � N � 1 for which � � 1.

Models and Methods
To proceed, consider random scale-free networks with N vertices
and M edges with degree distribution P(k) as obtained from the
so-called configuration model (6) (see Numerical Generation of
Scale-Free Networks in Supporting Text and Fig. 5, which is
published as supporting information on the PNAS web site).
Each vertex i of such a network has two internal states described
by the Ising spin �i � 1. The network architecture is embodied
in the network’s adjacency matrix I with matrix elements Iij � 1
if the two vertices i and j are nearest neighbors, i.e., if they are
connected by an edge, and Iij � 0 otherwise. At each vertex i, we
define the field hi � �j Iij�j. The sign of the field hi is positive and
negative if the majority of the nearest neighbor spins is positive
or negative, respectively. The time evolution of the spin pattern
is now defined by the local majority rule as given by

�i
t � 1� � �1 if hi
 t� � 0,
� �1 if hi
 t� 	 0. [2]

In the special case hi(t) � 0, we choose �i(t � 1) � �1 or �1 with
equal probability. These local majority rules are equivalent to
Glauber dynamics (20) at zero temperature as studied, e.g., on
d-dimensional hypercubic networks (30) and on random Pois-
sonian networks (31). Recently, similar dynamic models were
also used in the context of opinion spreading (28), network
robustness and sensitivity (25), and the yeast cell-cycle regulation
system (26).

In general, the graph of a random scale-free network may be
disconnected and consist of several components. In such a
situation, the pattern evolution in one network component is
completely independent of the evolution in all of the other
components. To avoid this division of the evolving patterns into
several subpatterns, we will focus on degree distributions char-
acterized by minimal vertex degree k0 � 2 and mean vertex
degree �k� � 10 for which graphs with several components are
rather unlikely. In general, random graphs with �k� 	 1 have one
giant component and several small ones; for Poissonian graphs,
the giant component contains 
(�k�)N vertices, where 
(�k�)
approaches 
(�) � 1 exponentially fast with increasing �k� (5).
For such disconnected networks, our analysis applies to the
pattern evolution on the giant components as long as k0 	 1.
Random scale-free networks with k0 � 1 are special since they
tend to be tree-like with many surface sites.

To study the time evolution of the spin patterns in more detail,
we consider the probabilities qk(t) that a vertex with degree k is
in the spin-up state, and the probability Q(t) that, for any vertex
in the network, a randomly chosen nearest neighbor vertex is in
the spin-up state. As will become clear below, the probability Q
is directly related to the order parameter of the system and will,
thus, be called the ordering probability. Since a vertex associated
with a randomly chosen edge has degree k with probability
kP(k)��k� in a random network with no vertex degree correla-
tions, the probabilities qk and the ordering probability Q satisfy
the simple relation

Q
t� � �
k

kP
k�qk
t���k� [3]
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with 0 � Q(t) � 1. Note that the ordering probability Q differs,
in general, from the overall probability to find any vertex in the
spin-up state. The latter probability is given by �q� � �k P(k)qk.
Special patterns for which �q� � Q are provided by k-
independent probabilities qk � q. In particular, for the all-spin-
down pattern with qk � 0 for all k and for the all-spin-up pattern
with qk � 1 for all k, one has Q � �q� � 0 and Q � �q� � 1,
respectively.

If we know the ordering probability Q at a certain time t, we
can calculate the probabilities qk at the next time step. Indeed,
it follows from the majority rule dynamics as defined by Eq. 2
that

qk
t � 1� � �
m

��1 �
1
2

m,k/2�Bk,mQm
t�
1 � Q
t��k�m,

[4]

where the prime at the summation symbol indicates that this sum
runs over all integer m with k�2 � m � k,  is the Kronecker
symbol, and Bk,m � k!�[m!(k � m)!] are the binomial coeffi-
cients. Finally, summation of the left-hand side of Eq. 4 leads to
the evolution equation

Q
t � 1� � �
Q
t�� [5]

for the ordering probability Q with the evolution function

�
Q� � �
k

�
m

��1 �
1
2

m,k/2�kP
k�Bk,mQm
1 � Q�k�m��k�

[6]

for random graphs with no vertex degree correlations as con-
sidered here.

The evolution equation (5) has two stable fixed points at Q �
0 and Q � 1, and an unstable one at Q � 1�2. The fixed points
with Q � 0 and Q � 1 correspond to the all-spin-down and
all-spin-up patterns, respectively. The unstable fixed point with
Q � 1�2 represents the phase boundary between these two
ordered patterns; the corresponding boundary patterns are
characterized by probabilities q̂k, which satisfy

Q̂ � �
k

kP
k�q̂k��k� � 1�2 or N�k�Q̂ � M , [7]

where M is the total number of edges. A subset of these boundary
patterns is provided by those patterns for which the probabilities
q̂k � 1�2 for all vertex degrees k. Therefore, the order parameter
of these systems is taken to be

y � Q � Q̂ � Q � 1�2, [8]

which vanishes for all boundary patterns.
In the next section, we will compare the mean field trajectories

obtained from the evolution equation (5) with the pattern
evolution obtained from computer simulations. In the latter
case, one starts from a certain initial pattern and applies the
majority rule dynamics as given by Eq. 2 to each vertex of the
network. Since we want to be able to use the same initial pattern
for both mean field theory and computer simulations, we will
define the enlarged set of strongly disordered patterns that consists
(i) of the boundary patterns characterized by Eq. 7 and (ii) of
additional patterns characterized by probabilities q̃k that lead to
Q � Q̃ � 1�2  1�2M and, thus, to the order parameter

ỹ � �
k

kP
k�q̃k��k� � 1�2 � 1�2M � 1��k�N , [9]

which vanishes in the limit of large network size N. A pattern
with probabilities q̃k can be obtained from a boundary pattern by
simultaneously flipping two spins with opposite orientations on
a k and (k � 1) vertex.

The evolution equation for the order parameter y � Q � 1�2
can be directly obtained from the corresponding equation (7) for
Q and is given by y(t � 1) � �(1�2 � y(t)) � 1�2. In the vicinity
of the unstable fixed point with Q � 1�2 and �(1�2) � 1�2, the
latter equation can be linearized and becomes

y
t � 1� � ��
1�2�y
t� with ��
1�2� � d��dQ �Q�1/2

[10]

for small y(t). Iterating this equation n times from an initial time
t0 up to a final time t1, one obtains the time difference

�t01 � t1 � t0 �
ln�y
 t1� � � ln�y
 t0� �

ln ��
1�2�
[11]

in the limit of small y(t0).
It follows from the explicit expression (Eq. 6) for the evolution

function �(Q) that the derivative ��(1�2) at the unstable fixed
point with Q � 1�2 diverges for a scale-free network with decay
exponent � � 5�2 in the limit of large network size N. More
precisely, one obtains the asymptotic behavior

��
1�2� � c�k0
1/2 for� � 5�2

� c�k0
1/2ln
N� for� � 5�2

� c�k0
1/2N�/2 for2 	 � 	 5�2

[12]

in the limit of large N with � � (5 � 2�)�(� � 1), where c� is a
dimensionless �-dependent coefficient (see Derivation of Eq. 12
in Supporting Text).

Results and Discussion
Decay of Strongly Disordered Patterns. Now, consider an initial
state of the network at time t � t0 that corresponds to a strongly
disordered pattern with order parameter y(t0) � ỹ � 1�2M �
1�N as in Eq. 9. For t 	 t0, such an initial pattern evolves
according to the majority rule dynamics that leads to an increase
in the absolute value of the order parameter y and, thus, to the
growth of order. We will characterize this decay of the strongly
disordered patterns by the decay time td, which is the time it takes
to reach a pattern with an order parameter y* that satisfies �y*� �
1�4. In addition, we have also estimated the probability to reach
the completely ordered patterns when one initially starts from
strongly disordered ones.

Within mean field theory, the decay time td follows from Eq.
11 and is given by td � ln(�k�N)�ln(��(1�2)) for large �k� or large
N. This expression behaves as

td 	 ln
N� for � � 5�2
	 ln
N�� ln ln
N� for � � 5�2
	 2
� � 1��
5 � 2�� for 2 	 � 	 5�2

[13]

in the limit of large network size N. Thus, for scale-free networks
with decay exponent 2 � � � 5�2, strongly disordered patterns
always decay after a finite number of iteration steps even in the
limit of large N. In contrast, for networks with � 	 5�2, the decay
time diverges as ln(N). The latter behavior for � 	 5�2 also
applies to Poissonian networks and is, thus, consistent with
recent results for opinion spreading on social networks (28).

We have confirmed these mean field predictions by computer
simulations. To avoid both disconnected and tree-like network
graphs, the simulations were performed for networks with a
relatively large mean vertex degree �k� and minimal vertex
degree k0 	 1. In Fig. 1, we display the time evolution of the
absolute value of the order parameter, �y� � �Q � 1�2�, as
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obtained for three different networks that have the same size n �
218 and the same mean vertex degree �k� � 20 but are distin-
guished by their degree distributions: These networks are scale-
free with � � 2.25 and k0 � 5, scale-free with � � 3 and k0 �
10, and Poissonian, respectively. For each network, 2,000 initial
spin patterns are generated, which are all strongly disordered
and characterized by the initial order parameter �y(t0)� � � ỹ� �
1��k�N as in Eq. 9. For each of these initial patterns, the local
majority dynamics leads to an increase of �y� with time t. Finally,
the time evolution as shown in Fig. 1 is obtained, for each
network, via an average over all 2,000 trajectories.

The distributions of the decay times td corresponding to the
individual trajectories of the three networks are displayed in Fig.
2. Inspection of this figure shows that the decay time distribution
for the scale-free network with � � 2.25 has a narrow peak
around td � 4, whereas the decay time distributions for the
scale-free network with � � 3 and for the Poissonian network are

much broader and shifted toward larger values. The three
histograms shown in Fig. 2 correspond to all trajectories with a
decay time td up to 30 iteration steps. For the scale-free network
with � � 2.25, 9 of 2,000 trajectories have a decay time between
30 and 100 iteration steps, and 2 of 2,000 trajectories have a decay
time that exceeds 100 steps. Likewise, for the scale-free network
with � � 3 and for the Poissonian network, only one and no
trajectory, respectively, had a decay time above 100 steps.

The maximum of the decay time distribution defines the most
probable decay time. This time scale was determined for three
ensembles of scale-free networks with (i) � � 2.25 and k0 � 5,
(ii) � � 2.5 and k0 � 7, and (iii) � � 3 and k0 � 10. All three
ensembles are characterized by the same mean vertex degree
�k� � 20. Each ensemble consists of 100 different random
networks. For each of these networks, 1,000 different pattern
trajectories were determined starting from 1,000 strongly disor-
dered spin patterns as in Eq. 9. The most probable decay times
obtained in this way are displayed in Fig. 3 as a function of the
network size N. In this figure, we compare the results obtained
by numerical iterations of the majority rule dynamics as in Eq.
2 with the mean field results corresponding to the evolution
equation (5). Inspection of Fig. 3 shows that the most probable
decay time is indeed very insensitive to the vertex number N for
� � 2.25 but grows with N as � ln(N) for � � 3.0. For the
borderline case with � � 5�2, the decay time grows more slowly
than ln(N).

We have also studied the approach of the evolving patterns
toward the completely ordered patterns (or ground states) with
Q � 0 or Q � 1. For the three networks just discussed, which are
characterized by vertex number n � 218 and mean vertex degree
�k� � 20, the probability to reach these ordered patterns is very
close to 1: In all three cases, we find that the probability of not
reaching the completely ordered patterns within 100 steps is
smaller than 10�2 (see Fig. 6, which is published as supporting
information on the PNAS web site). For the scale-free networks
with � � 2.25 and �k� � 20, we have also determined this latter
probability as a function of the network size N and found that it

Fig. 1. Absolute value of order parameter as a function of time measured in
units of iteration steps for (i) scale-free network with � � 2.25 and k0 � 5
(circles), (ii) scale-free network with � � 3 and k0 � 10 (squares), and (iii)
Poissonian network (diamonds). All three networks have the same vertex
number N � 218 and the same mean vertex degree �k� � 20. Each data set
represents an average over 2,000 individual trajectories that all start initially
from strongly disordered spin patterns as defined in Eq. 9.

Fig. 2. Distribution of decay times for the individual pattern trajectories. The
decay time is measured in units of iteration steps. The three data sets corre-
spond to the same networks as in Fig. 1: (i) scale-free with � � 2.25 (circles), (ii)
scale-free with � � 3 (squares), and (iii) Poissonian (diamonds). (Inset) The
evolution function � as a function of Q as in Eq. 6 for the three cases i–iii.

Fig. 3. Semilogarithmic plot of the most probable decay time (in units of
iteration steps) versus vertex number N. The filled symbols were obtained by
numerical iterations of the majority rule dynamics (Eq. 2), and the open
symbols represent the mean field results as obtained from the evolution
equation (Eq. 5). The three sets of filled and open symbols correspond to three
ensembles of scale-free networks with � � 2.25 and k0 � 5 (filled circles); � �
2.5 and k0 � 7 (filled squares); and � � 3.0 and k0 � 10. In all three cases, the
mean vertex degree has the same value �k� � 20. For the numerical iterations,
100 different random networks were generated for each vertex number N.
Furthermore, for each of these networks, 1,000 different pattern trajectories
were determined starting from different strongly disordered patterns.

Zhou and Lipowsky PNAS � July 19, 2005 � vol. 102 � no. 29 � 10055

PH
YS

IC
S



is smaller than 0.6 � 10�2 for 210 � n � 218 (see Fig. 7, which
is published as supporting information on the PNAS web site).

To see how the time evolution of the order parameter depends
on the mean vertex degree �k�, the same set of simulations was
also performed for three networks with �k� � 10 and k0 � 2. The
corresponding decay time distributions are found to be rather
similar to those displayed in Fig. 2 (see Fig. 8, which is published
as supporting information on the PNAS web site). The main
difference is that the approach to the completely ordered
patterns is slowed down (see Figs. 9 and 10, which are published
as supporting information on the PNAS web site). Additional
simulations for mean vertex degree �k� � 7 and �k� � 5 show that
the time to reach the completely ordered patterns further
increases with decreasing �k�. These simulation results are
consistent with those obtained for random Poissonian networks
(31) but are rather different from the behavior found for
tree-like networks (29) and for d-dimensional hypercubic lattices
with d � 3 (30).

As emphasized in refs. 30 and 31, spin patterns, which evolve
according to local majority dynamics, can be trapped in meta-
stable states corresponding to several spin-up and spin-down
domains. In addition, the domain boundaries may not be com-
pletely frozen but may contain ‘‘blinkers,’’ i.e., single spins that
continue to flip after each time step. It is not difficult to see that
domain boundaries and blinkers are likely to occur for spin
patterns on tree-like graphs (33), leading to the glassy dynamics
found for Cayley trees (29). Somewhat surprisingly, multidomain
patterns with blinkers are also typical for d-dimensional hyper-
cubic lattices with d � 3 as shown in ref. 30. In contrast, our
simulations give strong evidence that, for scale-free networks
with k0 	 1, disordered patterns typically evolve toward the two
completely ordered patterns provided the networks are con-
nected and the mean vertex degree �k� is sufficiently large. The
case k0 � 1 is special since the graphs tend to be tree-like, and
their dynamics is presumably characterized by blinkers as well.

Selective Spin Flips. Now, let us look at a different aspect of the
response behavior. We start from the all-spin-down pattern and
ask how many spins we have to flip to reach another pattern that
evolves toward the all-spin-up pattern under the local majority
dynamics.

If we flipped the spins on a randomly chosen set of vertices,
we would have to flip, in general, of the order of N�2 spins.
However, we can induce such a global transition in a much more
efficient way if we flip primarily those spins that are located on
the highly connected vertices. This is illustrated in Fig. 4, which
displays the minimal fraction of spins, �min, which one has to flip
to transform the all-spin-down pattern into the all-spin-up
pattern. An analytical estimate for this minimal fraction can be
obtained from the explicit relation for the boundary patterns as
given by Eq. 7 if one considers such patterns with q̂k � 0 for k0 �
k � k* and q̂k � 1 for k* � k � kN, where the intermediate
k-value k* is determined by the requirement that the spin pattern
represents a boundary pattern with ordering probability Q �
Q̂ � 1�2 (see Derivation of Eq. 14 in Supporting Text). For large
vertex number N, this leads to the asymptotic estimate

�min � �
1 � N�
��2�/
��1���2� 
��1�/
��2� � 2�
��1�/
��2�.

[14]

This minimal fraction does not depend on the mean vertex
degree �k� and vanishes very rapidly as � exp(��const��(� � 2)),
i.e., as an essential singularity in � � 2. Both properties are fully
confirmed by the numerical results (see Fig. 4). For � � 3, for
example, the asymptotic estimate (Eq. 14) leads to �min � 1�4
in perfect agreement with the numerical results shown in Fig. 4.
This sensitivity of ordered spin patterns to selective spin flips has
been independently observed in ref. 25.

Thus, a scale-free network with a decay exponent � that is
close to � � 2 has the additional property that one needs to
selectively flip only a very small fraction of the spins to induce
a transition from one ordered pattern to the other. This property
provides a very efficient way for the system to adapt its state in
response to varying external conditions. Note, however, that in
contrast to the behavior of the response time, the dependence of
the minimal fraction �min on the decay exponent � does not
exhibit a sharp borderline at � � 5�2.

Dynamic Behavior of More Complex Models. The main features of
the pattern evolution described above are quite generic and
remain valid for various extensions and generalizations of the
majority rule dynamics. One particularly interesting generaliza-
tion is obtained if we extend our mean field theory to Hopfield
models (17, 27) that address the maximal storage capacity Smax
of associative memory networks. This capacity, which represents
the largest possible number of patterns that can be stored in the
network, is found to behave as

Smax 	 k0 N� for 2 	 � 	 5�2 and
	 k0 ln2
N� for � � 5�2 [15]

with � � (5 � 2�)�(� � 1) in the limit of large network size
N (see Hopfield Models on Scale-Free Networks in Supporting
Text). In contrast, for � 	 5�2, the maximal storage capacity
Smax does not grow with the network size N for large N. It has
been recently argued that some functional networks in the
human brain are indeed scale-free with � � 2.1 (32, 34). Thus,
for these latter networks, our mean field theory predicts that
the storage capacity grows as N� with � � 0.73, which is almost
as fast as in the original Hopfield model on complete graphs
that have the constant vertex degree k � N � 1 and are
characterized by � � 1.

We have also extended our analysis of the majority rule
dynamics to a variety of other models including Potts models on
nondirected networks as well as to Ising models on directed
networks (see Extension to Directed Scale-Free Networks in
Supporting Text). For all of these generalizations, we find that
� � 5�2 represents a borderline case for the dynamic pattern
evolution.

Fig. 4. Minimal fraction �min of spins that one has to flip to induce a
transition from the all-spin-down to the all-spin-up pattern. All networks have
N � 105 vertices but differ in their degree distribution, which was Poissonian
or scale-free with � � 3.0, � � 2.5, and � � 2.1. The open squares were obtained
from the analytical expression (Eq. 14); the filled squares were obtained
through exact enumerations where each data point represents an average
over 100 network realizations.
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Summary. In summary, we have studied the response behavior of
a large class of dynamic network models. We found that scale-
free networks are characterized by very rapid response provided
� � 5�2. As far as the decay time of strongly disordered patterns
is concerned, � � 5�2 represents a sharp borderline. For � � 5�2,
all of these patterns decay within a finite decay time even in the
limit of infinite vertex number. For � 	 5�2, on the other hand,
this time diverges as ln(N) for large vertex number N. We also
determined the minimal fraction of spin flips to induce a
transition from one ordered pattern to another ordered pattern.
This fraction becomes very small as one reduces the value of �
and vanishes as an essential singularity in � � 2. These results are
generic and can be generalized to more complex models that
involve more than two vertex states and�or directed edges.

One particularly interesting extension is to Hopfield models
for associative memory on scale-free networks. In this latter case,
we find that the storage capacity is independent of network size
N for � 	 5�2 but grows as N� with � � (5 � 2�)�(� � 1) for
2 � � � 5�2. For the functional networks of the human brain
with � � 2.1 (32), this implies that the storage capacity grows as
N� with � � 0.73. These mean field predictions should be

accessible to simulation studies that have been restricted, so far,
to the special case � � 3 	 5�2 (35).

Our results shed light on the empirical observation that many
real-world networks are scale-free with decay exponent 2 � � �
5�2. Further extensions of our study should address possible
effects of vertex–vertex correlations, which are present in real-
world networks and lead to clustering (1) and modularity (3, 36).
We expect that correlations between vertices of high degree will
make the response of scale-free networks with � � 5�2 even
more rapid, but this remains to be studied in more detail.
Likewise, it will be interesting to investigate how the response
behavior is influenced by weighted edges (see, e.g., ref. 37)
corresponding to variable nearest neighbor couplings.

Note Added in Proof. For the special case of scale-free networks with
minimal vertex degree k0 � 1, additional simulations have confirmed that
the decay of strongly disordered patterns is characterized by persistent
oscillations of the order parameter y around y � 0.

We thank Max Aldana for interesting correspondence about his previous
work on scale-free networks.
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