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The total genetic diversity of a species is a key factor in its
persistence and conservation. Because realistic sample sizes are far
smaller than the total population, it is impractical to exhaustively
characterize diversity of most populations. Here, we demonstrate
the possibility of calculating the genetic diversity of a spatial
population from a sample using genealogical models. We trace the
history of a population by simulating the locations of the ancestors
of a particular sample of the population backwards in time. We use
this method to estimate the genetic diversity of the global popu-
lation of Pseudomonas bacteria. The same results are obtained
whether using a global sample or a subsample restricted to a
particular geographic region (California). The results are also val-
idated by comparing additional predictions of the model to the
data. Furthermore, we use these results to show that the level
of genetic diversity in a population depends strongly on the size of
its habitat, much more strongly than does biodiversity as measured
by the number of species. The strong dependence of diversity
on habitat area has significant implications for conservation
strategies.

habitat loss | spatial populations | biodiversity |
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I n this paper, we study the total genetic diversity of populations
using simulations and analytic studies of genealogical trees, a
method known as coalescent theory (1-6). We (i) present a
method for estimating the total diversity from a spatial sample
and (ii) study the dependence of diversity on habitat area.
Genetic diversity is an important factor in the persistence of a
species (7, 8); thus, estimating the total genetic diversity of a
species and the reduction of its diversity due to habitat loss is
important to its conservation. There are indications that reduced
diversity increases susceptibility to disease (9) and reduces
individual fitness through inbreeding (8, 10). Diversity is also
believed to confer adaptability in the face of environmental
changes (8, 11). Although demographic stochasticity is a greater
immediate threat to the survival of endangered species, diversity
loss puts species at increased risk of extinction (10) and is thus
important to their long-term survival. Hence, the results we
obtain may inform conservation strategies. In this article, we
adopt a simple genealogical model and derive from it properties
of the diversity. We show by analysis that our results are robust
to the introduction of additional biological realism, and we
compare the results with data from field populations, demon-
strating that they capture key aspects of the behavior of genetic
diversity. There are many factors that affect genetic diversity that
are not included in the model, including environmental changes
and interactions with other species. Still, our results suggest that
the genealogical model is a useful foundation for studies that
incorporate the impact of other factors on diversity.

Our studies are based on a spatially explicit model for two
reasons. First, limited dispersal is known, theoretically (12) and
from field data (13), to increase genetic diversity even without
explicit barriers to gene flow (14). Second, area is a primary
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determinant of biodiversity above the species level, as measured
by the number of species (15), suggesting that it is also likely to
be important within species.

Estimating Diversity from a Sample

We first present a method of estimating the diversity of a spatial
population from a sample, using analytic results (see Box I:
Analytic Results) and simulations, and compare predictions of
our method with genetic data from field populations. The
estimate of diversity is rough; however, it may not be possible to
be more precise because diversity naturally undergoes large
fluctuations (6). Methods exist to estimate quantities relevant to
diversity, such as the effective population size of well mixed (16,
17) and various kinds of subdivided (18) populations. The
method introduced here, however, gives a more direct charac-
terization of diversity, is applicable to continuous spatial popu-
lations, and estimates diversity at any level of genetic resolution.
In addition to the diversity, the approach also yields other
predictions that can be verified against the genetic data itself.

Methods. Genealogical model. We consider the genealogical tree of
a population looking backward in time (6). Each individual’s
parent is at a location given by a random step in space with a
distribution of distances determined by dispersal. Therefore, a
line of descent is a random walk with a distribution of step sizes
given by dispersal characteristics. What is different from the
usual random walk is that two organisms can have the same
parent. This occurs when two of the random walks step onto the
same location. Subsequent steps are made together—the ran-
dom walks are coalescing. The common ancestor is represented
by the single walker remaining after all walkers have coalesced
(Fig. 1).

The genealogical tree we described could result from a wide
range of models of how organisms reproduce and disperse, and,
therefore, properties that apply to all such genealogical trees can
be used to infer widely applicable properties of the diversity,
particularly scaling properties. For concreteness, we can describe
a particular simple model for how organisms reproduce and
disperse that gives rise to such genealogies. We consider the
population of organisms to be located on a lattice in space with
each site containing a single individual. At each time step, each
individual reproduces into all neighboring sites and its own site
and then expires, but only one randomly chosen offspring in each
site survives. Thus, each individual is the offspring of a parent in
a small neighborhood. When viewed backward in time, the
genealogical tree of this simple model population corresponds to
the backward-looking description we gave of coalescing random
walks.
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Fig. 1. Illustration of the simulation of a spatial genealogy. Only 3 of the 248
lineages are shown for clarity, corresponding to three of the Pseudomonas
samples. At the present (at right), their locations correspond to locations
where samples were taken. They are simulated in two spatial dimensions
backward in time (shown as a third dimension) until all have coalesced.

However, the backward time picture of genealogies as coa-
lescing random walks does not depend on this simple version of
population reproduction. Instead, it is robust to the addition of
a variety of aspects of particular biological populations. For
example, consider a population that has a highly variable fecun-
dity, with most organisms having no offspring and some having
many, as is often found in nature. We can ask whether it is
necessary for the random walk model to have the same variability
to have similar genealogical properties. For a highly variable
fecundity, when we trace lineages back in time, we initially
sometimes see many lineages merging into one, corresponding to
an organism that had many offspring with descendants in the
present. However, this only occurs in the most recent few
generations. Beyond these generations, the ancestors of the
present population are only a small fraction of the entire
population at that time. Under these conditions, in any gener-
ation the likelihood that two of the ancestors have the same
parent is small, and the probability that three have the same
parent is negligible. Thus, the degree of variability in fecundity
does not affect the description of the genealogical tree before the
most recent generations. The absolute rate of pairwise coales-
cence may differ between different populations; however, this
does not affect the results that we give below. Similarly, many of
the specific properties of organism dispersal and organism life
history do not affect the results, because the properties of
random walks are highly robust. Thus, lineages show the same
diffusion-like behavior for a wide range of dispersal properties
and generation times. As we show below, there exist some
properties of dispersal that can affect the results. In particular,
if the dispersal occurs predominantly over a length that is close
to the size of the habitat, the population will behave as well
mixed rather than spatial, with different scaling behavior; dis-
persal that is limited to one dimension also leads to distinct
scaling behavior. We have used simulations to test the results
using a variety of assumptions about the specific details of the
model. A formal derivation of the robustness of the results can
be given by using scaling arguments and other methods as
described in part in Box 1: Analytic Results and in the supporting
information, which is published on the PNAS web site. The
scaling behavior of well mixed models has been shown to be
similarly robust (1).

A key property of the diversity is the number of organisms L
living at a time ¢, in the past that have descendants in the present.
In the genealogical model, this is the number of remaining
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random walkers. We write 7 = t — t; to represent the number
of generations before the present time f. Given a constant
mutation rate, L(7) is the number of genotypes in the present
that are distinct at a resolution corresponding to the amount of
genetic divergence that accumulates over time 7. We will use
L(T) to estimate the number of distinct genotypes in present
population.

For a well mixed population, Fisher (19) showed that the

number of lineages decreases inversely with 7: L(7T) ~ 1/T. The
mathematical study of coalescing random walks has provided
the scaling of the number of remaining walkers with time for
spatial systems (20). The results are highly robust and depend
only on the spatial dimension of the dispersal. They do not
depend on the distribution of dispersal distances or times
between steps as long as the dispersal is small compared with the
size of the habitat. For spatial populations in two dimensions, the
result implies L(T) ~ log(T)/T (see Box 1: Analytic Results),
which differs from the well mixed population result by a loga-
rithmic factor. This implies that at any genetic resolution, there
are more distinct genotypes than in a well mixed case, and that
the tree is deeper. In general, a logarithmic factor is a weak
correction, but in this case, the number of generations to the
common ancestor can be large (e.g., 10,000 for a small lattice of
50 X 50 dispersal distances), and, therefore, it can be significant.
In one dimension the effect is even greater because the number
of lineages decreases inversely as the square root of 7: L(T) ~
1/V/T. These scaling relationships are for the entire population,
but we can also obtain L(7) for a sample by directly simulating
the ancestral tree of the sample. The coalescence of the ancestral
lineages of the samples is independent of their coalescence with
the rest of the population because each coalescence occurs
independently in this simple genealogical model.
Comparison with genetic data. The analytic results for L(T) can be
directly compared with genetic data from field populations, and
the results of the comparison can then be used to estimate the
diversity of the population. We used data of Cho and Tiedje (21)
consisting of 248 samples of Pseudomonas soil bacteria from
multiple locations on five continents. From their dendrogram,
we obtained counts of the number of ancestors at a particular
effective genomic similarity (r value) as measured by this fin-
gerprinting technique to obtain L(r), corresponding to the
number of ancestors that existed at a time such that their living
descendants have diverged to a similarity value of r. We then
obtained L(7T) from L(r) as described in the supporting infor-
mation. We normalized T by dividing by T, the time to the
smallest genetic difference considered (r = 0.95). The final
results are shown as circles in Fig. 2. To compare this data with
the theoretical results, we simulated the genealogical tree of the
sample (Fig. 1), with the current generation represented at
points corresponding to the locations where the samples were
obtained and the locations of ancestors modeled as a coalescing
random walk (6). [The idea of considering the location of
ancestors has previously been used to investigate genetic dis-
tances (2) and the geographic origin of a lineage (22).]

Two properties of the genealogical model were adjustable: the
number of simulation time steps, N, corresponding to one unit,
Ty, of biological time, and the probability, p., of two lineages in
the same site coalescing. The parameters were set by a simple
fitting procedure that adjusts the intercepts of L(7) at the L and
T axes but does not affect the shape of the curve. The parameters
were adjusted to simultaneously fit both L(7) and a different
property of the same genealogical tree: the distribution of
genetic uniqueness, that is, the number U(T) of samples whose
most closely related sample diverged from it 7 generations ago
(6). The fit of the model to both of these properties using the
same parameters provides an additional verification of the
model. The simulated tree is shown in Fig. 1.
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Fig.2. Number of lineages as a function of time in the past, L(7). (a) Genetic
data (circles) and a spatial simulation of the sampled population (solid line).
The dashed line corresponds to theory for the whole population. (b) A
comparison of the spatial and well mixed cases. L(T) for a subset of the samples
from one geographic region (California, squares) is compared with a spatial
(dashed line) and well mixed (dotted line) simulation of the subset by using the
same parameters as in a. The number of simulation time steps per unit, Ty, of
biological time is 160, and the coalescence probability, p, is 0.15.

Results and Discussion. Our simulation of a key property of the
genealogical tree, the number of lineages as a function of time L(7),
agrees with the genetic data over the full range of time. The
simulation result is shown as a solid line in Fig. 2, and the genetic
data are shown as circles. This curve consists of two parts, corre-
sponding to the recent and deep parts of the tree. A sample should
be a complete representation of the deepest part of the tree (4), and
indeed the deep (7T/Ty > 50) part of the genetic data matches the
scaling expected for the full population (dashed line in Fig. 2a).
Because this scaling behavior is robust and not sensitive to the
details of the model, we can extrapolate this part of the curve to a
particular resolution to estimate the total diversity at that resolu-
tion. At the level of resolution of the genetic data (7/Ty = 1), on
the order of 1,000 genotypes could be distinguished. Although the
short-term part of the L(7) curve may vary depending on details of
reproduction, simulations show that the amount of variability is
similar to the size of natural fluctuations in diversity (6).

At recent times, a sample should underrepresent the tree of the
whole population. Indeed, L(7) is lower than the scaling result at
short times. The degree of underrepresentation depends on the
spatial structure of the population. Although a simulation of a well
mixed population matches the data from global samples, it does not
match a subsample of isolates from California (squares in Fig. 2b).
The diversity of the California samples is lower than it would be if
the population were well mixed. A spatial simulation of the ancestry
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Fig. 3. The dependence of diversity on habitat area. Shown is the average
branch length, B, of the genealogical tree of a two-dimensional population
simulated for 500,000 generations as a function of habitat area, A (squares),
compared with the analytic result, B = A(log(A))? (solid line). For comparison,
the scaling S ~ A% typically observed for species counts, S, as a function of
sample area is plotted (dashed line).

of the California samples alone, using the same parameters as for
the full simulation, does match the data for the California samples,
confirming the importance of spatial structure and validating the
choice of a spatial (as opposed to a well mixed) model. Because the
long-time tail of both the global and California simulations match,
both sample sets give the same estimate of total diversity, support-
ing the validity of using a sample to determine the total diversity.

This method can be used to estimate the diversity of a
population when there are enough samples to determine that the
power-law scaling of L(7) holds. The example of Pseudomonas
suggests that this is possible for remarkably few samples. We
note that this method is not applicable to populations that have
been exponentially growing for much of their histories, because
this growth effectively “cuts off” the deep part of the tree that
would follow the scaling behavior.

Dependence of Diversity on Habitat Area

To determine the implications of our results for conservation, we
studied the dependence of genetic diversity on habitat area. Bio-
logical diversity has often been quantified by using the number of
species, and field studies show that species diversity, S, increases
with area, A (the species-area relationship), as § ~ A4, with z
typically 0.25 and ranging from 0.15 to 0.4 on intermediate scales
but possibly closer to 1 on large scales (15). This scaling has been
modeled theoretically (15, 23). A key difference between species
and genetic diversity is that the former treats all species as equally
distinct, not considering the degree to which species are different
from each other. This is also the case for measures of genetic
diversity that count types, such as allelic diversity (24). The measure
used here [branch length or segregating sites (17)] counts mutations
along a lineage that make a descendant progressively more different
from its ancestor and relatives.

Methods. We use the genealogical model described above, and
analytically derive and simulate the scaling dependence of the
total branch length of the genealogical tree for spatial popula-
tions from L(T) (see Box I: Analytic Results).

Results and Discussion. The diversity of a population in a two-
dimensional habitat scales as

B(A) ~ A(log(4))%

Rauch and Bar-Yam
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Thus, B grows somewhat faster than area, by a slowly increasing
factor of log?(A4). Still, this implies genetic diversity increases
faster with area than does species diversity. Fig. 3 shows that this
function well approximates the average diversity of a simulated
population.

A number of habitats are topologically one-dimensional, such
as river banks and coastal or tidal zones (25), as long as the width
of the habitat is not much more than the dispersal distance. In
one dimension, the branch length scales as

B(A) ~ A%

Thus, B grows much faster than length or population size; it
quadruples when length or population size is doubled. This is
significantly different from well mixed populations, whose di-
versity scales as N log N, where N is the population size (17).
River banks and coastlines are often fractals; for species that live
in such restricted habitats but disperse by distance in two
dimensions (such as airborne dispersal of seeds of riverbank-
dwelling plants), we expect an intermediate scaling between that
for one and two dimensions (26).

The diversity—area relationship is essentially the same in sexual
and asexual populations. For the same per-genome mutation rate,
the number of mutations is unaffected by recombination. Selection
can affect the results in two ways. A high frequency of advantageous
mutations can reduce diversity by wiping out the existing diversity
before an equivalent amount of diversity has time to develop in the
mutant’s descendants (see the supporting information). [This is
known as periodic selection or genetic hitchhiking (27, 28).] Del-
eterious mutations (known as background mutations) only occur in
abounded subset of the population. With a fixed rate of occurrence,
they contribute to diversity in proportion to the population size and
thus the habitat area, a weaker scaling than those obtained above.
They may reduce the effective population size for neutral mutations
(29); this does not affect the scaling dependence.

Our analysis, confirmed by simulations, shows that these scaling
results are robust to many possible changes in the model as long as
the dispersal distance is significantly smaller than the habitat size.
Incorporating frequent long-range dispersal causes a transition to
the well mixed behavior. Still, even in this case, diversity grows
somewhat faster than area. Our results support the growing rec-
ognition that loss of habitat causes a dramatic loss of diversity.
Indeed, while the observed number of species scales as a weak
power of the area, so that a reduction in area by a factor of 16 causes
a reduction in number of species by a factor of 2 (15), the effect on
genetic diversity is much more dramatic. A reduction in area by a
factor of 2 causes a reduction by more than a factor of 2, and the
effect is even more dramatic in one-dimensional habitats where
three-quarters of the diversity is lost.
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Box 1: Analytic Results

Number of Lineages. L(7), the expected number of ancestors of the
current generation living 7" generations in the past, or their density
p(T), can be calculated based on the characteristics of the coalescent
process of random walkers (20) representing lineages. A conceptual
argument, which gives the leading scaling result in one and two
dimensions, is that a random walk travels a characteristic length
I(T) ~ T"2 in a time T. If the random walk were to coalesce with
all of the others in an area of this radius, we would be left with one
lineage for each part of the habitat of area /(T)¢, where d is the
dimensionality. This gives a density p(T) ~ 1/T%2. Logarithmic
corrections are important in two dimensions (see the supporting
information).

Diversity—Area Relationship. We obtain the total branch length B
of the genealogy of the population by summing up the number
of lineages L(7) over all generations to the expected time T4 of
the most recent common ancestor of the population. Thus,

B= > L(T).

T=0

If the rate of mutation is sufficiently high, such that multiple
mutations can occur at a single locus within the tree of the currently
living individuals, a correction is necessary: D(B) = w/ur(1 —
e~ #P), where D(B) is the total diversity, B is the total branch length
of the tree, and py is the probability of a particular mutation arising
at a particular locus. [This is akin to the Jukes—Cantor correction for
estimating the divergence time between two sequences, but in
reverse (30).] Ta is the expected time at which there is only a single
lineage and is obtained by setting L(7s) = 1. In two dimensions,
L(T) scales as A log(T)/ T, where area A4 is the number of lattice sites
available to the population. This implies that T's scales as A log(4)
[this can be shown by insertion into the expression A log(Ta)/Ta ~
1 and neglecting log(log(A4)) compared with log(4)], giving

B(A) ~ A(log(4))2

In one dimension, L(T) ~ A/V/T. The expected time of the most
recent common ancestor, Ta, scales as A%; therefore, the branch
length scales as

A2 1
B(A)~AJ —dT ~ A%
o T
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