Skip to main content
PLOS One logoLink to PLOS One
. 2025 Jan 22;20(1):e0314237. doi: 10.1371/journal.pone.0314237

Modeling of lifetime scenarios with non-monotonic failure rates

Amani Abdullah Alahmadi 1, Olayan Albalawi 2, Rana H Khashab 3, Arne Johannssen 4,*, Suleman Nasiru 5, Sanaa Mohammed Almarzouki 6, Mohammed Elgarhy 7,8
Editor: Umair Khalil9
PMCID: PMC11753802  PMID: 39841650

Abstract

The Weibull distribution is an important continuous distribution that is cardinal in reliability analysis and lifetime modeling. On the other hand, it has several limitations for practical applications, such as modeling lifetime scenarios with non-monotonic failure rates. However, accurate modeling of non-monotonic failure rates is essential for achieving more accurate predictions, better risk management, and informed decision-making in various domains where reliability and longevity are critical factors. For this reason, we introduce a new three parameter lifetime distribution—the Modified Kies Weibull distribution (MKWD)—that is able to model lifetime scenarios with non-monotonic failure rates. We analyze the statistical features of the MKWD, such as the quantile function, median, moments, mean, variance, skewness, kurtosis, coefficient of variation, index of dispersion, moment generating function, incomplete moments, conditional moments, Bonferroni, Lorenz, and Zenga curves, and order statistics. Various measures of uncertainty for the MKWD such as Rényi entropy, exponential entropy, Havrda and Charvat entropy, Arimoto entropy, Tsallis entropy, extropy, weighted extropy and residual extropy are computed. We discuss eight different parameter estimation methods and conduct a Monte Carlo simulation study to evaluate the performance of these different estimators. The simulation results show that the maximum likelihood method leads to the best results. The effectiveness of the newly suggested model is demonstrated through the examination of two different sets of real data. Regression analysis utilizing survival times data demonstrates that the MKWD model offers a superior match compared to other current distributions and regression models.

1 Introduction

Probability distributions form the foundation of parametric statistical analysis, and therefore researchers are constantly developing new distributions and/or modifying existing ones. For instance, the Weibull distribution (WD) [1] is one of the established distributions that has gained considerable attention in reliability analysis and lifetime modeling. The WD is a highly adaptable statistical tool extensively utilized in many sectors like engineering, health, finance, and environmental sciences. It is valued for its effectiveness in accurately representing dependability and failure statistics. Engineering relies on this tool to approximate the duration of product functionality and assess the likelihood of failures. Similarly, medicine uses it in survival analysis to anticipate patient outcomes. Finance uses it to evaluate financial risks, while environmental sciences employ it to simulate data such as rainfall and temperature extremes. The versatility of the WD makes it indispensable for data analysis and forecasting, with several research papers confirming its usefulness in various fields [2, 3]. The cumulative distribution function (cdf) and probability density function (pdf) of the WD are given by

G(y;β,ϑ)=1-e-βyϑ (1)

and

g(y;β,ϑ)=βϑyϑ-1e-βyϑ, (2)

y > 0, where β > 0 and ϑ > 0 are two scale and shape parameters, respectively. The WD is an extreme value distribution and frequently used in modeling extreme events. The practicality of the WD in reliability/survival analysis and in modeling of lifetime data is high due to its property in handling lifetime scenarios with decreasing, constant or increasing failure rates. However, it fails to offer a good fit to lifetime data that exhibits non-monotonic failure rates such as bathtub (for example, human life cycle) or upside-down bathtub (for example, machine life cycle). Due to the drawbacks of the WD, a number of variants of the distribution has been proposed in the literature with the goal of enhancing its modeling capabilities as well as making it suitable for specific modeling lifetime phenomena. There are some recent discussed variants, such as the exponentiated WD [4], transmuted additive WD [5], Kumaraswamy transmuted exponentiated modified WD [6], Topp-Leone Modified WD [7], Burr X exponentiated WD [8], Kavya-Manoharan exponentiated WD [9], Marshall-Olkin power-generalized WD [10], truncated Cauchy power Weibull-G [11], alpha power transformed Weibull-G [12], Weighted WD [13], exponentiated power generalized Weibull power series family [14], exponentiated truncated inverse Weibull-G [15], odd inverse power generalized WD [16], extended inverse WD [17], Weibull WD (WWD) [18], and exponentiated WWD [19].

However, it is still a challenge to develop a distribution that is well suited for modeling lifetime scenarios characterized by non-monotonic failure rates reflecting real-world situations where the failure rate of a system or component may vary over time. To motivate the need for this study, we briefly describe the reasons why it is necessary to have a distribution at hand that can model lifetime scenarios with non-monotonic failure rates in an appropriate way:

  • As non-monotonic failure rates occur when the probability of failure changes over the lifetime of a system or component, a suitable distribution would allow for a more accurate representation of the actual failure behavior observed in many systems.

  • Understanding the pattern of failure rates over time is crucial for assessing risks associated with a system. If failure rates are non-monotonic, there may be periods of increased risk followed by periods of decreased risk. Properly modeling these fluctuations helps in identifying and managing risks effectively.

  • Reliability analysis involves predicting the likelihood of a system operating without failure over a certain period. By using a distribution that accounts for non-monotonic failure rates, engineers and analysts can more precisely estimate the reliability of a system and make informed decisions regarding maintenance, design improvements, or replacement strategies.

  • In many industries, decisions regarding maintenance schedules, warranty policies, and product design depend heavily on accurate assessments of failure rates. Using a distribution that can handle non-monotonic failure rates ensures that these decisions are based on realistic expectations and reduce the likelihood of unexpected failures or unnecessary costs.

  • Non-monotonic failure rates are common in various fields such as engineering, finance, healthcare, and beyond. Having a distribution that can accommodate these patterns makes it applicable across a wide range of industries and scenarios.

In this study, addressing the above aims, we develop a new three-parameter lifetime distribution, the so called Modified Kies Weibull distribution (MKWD) by utilizing the modified Kies (MK) family of distributions [20]. The cdf and pdf of the MK family of distributions are

F(y;ϖ)=1-e-[G(y;ϖ)1-G(y;ϖ)]ζ,yR,ζ>0, (3)

and

f(y;ϖ)=ζg(y;ϖ)G(y;ϖ)ζ-1[1-G(y;ϖ)]ζ+1e-[G(y;ϖ)1-G(y;ϖ)]ζ,yR,ζ>0, (4)

respectively, where g(y; ϖ) and G(y; ϖ) are the parent pdf and cdf for the baseline distribution with set of parameters ϖ, and ζ being the shape parameter of the family. In addition, Al-Babtain et al. [20] utilized the binomial and exponential series to rewrite the pdf as a linear combination of the exponentiated family,

f(y;ϖ)=g(y;ϖ)i,j=0ηi,j[G(y;ϖ)]ζ(i+1)+j-1, (5)

where ηi,j=(-1)iζi!(ζ(i+1)+jj). To determine some measures of uncertainty, we determine the expansion of [f(y; ϖ)] via

[f(y;ϖ)]=[g(y;ϖ)]i,j=0i,jG(y;ϖ)(ζ-1)+ζi+j, (6)

where i,j=ζ(-1)iii!((ζ+1)+ζi+j-1j).

As a result of the above discussion, this study addresses the following issues:

  • We enhance the adaptability of the Weibull model by utilizing the MK family. To be more specific, declining, right-skewed and unimodal forms are denoted for the pdf but the hazard rate function (hrf) can be bathtub, declining, increasing and J-shaped for the MKWD.

  • Some statistical properties of the MKWD, such as moments, mean, variance, skewness, kurtosis, coefficient of variation, index of dispersion, moment generating function, incomplete moments, conditional moments, Bonferroni (BON), Lorenz (LOR), and Zenga (ZEN) curves [21, 22], and order statistics (OS), are calculated.

  • Various measures of uncertainty for the MKWD such as Rényi entropy (RE) [23], exponential entropy (EE) [24], Havrda and Charvat entropy (HCE) [25], Arimoto entropy (AE) [26], Tsallis entropy (TE) [27], extropy (Ex) [28], weighted extropy (WEx) [29] and residual extropy (REx) [30] are computed.

  • Eight different methods are implemented to estimate the parameters β, ϑ and ζ of the MKWD. These methods are maximum likelihood estimation (MLE), Cramer-von-Mises estimation (CME), maximum product of spacings estimation (MPSE), least squares estimation (LSE), weighted least squares estimation (WLSE), minimum spacing absolute-log distance estimation (MSALDE), percentile estimation (PE) and minimum spacing square-log distance estimation (MSSLE).

  • We develop a quantile regression to analyze the connections between dependent and independent variables, and illustrate the implementation of our models using survival times data.

This study addresses the following four research questions (RQ) and related hypotheses (H) to contribute to the field of reliability analysis and lifetime modeling:

  • RQ1

    Can the MKWD effectively model lifetime scenarios characterized by non-monotonic failure rates, which are inadequately handled by the traditional WD?

  • H1

    The MKWD will provide a more accurate fit for lifetime data with non-monotonic failure rates compared to the existing Weibull variants.

  • RQ2

    What are the statistical properties of the MKWD, and how do these properties enhance its adaptability in different reliability analysis contexts?

  • H2

    The MKWD will exhibit diverse statistical characteristics (e.g., moments, entropy measures) that make it suitable for a wide range of applications in reliability and survival analysis.

  • RQ3

    Which parameter estimation method(s) provide the most reliable estimates for the MKWD parameters in practical applications?

  • H3

    MLE will outperform other estimation methods in terms of accuracy and reliability.

  • RQ4

    How does the MKWD perform in real-world data applications?

  • H4

    The MKWD will demonstrate superior modeling performance when applied to real-world datasets, providing better fits and more accurate predictions than competing distributions.

The subsequent sections of this work are structured in the following manner: the development of the MKWD is described in Section 2. The statistical features of the MKWD are outlined in Section 3. Some measures of entropy and extropy are discussed in Sections 4 and 5, respectively. Section 6 discusses eight approaches to estimate the parameters of the MKWD. Additionally, Monte Carlo simulations are conducted to evaluate the adequacy of these strategies in Section 7. Data analysis using two real data sets is conducted in Section 8. Section 9 presents the formulation of the quantile regression, followed by simulation experiments and applications. The results of the study are summarized in Section 10.

2 Formulation of the Modified Kies Weibull distribution

In this section, we construct the MKWD by inserting (1) and (2) into (3) and (4). Then, the MKWD has the following cdf, pdf, reliability function (rf) and hrf:

F(y;β,ϑ,ζ)=1-e-[eβyϑ-1]ζ,y>0,β,ϑ,ζ>0, (7)
f(y;β,ϑ,ζ)=ζβϑyϑ-1eβζyϑ[1-e-βyϑ]ζ-1e-[eβyϑ-1]ζ, (8)
R(y;β,ϑ,ζ)=e-[eβyϑ-1]ζ,y>0,β,ϑ,ζ>0,

and

h(y;β,ϑ,ζ)=ζβϑyϑ-1eβζyϑ[1-e-βyϑ]ζ-1.

The reversed hrf (rhrf), cumulative hrf (chrf), odd ratio (OR), failure rate average (FRA) and Mills ratio (MR) of the MKWD are

τ(y;β,ϑ,ζ)=ζβϑyϑ-1eβζyϑ[1-e-βyϑ]ζ-1e-[eβyϑ-1]ζ1-e-[eβyϑ-1]ζ,
H(y;β,ϑ,ζ)=-1[eβyϑ-1]ζ,
OR(y;β,ϑ,ζ)=e[eβyϑ-1]ζ-1,
FRA(y;β,ϑ,ζ)=-1y[eβyϑ-1]ζ,

and

MR(y;β,ϑ,ζ)=1ζβϑyϑ-1eβζyϑ[1-e-βyϑ]ζ-1,

respectively. Fig 1 shows that the pdf for the MKWD can have declining, right-skewed and unimodal forms, and the hrf can be bathtub, declining, increasing and J-shaped for the MKWD.

Fig 1. Plots of pdf and hrf for the MKWD.

Fig 1

3 Statistical properties

Regarding the statistical characteristics of the MKWD, we discuss them in this section.

3.1 Quantile function

The quantile function is a frequently employed tool in general statistics for determining the mathematical properties of a distribution and percentiles. The quantile function of the MKWD, say Q(u), 0 < u < 1, defined by F(Q(u)) = u, can be computed as follows:

yu=Q(u)=[1βlog(1+[log(11-u)]1ζ)]1ϑ. (9)

To investigate the median (m) of the MKWD, we set u = 0.5 in Eq (9) as follows:

m=[1βlog(1+[log(2)]1ζ)]1ϑ.

3.2 Moments and moment generating function

In statistics, moments of probability distributions are measures related to the structure of the graph. The variance is the second moment around the mean in a probability distribution, whereas the mean value corresponds to the first moment. The ratio of the third mean moment to the variance is the definition of the skewness measure. The ratio of the standard deviation to the fourth power to the fourth moment about the mean is the definition of the kurtosis measure. For any positive integer r, the rth moment of the MKWD can be determined as follows:

μr=0yrf(y;φ)dy, (10)

where φ = (β, ϑ, ζ). By inserting (5) into (10), we have

μr=βϑi,j=0ηi,j0yr+ϑ-1e-βyϑ(1-e-βyϑ)ζ(i+1)+j-1dy. (11)

By using the binomial expansion in the last term in (11), we get

μr=i,j,k=0ηi,j,k0yr+ϑ-1e-β(k+1)yϑdy, (12)

where ηi,j,k=βϑηi,j(-1)k(ζ(i+1)+j-1k). Let z = β(k + 1)yϑ, then

μr=i,j,k=0ηi,j,kϑ[(k+1)β]rϑ+10zrϑe-zdz=i,j,k=0ηi,j,kΓ(rϑ+1)ϑ[(k+1)β]rϑ+1, (13)

where Γ(., .) is the gamma function (GFN). The moment generating function of the MKWD is calculated below:

MY(t)=E(etY)=0etyf(y;φ)dy=r=0trr!μr=i,j,k=0r=0trr!ηi,j,kΓ(rϑ+1)ϑ[(k+1)β]rϑ+1.

Tables 1 and 2 show the numerical values of the moments μ1, μ2, μ3 and μ4, and the numerical values of the variance (σ2), coefficient of skewness (CS), coefficient of kurtosis (CK) and coefficient of variation (CV) associated with the MKWD. It can be observed from Tables 1 and 2 that as the parameters ϑ and β increase while keeping ζ constant, there is a general trend of decreasing values in the first four moments and σ2, and CS, CK, and CV show an decreasing trend. This pattern indicates a significant sensitivity of the distribution to changes in these parameters of the distribution.

Table 1. Some numerical values of moments for the MKWD where ζ = 0.8.

ϑ β μ1 μ2 μ3 μ4 σ 2 σ CS CK CV
1.5 0.5 0.4433 0.5355 0.8963 1.8066 0.3390 0.5822 1.8161 6.3793 1.3135
0.6 0.4007 0.3870 0.5136 0.8201 0.2264 0.4758 1.6431 5.7022 1.1875
0.7 0.3748 0.3041 0.3345 0.4410 0.1637 0.4046 1.4780 5.1016 1.0795
0.8 0.3582 0.2535 0.2392 0.2689 0.1252 0.3538 1.3254 4.5930 0.9875
0.9 0.3474 0.2204 0.1833 0.1803 0.0997 0.3158 1.1866 4.1730 0.9090
1 0.3403 0.1978 0.1480 0.1301 0.0820 0.2864 1.0611 3.8309 0.8416
1.1 0.3355 0.1816 0.1245 0.0994 0.0691 0.2628 0.9480 3.5544 0.7833
1.2 0.3324 0.1698 0.1081 0.0795 0.0593 0.2435 0.8458 3.3319 0.7325
1.3 0.3304 0.1608 0.0961 0.0659 0.0517 0.2273 0.7532 3.1534 0.6879
1.4 0.3292 0.1540 0.0872 0.0562 0.0456 0.2135 0.6690 3.0106 0.6485
2.1 0.5 0.2911 0.2309 0.2538 0.3359 0.1462 0.3823 1.8161 6.3793 1.3135
0.6 0.2631 0.1669 0.1454 0.1525 0.0976 0.3125 1.6431 5.7022 1.1875
0.7 0.2461 0.1311 0.0947 0.0820 0.0706 0.2657 1.4780 5.1016 1.0795
0.8 0.2352 0.1093 0.0677 0.0500 0.0540 0.2323 1.3254 4.5930 0.9875
0.9 0.2281 0.0951 0.0519 0.0335 0.0430 0.2074 1.1866 4.1730 0.9090
1 0.2234 0.0853 0.0419 0.0242 0.0354 0.1880 1.0611 3.8309 0.8416
1.1 0.2203 0.0783 0.0353 0.0185 0.0298 0.1726 0.9480 3.5544 0.7833
1.2 0.2183 0.0732 0.0306 0.0148 0.0256 0.1599 0.8457 3.3319 0.7325
1.3 0.2170 0.0694 0.0272 0.0123 0.0223 0.1493 0.7532 3.1534 0.6879
1.4 0.2162 0.0664 0.0247 0.0105 0.0197 0.1402 0.6690 3.0106 0.6485
2.5 0.5 0.2341 0.1493 0.1320 0.1405 0.0945 0.3074 1.8161 6.3793 1.3135
0.6 0.2116 0.1079 0.0756 0.0638 0.0631 0.2513 1.6431 5.7022 1.1875
0.7 0.1979 0.0848 0.0493 0.0343 0.0456 0.2136 1.4780 5.1016 1.0795
0.8 0.1892 0.0707 0.0352 0.0209 0.0349 0.1868 1.3254 4.5930 0.9875
0.9 0.1835 0.0615 0.0270 0.0140 0.0278 0.1668 1.1866 4.1730 0.9090
1 0.1797 0.0552 0.0218 0.0101 0.0229 0.1512 1.0611 3.8309 0.8416
1.1 0.1772 0.0507 0.0183 0.0077 0.0193 0.1388 0.9480 3.5544 0.7833
1.2 0.1755 0.0473 0.0159 0.0062 0.0165 0.1286 0.8457 3.3319 0.7325
1.3 0.1745 0.0449 0.0142 0.0051 0.0144 0.1200 0.7532 3.1534 0.6879
1.4 0.1739 0.0429 0.0128 0.0044 0.0127 0.1127 0.6690 3.0106 0.6485
2.8 0.5 0.2032 0.1125 0.0863 0.0797 0.0712 0.2668 1.8161 6.3793 1.3135
0.6 0.1837 0.0813 0.0494 0.0362 0.0476 0.2181 1.6431 5.7022 1.1875
0.7 0.1718 0.0639 0.0322 0.0195 0.0344 0.1854 1.4780 5.1016 1.0795
0.8 0.1642 0.0532 0.0230 0.0119 0.0263 0.1621 1.3254 4.5930 0.9875
0.9 0.1592 0.0463 0.0176 0.0080 0.0210 0.1447 1.1866 4.1730 0.9090
1 0.1560 0.0416 0.0143 0.0057 0.0172 0.1313 1.0611 3.8310 0.8416
1.1 0.1538 0.0382 0.0120 0.0044 0.0145 0.1205 0.9480 3.5544 0.7833
1.2 0.1523 0.0357 0.0104 0.0035 0.0125 0.1116 0.8457 3.3319 0.7325
1.3 0.1514 0.0338 0.0093 0.0029 0.0109 0.1042 0.7532 3.1534 0.6879
1.4 0.1509 0.0324 0.0084 0.0025 0.0096 0.0979 0.6690 3.0106 0.6485

Table 2. Some numerical values of moments for the MKWD where ζ = 0.6.

ϑ β μ1 μ2 μ3 μ4 σ 2 σ CS CK CV
1.5 0.5 0.4476 0.7363 1.8066 5.5771 0.5359 0.7321 2.5419 10.8177 1.6356
0.6 0.3764 0.4560 0.8201 1.8563 0.3143 0.5606 2.3376 9.6075 1.4893
0.7 0.3332 0.3164 0.4410 0.7716 0.2053 0.4531 2.1363 8.4822 1.3598
0.8 0.3053 0.2383 0.2689 0.3788 0.1450 0.3808 1.9469 7.4951 1.2473
0.9 0.2865 0.1907 0.1803 0.2114 0.1086 0.3295 1.7730 6.6570 1.1500
1 0.2734 0.1597 0.1301 0.1303 0.0849 0.2914 1.6152 5.9573 1.0658
1.1 0.2641 0.1384 0.0994 0.0870 0.0687 0.2621 1.4728 5.3778 0.9927
1.2 0.2573 0.1233 0.0795 0.0619 0.0571 0.2390 1.3445 4.8992 0.9289
1.3 0.2523 0.1121 0.0659 0.0464 0.0485 0.2202 1.2287 4.5038 0.8727
1.4 0.2486 0.1037 0.0562 0.0363 0.0419 0.2046 1.1238 4.1764 0.8231
2.1 0.5 0.2555 0.2399 0.3359 0.5919 0.1746 0.4178 2.5421 10.8181 1.6355
0.6 0.2149 0.1485 0.1525 0.1970 0.1024 0.3200 2.3376 9.6076 1.4892
0.7 0.1902 0.1031 0.0820 0.0819 0.0669 0.2586 2.1363 8.4822 1.3598
0.8 0.1743 0.0776 0.0500 0.0402 0.0473 0.2174 1.9469 7.4951 1.2473
0.9 0.1635 0.0621 0.0335 0.0224 0.0354 0.1881 1.7730 6.6570 1.1500
1 0.1561 0.0520 0.0242 0.0138 0.0277 0.1663 1.6152 5.9573 1.0658
1.1 0.1507 0.0451 0.0185 0.0092 0.0224 0.1496 1.4728 5.3778 0.9927
1.2 0.1468 0.0402 0.0148 0.0066 0.0186 0.1364 1.3445 4.8992 0.9289
1.3 0.1440 0.0365 0.0123 0.0049 0.0158 0.1257 1.2287 4.5038 0.8727
1.4 0.1419 0.0338 0.0105 0.0038 0.0136 0.1168 1.1238 4.1764 0.8231
2.5 0.5 0.1911 0.1341 0.1405 0.1851 0.0976 0.3125 2.5419 10.8177 1.6355
0.6 0.1607 0.0831 0.0638 0.0616 0.0573 0.2393 2.3376 9.6075 1.4893
0.7 0.1422 0.0576 0.0343 0.0256 0.0374 0.1934 2.1363 8.4822 1.3598
0.8 0.1303 0.0434 0.0209 0.0126 0.0264 0.1625 1.9469 7.4951 1.2473
0.9 0.1223 0.0347 0.0140 0.0070 0.0198 0.1406 1.7730 6.6570 1.1500
1 0.1167 0.0291 0.0101 0.0043 0.0155 0.1244 1.6152 5.9573 1.0658
1.1 0.1127 0.0252 0.0077 0.0029 0.0125 0.1119 1.4728 5.3778 0.9927
1.2 0.1098 0.0225 0.0062 0.0021 0.0104 0.1020 1.3445 4.8992 0.9289
1.3 0.1077 0.0204 0.0051 0.0015 0.0088 0.0940 1.2287 4.5038 0.8727
1.4 0.1061 0.0189 0.0044 0.0012 0.0076 0.0873 1.1238 4.2329 0.8231
2.8 0.5 0.1582 0.0919 0.0797 0.0870 0.0669 0.2587 2.5419 10.8177 1.6355
0.6 0.1330 0.0569 0.0362 0.0289 0.0392 0.1981 2.3376 9.6075 1.4893
0.7 0.1178 0.0395 0.0195 0.0120 0.0256 0.1601 2.1363 8.4822 1.3598
0.8 0.1079 0.0298 0.0119 0.0059 0.0181 0.1346 1.9469 7.4951 1.2473
0.9 0.1012 0.0238 0.0080 0.0033 0.0136 0.1164 1.7730 6.6570 1.1500
1 0.0966 0.0199 0.0057 0.0020 0.0106 0.1030 1.6152 5.9573 1.0658
1.1 0.0933 0.0173 0.0044 0.0014 0.0086 0.0926 1.4728 5.3778 0.9927
1.2 0.0909 0.0154 0.0035 0.0010 0.0071 0.0844 1.3445 4.8992 0.9289
1.3 0.0892 0.0140 0.0029 0.0007 0.0061 0.0778 1.2287 4.5039 0.8727
1.4 0.0879 0.0130 0.0025 0.0006 0.0052 0.0723 1.1238 4.1764 0.8231

3.3 Incomplete and conditional moments

Incomplete moments are often used to assess inequalities, such as income quantiles, BON, LOR and ZEN curves. The pth incomplete moment of the MKWD is computed as follows:

ξp(t)=0typf(y;φ)dy=i,j,k=0ηi,j,kγ(pϑ+1,β(k+1)tϑ)ϑ[(k+1)β]pϑ+1, (14)

where γ(s,t)=0tys-1e-ydy is the lower incomplete GFN. Conditional moments are essential in many statistical approaches, such as regression and hypothesis testing, since they demonstrate the relationship between variables and their responses in different circumstances. For example, in regression analysis, these moments can predict the dependent variable’s value based on certain independent variable values, providing significant insights into the variable’s behavior under various situations and improving prediction accuracy. The pth conditional moment of the MKWD is computed as follows:

Ωp(t)=typf(y;φ)dy=i,j,k=0ηi,j,kΓ(rϑ+1,β(k+1)tϑ)ϑ[(k+1)β]rϑ+1, (15)

where Γ(s,t)=tys-1e-ydy is the upper incomplete GFN.

3.4 Inequality measures

Our primary focus in this subsection is on the LOR, BON, and ZEN curves, which are helpful in demography, econometrics, medicine, survival analysis, and insurance applications. For the MKWD, the LOR, BON, and ZEN curves are provided by

LOR=0tyf(y;φ)dyE(Y)=i,j,k=0ηi,j,kγ(1ϑ+1,β(k+1)tϑ)i,j,k=0ηi,j,kΓ(1ϑ+1),
BON=LORF(t)=i,j,k=0ηi,j,kγ(1ϑ+1,β(k+1)tϑ)(1-e-[eβtϑ-1]ζ)i,j,k=0ηi,j,kΓ(1ϑ+1),

and

ZEN=1-(LOR)R(t)tyf(y;φ)dy=1-e-[eβtϑ-1]ζ[i,j,k=0ηi,j,kγ(1ϑ+1,β(k+1)tϑ)][i,j,k=0ηi,j,kΓ(1ϑ+1)][i,j,k=0ηi,j,kΓ(1ϑ+1,β(k+1)tϑ)],

respectively, where F(t) and R(t) are the cdf and rf of the MKWD at time t.

3.5 Order statistics

Assume that Y1, Y2, …, Yn are n random samples from the MKWD with pdf (8) and cdf (7). Suppose that Y(1), Y(2), …, Y(n) are the corresponding OS. The pdf of the qth OS is provided as follows:

fY(q)(y)=n!(q-1)!(n-q)!f(y;φ)[F(y;φ)]q-1[1-F(y;φ)]n-q. (16)

By employing (7) and (8) in (16), we obtain the pdf of Y(q) of OS for the MKWD below:

fY(q)(y)=ζβϑn!(q-1)!(n-q)!yϑ-1eβζyϑ[1-e-βyϑ]ζ-1e-(n-q+1)[eβyϑ-1]ζ(1-e-[eβyϑ-1]ζ)q-1. (17)

By setting q = 1 and n in (17), we have the lowest OS and the largest OS for the MKWD as follows:

fY(1)(y)=ζβϑnyϑ-1eβζyϑ[1-e-βyϑ]ζ-1e-n[eβyϑ-1]ζ,

and

fY(n)(y)=ζβϑnyϑ-1eβζyϑ[1-e-βyϑ]ζ-1e-[eβyϑ-1]ζ(1-e-[eβyϑ-1]ζ)n-1.

4 Entropy measures

In this section, five different entropy measures for the MKWD, namely, the RE, EE, HCE, AE and TE are computed. Table 3 reports some numerical values of the MKWD’s entropy measures.

Table 3. Some numerical values of the entropy measures of the MKWD.

ζ ϑ β ∇ = 0.5 ∇ = 0.7
RE EE HCE AE TE RE EE HCE AE TE
0.4 0.1 0.10 1.7216 52.6766 15.1078 51.6766 12.5157 0.3174 2.0768 1.0605 0.8582 0.8171
0.15 1.7740 59.4250 16.1964 58.4250 13.4175 0.4396 2.7515 1.5349 1.2672 1.1826
0.20 1.8116 64.7998 17.0198 63.7998 14.0997 0.5272 3.3663 1.9005 1.5922 1.4643
0.25 1.8412 69.3667 17.6930 68.3667 14.6573 0.5958 3.9428 2.2029 1.8673 1.6973
0.30 1.8656 73.3764 18.2660 72.3764 15.1320 0.6525 4.4921 2.4634 2.1089 1.8980
0.35 1.8863 76.9586 18.7647 75.9586 15.5452 0.7006 5.0183 2.6929 2.3249 2.0748
0.40 1.9041 80.1846 19.2041 79.1846 15.9092 0.7421 5.5226 2.8974 2.5200 2.2324
0.45 1.9196 83.0952 19.5929 82.0952 16.2313 0.7784 6.0041 3.0808 2.6970 2.3737
0.50 1.9331 85.7136 19.9370 84.7136 16.5163 0.8103 6.4606 3.2455 2.8575 2.5006
0.55 1.9447 88.0520 20.2398 87.0520 16.7672 0.8382 6.8896 3.3929 3.0025 2.6142
0.3 0.10 2.3306 214.0652 32.9081 213.0652 27.2619 1.6734 47.1386 9.4182 9.8324 7.2566
0.15 2.3830 241.5235 35.1051 240.5235 29.0821 1.7965 62.5894 10.6384 11.4041 8.1967
0.20 2.4148 259.8859 36.5053 258.8859 30.2420 1.8748 74.9568 11.4702 12.5078 8.8376
0.25 2.4308 269.6488 37.2296 268.6488 30.8420 1.9208 83.3239 11.9797 13.1964 9.2301
0.30 2.4326 270.7433 37.3099 269.7433 30.9086 1.9390 86.8912 12.1861 13.4779 9.3891
0.35 2.4206 263.3673 36.7651 262.3673 30.4572 1.9325 85.6094 12.1126 13.3775 9.3325
0.40 2.3950 248.3354 35.6306 247.3354 29.5173 1.9022 79.8305 11.7715 12.9139 9.0697
0.45 2.3562 227.1130 33.9686 226.1130 28.1405 1.8510 70.9570 11.2124 12.1631 8.6390
0.50 2.3047 201.7043 31.8731 200.7043 26.4045 1.7820 60.5288 10.4888 11.2084 8.0814
0.55 2.2416 174.4043 29.4684 173.4043 24.4124 1.6989 49.9937 9.6628 10.1429 7.4450
0.8 0.1 0.10 1.8323 67.9681 17.4892 66.9681 14.4886 0.5276 3.3695 1.9023 1.5938 1.4657
0.15 1.9576 90.6879 20.5764 89.6879 17.0460 0.8223 6.6424 3.3088 2.9196 2.5494
0.20 2.0414 109.9962 22.9058 108.9962 18.9758 1.0210 10.4952 4.4319 4.0573 3.4147
0.25 2.1014 126.3064 24.7182 125.3064 20.4772 1.1649 14.6185 5.3473 5.0325 4.1200
0.30 2.1454 139.7582 26.1265 138.7582 21.6439 1.2721 18.7125 6.0910 5.8546 4.6930
0.35 2.1772 150.3861 27.1918 149.3861 22.5264 1.3521 22.4955 6.6826 6.5269 5.1489
0.40 2.1992 158.1918 27.9504 157.1918 23.1549 1.4102 25.7184 7.1338 7.0502 5.4965
0.45 2.2127 163.1840 28.4258 162.1840 23.5487 1.4499 28.1800 7.4524 7.4251 5.7420
0.50 2.2185 165.4029 28.6348 164.4029 23.7218 1.4734 29.7421 7.6446 7.6534 5.8901
0.55 2.2173 164.9354 28.5909 163.9354 23.6854 1.4820 30.3383 7.7161 7.7387 5.9451
0.3 0.10 2.5902 389.2314 45.2157 388.2314 37.4579 2.2035 159.7710 15.4966 18.1940 11.9398
0.15 2.6426 439.1029 48.1751 438.1029 39.9096 2.3583 228.1911 17.7337 21.5820 13.6635
0.20 2.6175 414.4819 46.7364 413.4819 38.7177 2.3576 227.8464 17.7237 21.5665 13.6558
0.25 2.5302 339.0345 42.0384 338.0345 34.8258 2.2502 177.9112 16.1465 19.1623 12.4406
0.30 2.3935 247.4611 35.5635 246.4611 29.4618 2.0776 119.5690 13.8457 15.7961 10.6678
0.35 2.2258 168.1851 28.8948 167.1851 23.9372 1.8820 76.2086 11.5489 12.6135 8.8982
0.40 2.0497 112.1128 23.1483 111.1128 19.1767 1.6938 49.4035 9.6131 10.0796 7.4067
0.45 1.8824 76.2741 18.6703 75.2741 15.4670 1.5238 33.4003 8.0686 8.1624 6.2167
0.50 1.7302 53.7227 15.2809 52.7227 12.6592 1.3719 23.5461 6.8344 6.7020 5.2658
0.55 1.5922 39.1016 12.6822 38.1016 10.5063 1.2337 17.1257 5.8177 5.5495 4.4825

4.1 Rényi entropy

The RE of the MKWD can be computed using the following formula

R(φ)=11-log[0f(y;φ)dy].>0,1. (18)

Now, we want to compute the integral 0f(y;φ)dy. By inserting (1) and (2) into (6), we get

0f(y;φ)dy=(βϑ)i,j=0i,j0yϑ-e-βyϑ(1-e-βyϑ)(ζ-1)+ζi+jdy. (19)

By using the binomial expansion for the above Eq (19), we obtain

0f(y;φ)dy=i,j,k=0i,j,k0yϑ-e-(k+)βyϑdy, (20)

where i,j,k=(βϑ)i,j((ζ-1)+ζi+jk). Let z = (k + ∇) βyϑ, then we have

0f(y;φ)dy=i,j,k=0i,j,kϑ[(k+)β]-ϑ+1ϑ0z-ϑ+1ϑ-1e-zdz, (21)

and the integral 0f(y;φ)dy can be formulated as

0f(y;φ)dy=i,j,k=0i,j,kΓ(-ϑ+1ϑ)ϑ[(k+)β]-ϑ+1ϑ. (22)

By employing (22) in (18), the RE of the MKWD is given by

R(φ)=11-log[i,j,k=0i,j,kΓ(-ϑ+1ϑ)ϑ[(k+)β]-ϑ+1ϑ].>0,1. (23)

4.2 Exponential entropy

The EE of the MKWD can be computed using the following formula

E(φ)=[0f(y;φ)dy]11-. (24)

By utilizing (22) in (24), the EE of the MKWD is given by

E(φ)=[i,j,k=0i,j,kΓ(-ϑ+1ϑ)ϑ[(k+)β]-ϑ+1ϑ]11-. (25)

4.3 Havrda and Charvat entropy

The HCE of the MKWD can be computed using the formula

HC(φ)=121--1[0f(y;φ)dy-1]. (26)

By inserting (22) into (26), the HCE of the MKWD is given by

HC(φ)=121--1[i,j,k=0i,j,kΓ(-ϑ+1ϑ)ϑ[(k+)β]-ϑ+1ϑ-1]. (27)

4.4 Arimoto entropy

The AE of the MKWD can be computed using

A(φ)=1-{[0f(y;φ)dy]1-1}, (28)

and by employing (22) in (28), the AE of the MKWD is given by

A(φ)=1-{[i,j,k=0i,j,kΓ(-ϑ+1ϑ)ϑ[(k+)β]-ϑ+1ϑ]1-1}. (29)

4.5 Tsallis entropy

The TE of the MKWD can be computed using the formula

T(φ)=1-1[1-0f(y;φ)dy]. (30)

Then, by using (22) in (30), the TE of the MKWD is given by

T(φ)=1-1[1-i,j,k=0i,j,kΓ(-ϑ+1ϑ)ϑ[(k+)β]-ϑ+1ϑ]. (31)

In general, Table 3 shows a clear trend where values increase as β rises for both values of ∇. Specifically, the measures RE and EE increase with higher values of β and ∇, while HCE and AE exhibit a similar upward trend, though at a slower rate.

5 Extropy measures

Lad et al. [28] launched Ex in 2015, a new measure of uncertainty. The total log scoring system can be implemented to statistically score forecasting distributions utilizing Ex. For a non-negative random variable Y, the Ex is defined as follows:

Φ(φ)=-120f2(y;φ)dy. (32)

By setting ∇ = 2 in (22) and inserting into (32), the Ex of the MKW is given by:

Φ(φ)=-12[i,j,k=0i,j,kΓ(2-1ϑ)ϑ[(k+2)β]2-1ϑ],2ϑ>1. (33)

The concept of the WEx was introduced in [29] and is defined as follows:

Φw(φ)=-120yf2(y;φ)dy. (34)

By setting ∇ = 2 in (22) and substituting the respective expression in (34), the WEx of the MKW is given by:

Φw(φ)=-12[i,j,k=0i,j,kϑ[(k+2)β]2]. (35)

Qiu & Jia [30] defined the extropy for residual lifetime Yt as the REx at time t as:

Φ(Yt)=-12F¯2(t)tf2(y;φ)dy. (36)

The REx of the MKWD can thus be expressed as

Φ(Yt)=-12F¯2(t)[i,j,k=0i,j,kΓ(2-1ϑ,(k+)βtϑ)ϑ[(k+2)β]2-1ϑ],2ϑ>1,

where Γ(., y) is the upper incomplete GF.

Table 4 shows a few numerical values that are associated with extropy metrics of the MKWD. Overall, Table 4 provides a comprehensive view of how extropy measures vary with different parameter values. The trends suggest that increasing values of ζ and ϑ generally lead to more negative extropy values, indicating increased extropy as these parameters change.

Table 4. Some numerical values of the entropy measures of the MKWD (β = 0.2).

ζ ϑ Ex WEx REx
t = 0.5 t = 1.2 t = 1.8
0.5 1.1 -0.299 -0.097 -0.070 -0.066 -0.067
1.2 -0.183 -0.106 -0.081 -0.079 -0.082
1.3 -0.149 -0.115 -0.091 -0.093 -0.098
1.4 -0.137 -0.124 -0.102 -0.107 -0.116
1.5 -0.132 -0.133 -0.112 -0.122 -0.135
1.6 -0.131 -0.141 -0.123 -0.137 -0.157
1.7 -0.133 -0.150 -0.133 -0.153 -0.180
0.7 1.1 -0.091 -0.133 -0.082 -0.086 -0.091
1.2 -0.095 -0.145 -0.094 -0.102 -0.111
1.3 -0.101 -0.157 -0.106 -0.119 -0.133
1.4 -0.109 -0.169 -0.118 -0.136 -0.157
1.5 -0.117 -0.181 -0.130 -0.155 -0.183
1.6 -0.125 -0.193 -0.143 -0.174 -0.213
1.7 -0.134 -0.205 -0.155 -0.194 -0.245
0.9 1.1 -0.084 -0.169 -0.090 -0.101 -0.111
1.2 -0.094 -0.184 -0.104 -0.120 -0.136
1.3 -0.105 -0.200 -0.118 -0.139 -0.163
1.4 -0.117 -0.215 -0.131 -0.160 -0.194
1.5 -0.129 -0.230 -0.145 -0.182 -0.227
1.6 -0.141 -0.246 -0.159 -0.204 -0.265
1.7 -0.154 -0.261 -0.173 -0.227 -0.306
1.2 1.1 -0.094 -0.224 -0.102 -0.118 -0.137
1.2 -0.109 -0.245 -0.118 -0.141 -0.168
1.3 -0.124 -0.265 -0.134 -0.164 -0.203
1.4 -0.140 -0.285 -0.151 -0.188 -0.242
1.5 -0.156 -0.306 -0.168 -0.214 -0.286
1.6 -0.173 -0.326 -0.185 -0.240 -0.335
1.7 -0.190 -0.346 -0.203 -0.268 -0.390
1.4 1.1 -0.103 -0.261 -0.110 -0.128 -0.151
1.2 -0.121 -0.285 -0.128 -0.152 -0.186
1.3 -0.139 -0.309 -0.147 -0.178 -0.225
1.4 -0.158 -0.333 -0.166 -0.204 -0.270
1.5 -0.177 -0.357 -0.185 -0.232 -0.320
1.6 -0.196 -0.380 -0.205 -0.261 -0.377
1.7 -0.216 -0.404 -0.225 -0.290 -0.442

6 Estimation methods

In this section, we implement eight approaches to estimate the parameters β, ϑ and ζ of the MKWD. These methods are MLE, CME, MPSE, LSE, WLSE, MSALDE, PE, and MSSLE.

6.1 Maximum likelihood method

The maximum likelihood method [31, 32] is based on maximizing the (log-)likelihood function to estimate the parameters. This method is one of the most widely used estimation techniques, providing estimators with desirable properties such as consistency and asymptotic efficiency. The log-likelihood function is given by

l=nlog(ζ)+nlog(β)+nlog(ϑ)+(ϑ-1)i=1nlog(yi)+βζi=1nyiϑ+(ζ-1)i=1nlog[1-e-βyiϑ]-i=1n[eβyiϑ-1]ζ,

and the partial derivatives of l are as follows:

lβ=nβ+ζi=1nyiϑ+(ζ-1)i=1nyiϑe-βyiϑ1-e-βyiϑ-ζi=`nyiϑeβyiϑ[eβyiϑ-1]ζ-1,lϑ=nϑ+i=1nlog(yi)+βζi=1nyiϑlog(yi)+β(ζ-1)i=1nyiϑe-βyiϑlog(yi)1-e-βyiϑ-ζβi=`nyiϑeβyiϑlog(yi)[eβyiϑ-1]ζ-1,lζ=nζ+βi=1nyiϑ+i=1nlog[1-e-βyiϑ]-i=1n[eβyiϑ-1]ζlog[eβyiϑ-1].

To estimate the parameters β, ϑ and ζ it is required to solve the system of equations lβ=0, lϑ=0 and lζ=0, which has no closed form and therefore is to be solved numerically.

6.2 Cramér-von-Mises method

The Cramér-von-Mises method [33] minimizes the distance between the empirical and theoretical cumulative distribution functions. It is useful when the goal is to achieve a good fit across the entire range of the data, not just the tails. CME depends on minimizing the function

C(β,ϑ,ζ)=112n+i=1n[F(y(i))-2i-12n]2.

From now on we use the following notations:

Fi=F(y(i);β,ϑ,ζ), (37)
Fβi=ζy(i)ϑeβy(i)ϑ[eβy(i)ϑ-1]ζ-1e-[eβy(i)ϑ-1]ζ, (38)
Fϑi=ζβy(i)ϑlog(y(i))eβy(i)ϑ[eβy(i)ϑ-1]ζ-1e-[eβy(i)ϑ-1]ζ, (39)

and

Fζi=[eβy(i)ϑ-1]ζlog[eβy(i)ϑ-1]e-[eβy(i)ϑ-1]ζ. (40)

The aim is to compute the partial derivatives of C(β, ϑ, ζ) with respect to β, ϑ and ζ, by using Eqs (37), (38), (39) and (40),

C(β,ϑ,ζ)β=2i=1nFβi[Fi-2i-12n],
C(β,ϑ,ζ)ϑ=2i=1nFϑi,[Fi-2i-12n],
C(β,ϑ,ζ)ζ=2i=1nFζi[Fi-2i-12n].

Then the system of equations C(β,ϑ,ζ)β=0, C(β,ϑ,ζ)ϑ=0 and C(β,ϑ,ζ)ζ=0 is solved using numerical methods.

6.3 Maximum product of spacings method

MPSE is known for providing efficient estimates by maximizing the spacing between ordered statistics. It is particularly useful in continuous distributions. This method needs to maximize the MPS function to estimate the parameters β, ϑ and ζ [34],

δ(β,ϑ,ζ)=1n+1i=1n+1logΛi(y(i)),

where Λi(y(i)) = F(y(i)) − F(y(i−1)), F(y(0)) = 0 and F(y(n+1)) = 1. Using Eqs (37), (38), (39) and (40), the partial derivatives with respect to β, ϑ and ζ are given by

δ(β,ϑ,ζ)β=1n+1i=1n+1Fβi-Fβi-1Fi-Fi-1,
δ(β,ϑ,ζ)ϑ=1n+1i=1n+1Fϑi-Fϑi-1Fi-Fi-1,
δ(β,ϑ,ζ)ζ=1n+1i=1n+1Fζi-Fζi-1Fi-Fi-1.

Through solving the equations δ(β,ϑ,ζ)β=0, δ(β,ϑ,ζ)ϑ=0 and δ(β,ϑ,ζ)ζ=0, we get the estimates of β, ϑ and ζ.

6.4 Least squares method

LSE is selected for its straightforward approach, minimizing the squared differences between observed and theoretical quantiles. The LSE depends on minimizing the function [35]

V(β,ϑ,ζ)=i=1n[F(y(i))-in+1]2.

Using Eqs (37), (38), (39) and (40), the partial derivatives of V(β, ϑ, ζ) with respect to the parameters β, ϑ and ζ are

V(β,ϑ,ζ)β=2i=1nFβi[Fi-in+1],
V(β,ϑ,ζ)ϑ=2i=1nFϑi[Fi-in+1],
V(β,ϑ,ζ)ζ=2i=1nFζi[Fi-in+1].

When solving the equations V(β,ϑ,ζ)β=0, V(β,ϑ,ζ)ϑ=0 and V(β,ϑ,ζ)ζ=0, we get the estimates of β, ϑ and ζ.

6.5 Weighted least squares method

WLSE extends LSE by introducing weights, giving more importance to certain data points, typically in the tails. It is selected for its flexibility and ability to provide better estimates in scenarios where some observations are more reliable or important than others. The WLSE method [35] depends on minimizing the function

W(β,ϑ,ζ)=i=1n(n+1)2(n+2)i(n-i+1)[F(y(i))-in+1]2.

Again, by using Eqs (37), (38), (39) and (40), the partial derivatives with respect to the parameters β, ϑ and ζ are obtained as:

W(β,ϑ,ζ)β=2i=1n(n+1)2(n+2)Fβii(n-i+1)[Fi-in+1],
W(β,ϑ,ζ)ϑ=2i=1n(n+1)2(n+2)Fϑii(n-i+1)[Fi-in+1],
W(β,ϑ,ζ)ζ=2i=1n(n+1)2(n+2)Fζii(n-i+1)[Fi-in+1].

After solving the system of equations W(β,ϑ,ζ)β=0, W(β,ϑ,ζ)ϑ=0, and W(β,ϑ,ζ)ζ=0, we get the point estimates of β, ϑ and ζ.

6.6 Minimum spacing absolute-log distance

MSALDE minimizes the absolute logarithmic distance between observed and expected spacings, providing robustness against outliers. It is chosen for its effectiveness in dealing with outliers and small sample sizes. The MSALDE aims to minimize the function

Υ(β,ϑ,ζ)=i=1n+1|logΛi-log1n+1|,

where Λi = F(y(i)) − F(y(i−1)). Following the same steps explained above, we can estimate the parameters β, ϑ and ζ.

6.7 Percentile estimation

PE is a non-parametric method that relies on the percentiles of the distribution, making it less dependent on the underlying distributional assumptions. The PE approach was originally introduced by [36, 37], applied to the Weibull distribution and later on also used for other distributions. The function

PE(β,ϑ,ζ)=i=1n[y(i)-Q(β,ϑ,ζ)]2

is to be minimized to estimate the parameters β, ϑ and ζ by repeating the same steps as discussed above.

6.8 Minimum spacing square-log distance

MSSLE minimizes the square of the logarithmic spacing distances, similar to MSALDE, but with a squared term that can offer different sensitivity to deviations. The MSSLE technique aims to minimize the function

δ(β,ϑ,ζ)=i=1n+1(log(Λi(y(i)))-log1n+1)2,

where Λi(yi) = F(yi) − F(yi−1). Following the same steps explained above, we can estimate the parameters β, ϑ and ζ.

7 Simulation

In this section, we employ the software R to conduct a Monte Carlo simulation study, aiming to evaluate the performance of the eight estimation methods outlined in Section 6. Specifically, we calculate the point estimate (mean) and determine the mean square error (MSE) as well as the square root of the mean square error (RMSE) for the parameters β, ϑ, and ζ. These metrics provide a comprehensive assessment of the estimators’ accuracy, bias, and efficiency. To achieve this, we generate random samples of different sizes (n = 20, 50, 100, 200, 320, 450) from the MKWD. Each sample size was chosen to represent different scenarios, from small to large sample conditions, allowing us to evaluate the estimators’ performance across a broad spectrum.

For each combination of parameter values and sample size, we conducted 1000 replications. This number of replications ensures that our simulation results are reliable and provide a stable estimate of the statistical properties of the parameters. The initial values for the parameters β, ϑ, and ζ are {(0.5, 0.5, 0.5), (0.5, 0.5, 0.9), (0.5, 0.9, 0.5), (0.9, 0.5, 0.5), (1.5, 0.5, 0.5), (1.5, 1.5, 0.5)}. They are used in the simulation to cover various distribution shapes and scales, ensuring that our findings are robust and generalized across different scenarios.

The results for the mean, MSE, and RMSE for each estimation method and parameter combination are presented in Tables 510. These tables allow for a comprehensive comparison of the performance of the different estimation methods. Additionally, the MSE results in Table 5 are graphically displayed in Figs 2 and 3 to illustrate the trend of the estimators as the sample size increases.

Table 5. Results for the eight estimation methods considering ϑ = 0.5, β = 0.5 and ζ = 0.5.

n 20 50 100 200 320 450
Method Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE
MLE ϑ 0.9189 0.4986 0.7061 0.6325 0.0920 0.3033 0.5645 0.0326 0.1805 0.5400 0.0123 0.1111 0.5336 0.0076 0.0869 0.5318 0.0061 0.0781
β 0.3748 0.0814 0.2854 0.4463 0.0304 0.1745 0.4726 0.0143 0.1198 0.4797 0.0065 0.0808 0.4817 0.0044 0.0664 0.4838 0.0034 0.0579
ζ 0.4601 0.2454 0.4954 0.5296 0.2307 0.4803 0.4998 0.0435 0.2087 0.4882 0.0121 0.1098 0.4850 0.0070 0.0836 0.4828 0.0056 0.0751
CME ϑ 0.9045 0.6272 0.7920 0.6308 0.1553 0.3941 0.5340 0.0677 0.2602 0.5121 0.0345 0.1856 0.5030 0.0217 0.1472 0.5074 0.0166 0.1287
β 0.4186 0.1313 0.3623 0.4588 0.0349 0.1867 0.4919 0.0183 0.1354 0.4961 0.0102 0.1012 0.4990 0.0071 0.0840 0.4976 0.0056 0.0748
ζ 0.5968 0.4373 0.6613 0.6151 0.2863 0.5350 0.6497 0.2553 0.5052 0.5834 0.1091 0.3303 0.5563 0.0560 0.2366 0.5322 0.0295 0.1717
MPSE ϑ 1.1518 0.9574 0.9785 0.7171 0.1446 0.3803 0.6100 0.0462 0.2149 0.5665 0.0168 0.1295 0.5514 0.0098 0.0989 0.5460 0.0077 0.0876
β 0.3316 0.0955 0.3091 0.4151 0.0384 0.1959 0.4519 0.0173 0.1317 0.4664 0.0078 0.0882 0.4724 0.0051 0.0713 0.4763 0.0038 0.0618
ζ 0.4090 0.2181 0.4671 0.4946 0.2046 0.4523 0.4775 0.0538 0.2319 0.4725 0.0123 0.1110 0.4739 0.0073 0.0856 0.4736 0.0060 0.0773
LSE ϑ 0.8851 0.6470 0.8044 0.6251 0.1555 0.3943 0.5328 0.0679 0.2606 0.5121 0.0345 0.1856 0.5026 0.0218 0.1477 0.5074 0.0166 0.1287
β 0.4288 0.1294 0.3597 0.4611 0.0348 0.1866 0.4924 0.0184 0.1355 0.4961 0.0102 0.1011 0.4991 0.0071 0.0841 0.4976 0.0056 0.0748
ζ 0.6815 0.7145 0.8453 0.6418 0.3709 0.6090 0.6532 0.2612 0.5111 0.5839 0.1110 0.3332 0.5591 0.0639 0.2529 0.5322 0.0295 0.1717
WLSE ϑ 0.8299 0.6114 0.7819 0.5970 0.1668 0.4084 0.5199 0.0714 0.2672 0.5090 0.0355 0.1885 0.5021 0.0220 0.1483 0.5074 0.0166 0.1287
β 0.4409 0.1202 0.3466 0.4728 0.0353 0.1878 0.4976 0.0188 0.1370 0.4974 0.0104 0.1020 0.4993 0.0071 0.0843 0.4976 0.0056 0.0748
ζ 1.0110 2.7806 1.6675 0.8838 1.5572 1.2479 0.7625 0.7921 0.8900 0.6054 0.1861 0.4314 0.5623 0.0745 0.2729 0.5322 0.0295 0.1717
MSALDE ϑ 0.8087 0.3395 0.5826 0.6412 0.1014 0.3185 0.5541 0.0461 0.2148 0.5223 0.0201 0.1419 0.5138 0.0125 0.1117 0.5166 0.0095 0.0972
β 0.4654 0.0814 0.2852 0.4571 0.0319 0.1786 0.4865 0.0179 0.1339 0.4904 0.0094 0.0968 0.4921 0.0062 0.0784 0.4937 0.0046 0.0676
ζ 0.4891 0.2323 0.4819 0.5025 0.1477 0.3843 0.5332 0.0862 0.2936 0.5223 0.0338 0.1838 0.5143 0.0183 0.1353 0.5044 0.0185 0.1360
PE ϑ 0.6900 0.3497 0.5914 0.5258 0.0931 0.3051 0.4996 0.0392 0.1981 0.4970 0.0177 0.1331 0.5001 0.0111 0.1055 0.5073 0.0089 0.0945
β 0.4471 0.0620 0.2490 0.4915 0.0290 0.1702 0.5004 0.0142 0.1191 0.5016 0.0076 0.0870 0.4999 0.0051 0.0717 0.4977 0.0041 0.0642
ζ 1.2825 5.0253 2.2417 0.9910 2.3681 1.5388 0.6739 0.5398 0.7347 0.5580 0.0621 0.2493 0.5290 0.0197 0.1405 0.5137 0.0130 0.1141
MSSLE ϑ 1.0557 0.8941 0.9456 0.6795 0.1457 0.3817 0.5716 0.0550 0.2346 0.5362 0.0189 0.1375 0.5213 0.0107 0.1034 0.5212 0.0083 0.0911
β 0.4062 0.1043 0.3230 0.4504 0.0365 0.1912 0.4771 0.0197 0.1403 0.4845 0.0085 0.0923 0.4910 0.0055 0.0743 0.4921 0.0041 0.0642
ζ 0.4951 0.4469 0.6685 0.5363 0.3548 0.5957 0.5505 0.1952 0.4419 0.5058 0.0255 0.1597 0.5034 0.0135 0.1160 0.4967 0.0101 0.1004

Table 10. Results for the eight estimation methods considering ϑ = 1.5, β = 1.5 and ζ = 0.5.

n 20 50 100 200 320 450
Method Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE
MLE ϑ 2.8193 4.9833 2.2323 1.9470 1.0136 1.0068 1.6819 0.2795 0.5286 1.6335 0.1174 0.3426 1.6134 0.0708 0.2661 1.5907 0.0484 0.2201
β 2.2739 4.3770 2.0921 1.6808 0.4119 0.6418 1.5917 0.1038 0.3222 1.5711 0.0417 0.2042 1.5560 0.0232 0.1523 1.5453 0.0162 0.1273
ζ 0.4632 0.2977 0.5456 0.5115 0.1549 0.3936 0.5060 0.0401 0.2002 0.4830 0.0123 0.1109 0.4805 0.0069 0.0832 0.4842 0.0052 0.0719
CME ϑ 2.7405 6.3472 2.5194 2.0294 1.7685 1.3298 1.6583 0.7017 0.8377 1.5153 0.2840 0.5329 1.5336 0.2015 0.4489 1.5147 0.1399 0.3740
β 2.6786 11.1416 3.3379 1.8969 1.8830 1.3722 1.6410 0.4449 0.6670 1.5220 0.1182 0.3438 1.5225 0.0794 0.2818 1.5092 0.0499 0.2234
ζ 0.6140 0.5114 0.7151 0.6026 0.3066 0.5538 0.6262 0.2187 0.4677 0.5804 0.0870 0.2949 0.5484 0.0531 0.2304 0.5335 0.0269 0.1641
MPSE ϑ 3.8388 15.6388 3.9546 2.2190 1.6712 1.2928 1.8266 0.4109 0.6410 1.7119 0.1586 0.3983 1.6686 0.0934 0.3057 1.6316 0.0613 0.2476
β 3.0183 11.8048 3.4358 1.8347 0.5535 0.7439 1.6773 0.1541 0.3926 1.6158 0.0563 0.2372 1.5869 0.0303 0.1741 1.5681 0.0204 0.1429
ζ 0.4005 0.2445 0.4945 0.4753 0.1544 0.3930 0.4804 0.0404 0.2009 0.4677 0.0126 0.1122 0.4692 0.0074 0.0860 0.4754 0.0055 0.0740
LSE ϑ 2.7205 6.7632 2.6006 2.0089 1.7394 1.3189 1.6622 0.7003 0.8369 1.5115 0.2879 0.5365 1.5278 0.2070 0.4550 1.5147 0.1399 0.3740
β 2.5918 10.0908 3.1766 1.8783 1.7937 1.3393 1.6433 0.4454 0.6673 1.5199 0.1192 0.3452 1.5192 0.0810 0.2847 1.5092 0.0499 0.2234
ζ 0.6943 0.8328 0.9126 0.6200 0.3429 0.5855 0.6225 0.2133 0.4619 0.5868 0.1015 0.3185 0.5562 0.0674 0.2595 0.5335 0.0269 0.1641
WLSE ϑ 2.5957 6.6199 2.5729 1.8863 1.7638 1.3281 1.5814 0.7547 0.8687 1.5021 0.2983 0.5462 1.5265 0.2085 0.4566 1.5147 0.1399 0.3740
β 2.5008 9.7445 3.1216 1.8095 1.7777 1.3333 1.5960 0.4485 0.6697 1.5147 0.1220 0.3493 1.5184 0.0815 0.2854 1.5092 0.0499 0.2234
ζ 0.9522 2.2684 1.5061 0.9066 1.7834 1.3354 0.8209 1.1292 1.0627 0.6146 0.2263 0.4757 0.5595 0.0784 0.2800 0.5335 0.0269 0.1641
MSALDE ϑ 2.8897 6.3825 2.5264 2.0337 1.3714 1.1711 1.7038 0.4756 0.6897 1.5839 0.1760 0.4195 1.5666 0.1164 0.3411 1.5312 0.0763 0.2762
β 2.7280 10.4285 3.2293 1.7973 0.7992 0.8940 1.6153 0.1934 0.4398 1.5521 0.0728 0.2699 1.5306 0.0408 0.2020 1.5136 0.0274 0.1654
ζ 0.4390 0.2145 0.4631 0.5129 0.2024 0.4499 0.5295 0.0848 0.2913 0.5138 0.0343 0.1852 0.5045 0.0203 0.1423 0.5083 0.0113 0.1065
PE ϑ 2.0782 2.8102 1.6764 1.6236 0.8374 0.9151 1.4969 0.3518 0.5931 1.5011 0.1537 0.3920 1.5236 0.1036 0.3219 1.5134 0.0707 0.2658
β 1.9333 3.6859 1.9199 1.5333 0.3546 0.5955 1.4986 0.1361 0.3689 1.5032 0.0552 0.2350 1.5097 0.0353 0.1879 1.5055 0.0232 0.1523
ζ 1.0803 3.6556 1.9119 0.9088 1.9858 1.4092 0.6881 0.5195 0.7208 0.5512 0.0593 0.2436 0.5217 0.0204 0.1427 0.5155 0.0115 0.1072
MSSLE ϑ 3.4980 12.2682 3.5026 2.1047 1.8517 1.3608 1.7099 0.4436 0.6660 1.6054 0.1716 0.4143 1.5846 0.1003 0.3168 1.5620 0.0661 0.2570
β 3.1844 14.2424 3.7739 1.8334 0.8008 0.8949 1.6426 0.1944 0.4410 1.5680 0.0694 0.2634 1.5476 0.0383 0.1957 1.5343 0.0250 0.1582
ζ 0.4692 0.5099 0.7141 0.5496 0.3262 0.5712 0.5418 0.1408 0.3752 0.5086 0.0347 0.1862 0.4968 0.0143 0.1197 0.4966 0.0086 0.0927

Fig 2. Estimated values of the MSE for MLE, CME, MPSE and LSE schemes in Table 5.

Fig 2

Fig 3. Estimated values of the MSE for WLSE, MSALDE, PE and MSSLE schemes in Table 5.

Fig 3

Table 6. Results for the eight estimation methods considering ϑ = 0.5, β = 0.5 and ζ = 0.9.

n 20 50 100 200 320 450
Method Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE
MLE ϑ 1.2454 1.2624 1.1236 0.7470 0.2460 0.4960 0.5958 0.0788 0.2807 0.5592 0.0356 0.1886 0.5535 0.0218 0.1476 0.5473 0.0155 0.1246
β 0.3363 0.0941 0.3068 0.4223 0.0295 0.1716 0.4670 0.0131 0.1146 0.4783 0.0067 0.0819 0.4786 0.0042 0.0649 0.4821 0.0031 0.0556
ζ 0.6751 0.7659 0.8752 0.9214 0.7111 0.8433 1.0369 0.7550 0.8689 0.9505 0.3039 0.5513 0.8962 0.1303 0.3610 0.8740 0.0528 0.2297
CME ϑ 1.1962 1.3136 1.1461 0.8034 0.4003 0.6327 0.6690 0.1850 0.4301 0.5627 0.0719 0.2681 0.5302 0.0533 0.2309 0.5152 0.0368 0.1918
β 0.3697 0.0784 0.2800 0.4194 0.0344 0.1854 0.4510 0.0205 0.1432 0.4816 0.0101 0.1003 0.4909 0.0078 0.0882 0.4968 0.0057 0.0758
ζ 0.7942 0.6958 0.8341 0.9728 0.6908 0.8312 1.0070 0.5632 0.7505 1.0571 0.4393 0.6628 1.0709 0.4175 0.6461 1.0308 0.2543 0.5043
MPSE ϑ 1.6409 2.4661 1.5704 0.8846 0.3865 0.6217 0.6718 0.1168 0.3418 0.6015 0.0468 0.2164 0.5819 0.0284 0.1686 0.5690 0.0195 0.1397
β 0.2863 0.1140 0.3376 0.3846 0.0392 0.1981 0.4416 0.0173 0.1317 0.4630 0.0082 0.0906 0.4680 0.0052 0.0721 0.4739 0.0037 0.0605
ζ 0.5706 0.6731 0.8204 0.8231 0.6721 0.8198 0.9625 0.7836 0.8852 0.8954 0.2736 0.5231 0.8666 0.1437 0.3791 0.8483 0.0541 0.2326
LSE ϑ 1.1887 1.4408 1.2003 0.8041 0.4461 0.6679 0.6646 0.1846 0.4297 0.5586 0.0726 0.2694 0.5316 0.0530 0.2302 0.5156 0.0367 0.1915
β 0.3738 0.0757 0.2751 0.4221 0.0351 0.1873 0.4527 0.0205 0.1433 0.4832 0.0102 0.1009 0.4904 0.0077 0.0879 0.4967 0.0057 0.0757
ζ 0.8989 1.1393 1.0674 1.0240 0.8770 0.9365 1.0272 0.6153 0.7844 1.0818 0.5130 0.7163 1.0600 0.3786 0.6153 1.0297 0.2571 0.5070
WLSE ϑ 1.1872 1.5672 1.2519 0.7531 0.4282 0.6544 0.6228 0.1842 0.4292 0.5374 0.0770 0.2775 0.5206 0.0558 0.2362 0.5088 0.0388 0.1969
β 0.3809 0.0791 0.2813 0.4388 0.0347 0.1863 0.4676 0.0210 0.1448 0.4913 0.0109 0.1045 0.4946 0.0082 0.0903 0.4993 0.0061 0.0779
ζ 1.2807 4.2572 2.0633 1.4199 3.2893 1.8136 1.3657 2.4439 1.5633 1.2739 1.4594 1.2081 1.1559 0.8125 0.9014 1.0922 0.5330 0.7301
MSALDE ϑ 1.0065 0.7352 0.8574 0.7556 0.2653 0.5151 0.6354 0.1126 0.3355 0.5541 0.0488 0.2209 0.5365 0.0316 0.1779 0.5226 0.0232 0.1522
β 0.4375 0.0783 0.2797 0.4364 0.0286 0.1692 0.4587 0.0168 0.1295 0.4836 0.0081 0.0898 0.4865 0.0056 0.0747 0.4931 0.0041 0.0640
ζ 0.7092 0.3967 0.6298 0.8841 0.5215 0.7222 0.9330 0.3860 0.6213 0.9900 0.3335 0.5775 0.9576 0.1951 0.4418 0.9506 0.1208 0.3476
PE ϑ 0.8756 0.8254 0.9085 0.5723 0.2009 0.4482 0.5212 0.0992 0.3150 0.5074 0.0448 0.2117 0.5036 0.0296 0.1721 0.5028 0.0216 0.1470
β 0.4388 0.0777 0.2788 0.4839 0.0275 0.1659 0.4955 0.0157 0.1251 0.4979 0.0078 0.0880 0.4986 0.0053 0.0725 0.5002 0.0039 0.0628
ζ 2.8020 22.4899 4.7424 2.4040 13.8550 3.7222 1.7880 6.4869 2.5469 1.2053 1.2067 1.0985 1.0730 0.5175 0.7194 1.0005 0.1831 0.4280
MSSLE ϑ 1.4797 2.2101 1.4866 0.8498 0.4014 0.6336 0.6510 0.1331 0.3649 0.5644 0.0506 0.2250 0.5407 0.0329 0.1814 0.5328 0.0230 0.1516
β 0.3597 0.0946 0.3076 0.4068 0.0369 0.1922 0.4549 0.0187 0.1369 0.4795 0.0086 0.0927 0.4857 0.0058 0.0760 0.4894 0.0041 0.0643
ζ 0.6161 0.6919 0.8318 0.9044 0.9389 0.9690 1.0302 0.9337 0.9663 0.9995 0.4426 0.6653 0.9758 0.2860 0.5348 0.9382 0.1447 0.3804

Table 7. Results for the eight estimation methods considering ϑ = 0.5, β = 0.9 and ζ = 0.5.

n 20 50 100 200 320 450
Method Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE
MLE ϑ 0.9210 0.5604 0.7486 0.6354 0.0980 0.3131 0.5641 0.0327 0.1808 0.5426 0.0144 0.1199 0.5306 0.0078 0.0882 0.5309 0.0055 0.0744
β 0.8857 0.3505 0.5921 0.8762 0.0440 0.2097 0.8866 0.0144 0.1198 0.8923 0.0072 0.0846 0.9015 0.0044 0.0661 0.8974 0.0028 0.0533
ζ 0.4727 0.3187 0.5645 0.5040 0.1189 0.3449 0.5024 0.0497 0.2230 0.4906 0.0148 0.1218 0.4875 0.0075 0.0866 0.4838 0.0050 0.0711
CME ϑ 0.8872 0.6115 0.7820 0.6685 0.2008 0.4481 0.5519 0.0719 0.2682 0.5210 0.0338 0.1839 0.4971 0.0246 0.1568 0.5059 0.0157 0.1252
β 1.0044 0.8087 0.8993 0.8962 0.0941 0.3068 0.8825 0.0176 0.1325 0.8892 0.0092 0.0957 0.8922 0.0052 0.0725 0.8933 0.0034 0.0585
ζ 0.5689 0.3915 0.6257 0.5938 0.2712 0.5208 0.6110 0.1998 0.4470 0.5647 0.0804 0.2835 0.5692 0.0633 0.2516 0.5327 0.0259 0.1609
MPSE ϑ 1.2099 1.2517 1.1188 0.7183 0.1517 0.3895 0.6085 0.0440 0.2097 0.5689 0.0191 0.1381 0.5489 0.0101 0.1005 0.5449 0.0070 0.0835
β 0.9817 0.9848 0.9924 0.8836 0.0570 0.2388 0.8897 0.0167 0.1294 0.8935 0.0081 0.0903 0.9024 0.0048 0.0692 0.8980 0.0030 0.0550
ζ 0.4053 0.2749 0.5243 0.4704 0.1393 0.3732 0.4746 0.0355 0.1883 0.4750 0.0149 0.1219 0.4759 0.0078 0.0884 0.4746 0.0054 0.0732
LSE ϑ 0.8672 0.6113 0.7819 0.6601 0.2031 0.4507 0.5482 0.0708 0.2660 0.5205 0.0340 0.1843 0.4967 0.0247 0.1573 0.5059 0.0157 0.1252
β 1.0149 0.8707 0.9331 0.8933 0.0930 0.3049 0.8824 0.0173 0.1315 0.8891 0.0092 0.0958 0.8920 0.0053 0.0726 0.8933 0.0034 0.0585
ζ 0.6828 0.9020 0.9497 0.6404 0.4273 0.6537 0.6227 0.2257 0.4751 0.5677 0.0900 0.3000 0.5716 0.0693 0.2633 0.5327 0.0259 0.1609
WLSE ϑ 0.8351 0.5961 0.7721 0.6331 0.2031 0.4506 0.5301 0.0773 0.2780 0.5182 0.0348 0.1865 0.4963 0.0249 0.1578 0.5059 0.0157 0.1252
β 0.9903 0.6750 0.8216 0.8859 0.0902 0.3004 0.8758 0.0180 0.1343 0.8883 0.0093 0.0963 0.8919 0.0053 0.0728 0.8933 0.0034 0.0585
ζ 0.8824 2.0834 1.4434 0.8355 1.4565 1.2068 0.7795 0.9475 0.9734 0.5873 0.1779 0.4218 0.5742 0.0763 0.2763 0.5327 0.0259 0.1609
MSALDE ϑ 0.9489 0.6063 0.7786 0.6707 0.1544 0.3929 0.5569 0.0453 0.2127 0.5282 0.0222 0.1489 0.5166 0.0130 0.1142 0.5123 0.0083 0.0910
β 1.1008 1.1212 1.0588 0.8943 0.0701 0.2648 0.8914 0.0219 0.1480 0.8918 0.0108 0.1037 0.8994 0.0065 0.0804 0.8966 0.0042 0.0647
ζ 0.4131 0.1381 0.3717 0.4858 0.1037 0.3220 0.5277 0.0775 0.2785 0.5208 0.0370 0.1924 0.5097 0.0176 0.1329 0.5056 0.0104 0.1022
PE ϑ 0.7311 0.3859 0.6212 0.5226 0.0944 0.3072 0.4983 0.0385 0.1962 0.5066 0.0191 0.1381 0.4966 0.0125 0.1120 0.5047 0.0077 0.0879
β 0.8742 0.2903 0.5388 0.8546 0.0352 0.1877 0.8752 0.0130 0.1139 0.8849 0.0069 0.0830 0.8962 0.0042 0.0649 0.8958 0.0027 0.0522
ζ 1.0507 3.5801 1.8921 0.9640 2.2732 1.5077 0.6624 0.4218 0.6494 0.5519 0.0850 0.2916 0.5358 0.0239 0.1547 0.5150 0.0108 0.1037
MSSLE ϑ 1.1000 1.1272 1.0617 0.6766 0.1400 0.3742 0.5693 0.0495 0.2226 0.5367 0.0207 0.1440 0.5225 0.0121 0.1098 0.5211 0.0074 0.0861
β 1.0804 0.8151 0.9028 0.9128 0.0715 0.2675 0.8959 0.0208 0.1442 0.8966 0.0096 0.0981 0.9006 0.0056 0.0749 0.8997 0.0037 0.0610
ζ 0.4488 0.3242 0.5694 0.5291 0.3169 0.5630 0.5373 0.1302 0.3608 0.5105 0.0305 0.1746 0.5048 0.0161 0.1268 0.4958 0.0081 0.0900

Table 8. Results for the eight estimation methods considering ϑ = 0.9, β = 0.5 and ζ = 0.5.

n 20 50 100 200 320 450
Method Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE
MLE ϑ 1.6708 1.5943 1.2627 1.1305 0.2994 0.5471 1.0253 0.1156 0.3400 0.9715 0.0441 0.2099 0.9579 0.0265 0.1629 0.9509 0.0179 0.1338
β 0.3763 0.0832 0.2884 0.4459 0.0315 0.1774 0.4704 0.0148 0.1216 0.4831 0.0071 0.0845 0.4846 0.0045 0.0669 0.4854 0.0031 0.0561
ζ 0.4655 0.3525 0.5937 0.5144 0.1458 0.3819 0.4953 0.0444 0.2107 0.4881 0.0138 0.1174 0.4869 0.0079 0.0889 0.4874 0.0055 0.0743
CME ϑ 1.7061 2.2807 1.5102 1.1390 0.5939 0.7707 0.9940 0.2172 0.4660 0.9305 0.1055 0.3248 0.9105 0.0688 0.2623 0.9020 0.0531 0.2304
β 0.4042 0.0841 0.2901 0.4620 0.0362 0.1902 0.4840 0.0178 0.1335 0.4961 0.0102 0.1012 0.4996 0.0069 0.0833 0.5010 0.0053 0.0728
ζ 0.5438 0.3627 0.6022 0.6439 0.3246 0.5697 0.6084 0.2148 0.4634 0.5709 0.1033 0.3214 0.5497 0.0522 0.2285 0.5416 0.0322 0.1794
MPSE ϑ 2.1273 3.2286 1.7968 1.2941 0.5061 0.7114 1.1130 0.1661 0.4075 1.0170 0.0578 0.2403 0.9920 0.0339 0.1841 0.9761 0.0225 0.1501
β 0.3354 0.1081 0.3288 0.4140 0.0397 0.1993 0.4482 0.0180 0.1343 0.4705 0.0082 0.0908 0.4748 0.0051 0.0715 0.4780 0.0036 0.0597
ζ 0.3876 0.2001 0.4473 0.4728 0.0977 0.3125 0.4709 0.0499 0.2233 0.4732 0.0140 0.1184 0.4746 0.0082 0.0904 0.4782 0.0058 0.0760
LSE ϑ 1.7147 2.5206 1.5876 1.1332 0.5939 0.7707 0.9921 0.2180 0.4669 0.9313 0.1050 0.3240 0.9105 0.0688 0.2623 0.9020 0.0531 0.2304
β 0.4102 0.0854 0.2922 0.4632 0.0362 0.1901 0.4844 0.0179 0.1336 0.4960 0.0102 0.1011 0.4996 0.0069 0.0833 0.5010 0.0053 0.0728
ζ 0.6106 0.6309 0.7943 0.6617 0.3844 0.6200 0.6134 0.2255 0.4748 0.5681 0.0953 0.3087 0.5497 0.0522 0.2285 0.5416 0.0322 0.1794
WLSE ϑ 1.6339 2.4721 1.5723 1.0713 0.5980 0.7733 0.9600 0.2329 0.4826 0.9240 0.1096 0.3310 0.9090 0.0697 0.2640 0.9020 0.0531 0.2304
β 0.4245 0.0830 0.2880 0.4758 0.0358 0.1891 0.4917 0.0184 0.1358 0.4977 0.0104 0.1021 0.5000 0.0070 0.0836 0.5010 0.0053 0.0728
ζ 0.8874 2.2587 1.5029 0.9177 1.7184 1.3109 0.7487 0.8196 0.9053 0.6001 0.2287 0.4782 0.5535 0.0603 0.2455 0.5416 0.0322 0.1794
MSALDE ϑ 1.6058 1.5439 1.2425 1.1354 0.3532 0.5943 1.0296 0.1728 0.4157 0.9433 0.0711 0.2666 0.9315 0.0421 0.2051 0.9208 0.0294 0.1714
β 0.4600 0.1109 0.3331 0.4639 0.0344 0.1855 0.4751 0.0187 0.1368 0.4929 0.0100 0.0998 0.4937 0.0062 0.0785 0.4952 0.0045 0.0669
ζ 0.4393 0.2795 0.5287 0.5286 0.2022 0.4497 0.5182 0.0846 0.2908 0.5209 0.0379 0.1947 0.5106 0.0198 0.1406 0.5101 0.0136 0.1167
PE ϑ 1.2946 1.2147 1.1022 0.9297 0.2864 0.5352 0.9215 0.1289 0.3591 0.9087 0.0601 0.2452 0.9074 0.0362 0.1903 0.9002 0.0272 0.1650
β 0.4416 0.0653 0.2556 0.4933 0.0285 0.1687 0.4975 0.0146 0.1206 0.5010 0.0081 0.0898 0.5004 0.0052 0.0718 0.5014 0.0038 0.0620
ζ 1.2070 5.1576 2.2710 0.9623 2.2067 1.4855 0.6546 0.4850 0.6964 0.5513 0.0713 0.2671 0.5239 0.0194 0.1393 0.5225 0.0136 0.1167
MSSLE ϑ 1.9465 2.9398 1.7146 1.2315 0.5664 0.7526 1.0435 0.1751 0.4185 0.9611 0.0687 0.2622 0.9477 0.0387 0.1967 0.9314 0.0253 0.1589
β 0.4176 0.1253 0.3539 0.4461 0.0412 0.2031 0.4749 0.0187 0.1368 0.4900 0.0094 0.0972 0.4902 0.0058 0.0760 0.4934 0.0040 0.0631
ζ 0.4450 0.3787 0.6154 0.5595 0.3186 0.5644 0.5264 0.1247 0.3532 0.5134 0.0417 0.2042 0.4996 0.0160 0.1264 0.5015 0.0100 0.0999

Table 9. Results for the eight estimation methods considering ϑ = 1.5, β = 0.5 and ζ = 0.5.

n 20 50 100 200 320 450
Method Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE
MLE ϑ 2.6193 3.8729 1.9680 1.8872 0.8630 0.9290 1.6976 0.3260 0.5710 1.6309 0.1243 0.3526 1.6024 0.0758 0.2753 1.5828 0.0492 0.2218
β 0.3982 0.0713 0.2671 0.4494 0.0300 0.1732 0.4703 0.0154 0.1243 0.4783 0.0075 0.0866 0.4848 0.0046 0.0679 0.4878 0.0031 0.0558
ζ 0.4732 0.2396 0.4895 0.5200 0.1671 0.4088 0.5060 0.0649 0.2547 0.4864 0.0134 0.1157 0.4838 0.0079 0.0891 0.4859 0.0053 0.0727
CME ϑ 2.6831 5.2859 2.2991 1.9350 1.7284 1.3147 1.6678 0.7210 0.8491 1.5577 0.3429 0.5856 1.4948 0.1872 0.4326 1.5134 0.1308 0.3617
β 0.4173 0.0747 0.2734 0.4595 0.0354 0.1882 0.4796 0.0208 0.1442 0.4924 0.0120 0.1096 0.5039 0.0070 0.0836 0.5011 0.0048 0.0694
ζ 0.5691 0.4298 0.6556 0.6226 0.3160 0.5622 0.6204 0.2198 0.4688 0.5771 0.0977 0.3126 0.5597 0.0639 0.2528 0.5326 0.0291 0.1706
MPSE ϑ 3.4615 8.7674 2.9610 2.1424 1.3411 1.1581 1.8215 0.4318 0.6571 1.7128 0.1673 0.4090 1.6574 0.0960 0.3099 1.6237 0.0614 0.2478
β 0.3472 0.0953 0.3086 0.4181 0.0372 0.1928 0.4518 0.0181 0.1347 0.4645 0.0088 0.0936 0.4752 0.0052 0.0722 0.4806 0.0035 0.0589
ζ 0.3992 0.2170 0.4659 0.4772 0.1326 0.3641 0.4849 0.0627 0.2505 0.4703 0.0140 0.1181 0.4722 0.0083 0.0908 0.4769 0.0056 0.0748
LSE ϑ 2.6768 5.8865 2.4262 1.8974 1.6749 1.2942 1.6585 0.7424 0.8616 1.5563 0.3443 0.5868 1.4949 0.1870 0.4324 1.5134 0.1308 0.3617
β 0.4202 0.0748 0.2735 0.4638 0.0351 0.1872 0.4811 0.0210 0.1451 0.4926 0.0120 0.1097 0.5039 0.0070 0.0835 0.5011 0.0048 0.0694
ζ 0.6664 0.8144 0.9025 0.6607 0.4042 0.6357 0.6382 0.2606 0.5105 0.5808 0.1098 0.3314 0.5590 0.0601 0.2451 0.5326 0.0291 0.1706
WLSE ϑ 2.6122 6.1195 2.4738 1.8011 1.6864 1.2986 1.5987 0.7824 0.8845 1.5427 0.3579 0.5982 1.4911 0.1913 0.4373 1.5134 0.1308 0.3617
β 0.4271 0.0744 0.2728 0.4761 0.0349 0.1868 0.4893 0.0215 0.1467 0.4945 0.0122 0.1106 0.5044 0.0071 0.0840 0.5011 0.0048 0.0694
ζ 0.8746 1.9623 1.4008 0.9090 1.7407 1.3193 0.7949 0.9999 1.0000 0.6159 0.2560 0.5059 0.5668 0.0821 0.2865 0.5326 0.0291 0.1706
MSALDE ϑ 2.4269 3.0465 1.7454 1.9089 1.0452 1.0224 1.6968 0.4579 0.6767 1.5813 0.1930 0.4393 1.5491 0.1204 0.3470 1.5320 0.0754 0.2746
β 0.4894 0.1286 0.3586 0.4615 0.0340 0.1844 0.4775 0.0200 0.1415 0.4879 0.0099 0.0994 0.4941 0.0064 0.0798 0.4978 0.0043 0.0655
ζ 0.4536 0.2352 0.4850 0.5225 0.1864 0.4317 0.5158 0.0635 0.2519 0.5221 0.0431 0.2076 0.5129 0.0225 0.1501 0.5072 0.0119 0.1092
PE ϑ 2.0106 2.3064 1.5187 1.5234 0.7387 0.8595 1.4997 0.3961 0.6294 1.5202 0.1745 0.4177 1.5038 0.1025 0.3202 1.5078 0.0677 0.2602
β 0.4575 0.0576 0.2400 0.5015 0.0260 0.1613 0.5007 0.0163 0.1276 0.4976 0.0088 0.0937 0.5029 0.0052 0.0722 0.5019 0.0036 0.0598
ζ 0.9826 2.9170 1.7079 1.0007 2.4602 1.5685 0.7150 0.6414 0.8009 0.5487 0.0587 0.2424 0.5275 0.0232 0.1522 0.5160 0.0117 0.1084
MSSLE ϑ 3.0474 7.0591 2.6569 2.0169 1.4014 1.1838 1.7115 0.4435 0.6660 1.6266 0.1840 0.4290 1.5817 0.1087 0.3297 1.5472 0.0707 0.2659
β 0.4373 0.0997 0.3158 0.4557 0.0390 0.1975 0.4765 0.0186 0.1362 0.4822 0.0094 0.0970 0.4908 0.0061 0.0778 0.4965 0.0041 0.0642
ζ 0.4948 0.5611 0.7491 0.5440 0.2795 0.5287 0.5393 0.1518 0.3897 0.5071 0.0546 0.2336 0.4972 0.0143 0.1195 0.5011 0.0097 0.0987

To provide a holistic view, Table 11 summarizes the sum of ranks and overall ranks of the MSE and RMSE across all tables. This comparative analysis highlights the effectiveness of each estimation method. We can deduce the following key findings:

Table 11. Sum of ranks for the results of Tables 510.

Parameters n MLE CME MPSE LSE WLSE MSALDE PE MSSLE
ϑ = 0.5, β = 0.5 and ζ = 0.5 20 2 6 4 8 6 1 3 6
50 1 5 4 6.5 8 2 3 6.5
100 1 5 2 6 8 4 3 7
200 1 6 2 7 8 5 3 4
320 1 6 2 7 8 5 4 3
450 1 7 2 7 7 5 4 3
ϑ = 0.5, β = 0.5 and ζ = 0.9 20 5 3 7.5 3 7.5 1 3 6
50 2 4 5 7 7 1 3 7
100 1 5.5 4 7 8 2 3 5.5
200 1 6 2 7 8 3 4 5
320 1 7 2 6 8 3 4 5
450 1 7 2 6 8 4 3 5
ϑ = 0.5, β = 0.9 and ζ = 0.5 20 1 5 7.5 7.5 3.5 3.5 2 6
50 1 6 3 8 7 3 3 5
100 1 6 2 5 8 4 3 7
200 1 5 2 7 8 6 3 4
320 1 5 2 7 8 6 3 4
450 1 7 2 7 7 5 3 4
ϑ = 0.9, β = 0.5 and ζ = 0.5 20 1 4 6 7 5 3 2 8
50 1 7 4 5.5 8 2 3 5.5
100 1 4 3 6 8 5 2 7
200 1 7 2 6 8 5 3 4
320 1 6.5 2 6.5 8 5 3 4
450 1 7 2 7 7 5 4 3
ϑ = 1.5, β = 0.5 and ζ = 0.5 20 1 3.5 5 6.5 6.5 3.5 2 8
50 1 8 4 5.5 7 2 3 5.5
100 1 6 2 7 8 4 3 5
200 1 6 2 7 8 5 3 4
320 1 7 2 6 8 5 3 4
450 1 7 2 7 7 5 3 4
ϑ = 1.5, β = 1.5 and ζ = 0.5 20 1 4 7 6 5 2.5 2.5 8
50 1 7.5 2 5.5 7.5 3.5 3.5 5.5
100 1 7 2 6 8 4 3 5
200 1 6 2 7 8 5 3 4
320 1 6 2 7 8 5 4 3
450 1 7 2 7 7 5 4 3
∑ Ranks 42 212 110 234.5 265 138 111 183.5
Overall Ranks 1 6 2 7 8 4 3 5
  • MSE and RMSE show a decreasing trend with increasing n for all estimation methods. This emphasizes the consistency.

  • For all parameters (ϑ, β, ζ), the mean estimates converge towards the initial parameter values as n increases.

  • The overall ranks in Table 11 show that MLE leads to the best results when estimating the parameters.

  • MLE is the top-performing method, showing the lowest MSE and RMSE values across all parameters and sample sizes.

  • MPSE follows closely behind MLE, with competitive MSE and RMSE values. It performs well across different parameter values, especially with larger sample sizes.

  • PE is preferred after MLE and MPSE, however, it may require larger sample sizes to achieve optimal performance.

  • The other methods according to their ranks (after MLE, MPSE and PE) are MSALDE (which performs well at small sample sizes), MSSLE, CME, LSE and WLSE.

8 Data analysis

The relevance and importance of the MKWD are demonstrated in this section through the use of two real data sets. The data sets are given in Sections 8.1 and 8.2, and their box plots and the total time on test (TTT) plots can be found in Figs 4 and 5. From Fig 4 we note that both data sets are skewed to right, and from Fig 5 we note that the estimated hrf for both data sets are decreasing. The goodness-of-fit criteria, MLEs of parameters and standard errors (SEs) (we focus on ML as it has turned out to be the best estimation method, see Section 7) of the proposed model are compared to those of other competing models. The competing models are modified WD (MWD) [38], exponentiated transmuted generalized Rayleigh distribution (ETGRD) [39], transmuted modified WD (TMWD) [40], new modified WD (NMWD) [41], exponentiated exponential WD (EEWD) [42], transmuted complementary Weibull geometric distribution (TCWGD) [43] and beta WD (BWD) [44]. Based on the results in Tables 1215, it is clear that the MKWD exhibits the best modeling ability among the models investigated. This is demonstrated by the lowest Akaike information criterion (ζ1), Bayesian information criterion (ζ2), consistency of ζ1 (ζ3), Hannan-Quinn information criterion (ζ4), Kolmogorov-Smirnov test statistic (ζ5), Cramér-von-Mises test statistic (ζ7), Anderson-Darling test statistic (ζ8) values, and largest p-value related to ζ5 (ζ6). Figs 611 (estimated pdf, cdf, PP plots for both data sets) also justify this claim, demonstrating the superiority of the MKWD over its competitors.

Fig 4. Box plots for both data sets.

Fig 4

Fig 5. TTT plots for both data sets.

Fig 5

Table 12. MLEs and SEs for data set 1.

Model β^ SE(β^) ϑ^ SE(ϑ^) ζ^ SE(ζ^) α^ SE(α^) λ^ SE(λ^)
MKWD 0.6876 0.8146 0.0057 0.0173 106.1439 2.8741
MWD 0.6570 0.1335 1.1441 0.2889 0.0917 0.0200
ETGRD 0.0467 0.0189 0.0495 0.0124 18.2450 12.2752 0.9556 0.0540
TMWD 0.5035 2.6679 0.9402 0.2225 0.8231 2.6489 0.0516 0.4631
NMWD 0.2552 0.1721 0.0513 0.1701 0.8580 0.1309 0.0385 0.1317 0.8553 0.4374
EEWD 1.1850 0.4015 0.2385 1.3534 0.7567 0.1470 0.1329 0.5768
TCWGD 1.1862 1.3029 0.8612 0.1202 0.2142 0.0968 0.0009 0.8886
BWD 0.1240 0.2969 0.7404 0.1750 1.2195 0.4791 1.9909 3.7550

Table 15. Goodness-of-fit criteria for data set 2.

Distribution ζ 1 ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8
MKWD 1077.9050 1088.0030 1078.0200 1081.9860 0.0436 0.8105 0.0543 0.3893
MWD 1092.9150 1103.0130 1093.0290 1096.9950 0.0858 0.0854 0.0968 0.7903
ETGRD 1078.6220 1092.0860 1078.8130 1084.0620 0.0488 0.6890 0.0664 0.4148
TMWD 1079.3850 1092.8490 1079.5760 1084.8250 0.0496 0.6684 0.0645 0.4121
NMWD 1081.5420 1098.3720 1081.8310 1088.3430 0.0497 0.6657 0.0685 0.4312
EEWD 1079.3610 1092.8250 1079.5520 1084.8010 0.0525 0.5973 0.0756 0.4560
TCWGD 1079.6540 1093.1180 1079.8450 1085.0940 0.0493 0.6753 0.0678 0.4301
BWD 1079.3290 1092.7930 1079.5200 1084.7690 0.0528 0.5889 0.0766 0.4593

Fig 6. Estimated pdf plots of data set 1.

Fig 6

Fig 11. Estimated PP plots of data set 2.

Fig 11

Fig 7. Estimated cdf plots of data set 1.

Fig 7

Fig 8. Estimated PP plots of data set 1.

Fig 8

Fig 9. Estimated pdf plots of data set 2.

Fig 9

Fig 10. Estimated cdf plots of data set 2.

Fig 10

Table 13. Goodness-of-fit criteria for data set 1.

Distribution ζ 1 ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8
MKWD 1057.4012 1067.4568 1057.5171 1061.4658 0.0387 0.9108 0.0546 0.3905
MWD 1071.4420 1081.4980 1071.5580 1075.5070 0.0997 0.0302 0.0991 0.8156
ETGRD 1058.0590 1071.4660 1058.2530 1063.4780 0.0459 0.7660 0.0762 0.4689
TMWD 1059.0120 1072.4190 1059.2060 1064.4310 0.0436 0.8179 0.0655 0.4240
NMWD 1061.1850 1077.9450 1061.4780 1067.9600 0.0428 0.8333 0.0646 0.4237
EEWD 1059.0710 1072.4780 1059.2650 1064.4900 0.0448 0.7919 0.0696 0.4419
TCWGD 1059.2670 1072.6750 1059.4620 1064.6870 0.0419 0.8533 0.0629 0.4197
BWD 1059.0530 1072.4610 1059.2470 1064.4730 0.0450 0.7858 0.0706 0.4456

Table 14. MLEs and SEs for data set 2.

Model β^ SE(β^) ϑ^ SE(ϑ^) ζ^ SE(ζ^) α^ SE(α^) λ^ SE(λ^)
MKWD 0.6842 0.1048 0.0088 0.0001 70.7497 0.8073
MWD 0.6603 0.1305 1.1961 0.2951 0.0952 0.0202
ETGRD 0.0662 0.0364 0.0538 0.0110 11.3056 10.0106 0.9484 0.0558
TMWD 1.3674 4.2841 0.9771 0.0616 1.6696 4.3035 0.0662 0.5141
NMWD 0.2180 0.1875 0.0655 0.1838 0.9030 0.1501 0.0338 0.1230 0.8984 0.3600
EEWD 1.2412 0.4250 1.8171 22.5763 0.7708 0.1495 0.6205 5.9609
TCWGD 1.2674 1.3569 0.9113 0.1243 0.2006 0.0850 0.0001 0.8527
BWD 0.1008 0.3704 0.7474 0.1840 1.2918 0.5278 2.4378 7.1105

8.1 Data set 1: proportion of global per capita CO2 emissions in 2020

The first data set shows the proportion of global CO2 emissions per person for 211 nations in 2020. The data set, which was previously utilized in [45], is given by: 0.18, 1.88, 0.58, 3.53, 20.32, 5.39, 7.41, 0.11, 0.68, 2.09, 0.71, 0.26, 0.26, 0.21, 3.8, 0.73, 3.78, 0.99, 0.31, 2.16, 1.76, 5.01, 11.47, 6.53, 0.94, 3.37, 1.93, 6.08, 7.69, 0.67, 5, 0.04, 15.37, 0.56, 4.85, 14, 6.75, 4.66, 9.06, 1.68, 2.62, 2.56, 0.36, 15.52, 1.36, 0.57, 1.75, 0.08, 6.04, 1.75, 3.32, 8.6, 2.5, 2.56, 6.26, 0.92, 0.03, 7.62, 17.97, 0.59, 1.99, 1.53, 1.06, 0.4, 5.63, 5.24, 8.42, 6.94, 0.43, 4.89, 7.09, 3.47, 13.06, 0.64, 8.15, 1.02, 0.13, 3.99, 12.12, 0.43, 5.07, 2.5, 1.14, 0.04, 5.94, 1.06, 4.47, 0.07, 4.99, 1.93, 8.23, 0.38, 1.24, 5.02, 1.47, 6.73, 0.51, 30.45, 0.36, 20.55, 12.17, 0.77, 0.62, 26.98, 2.36, 3.96, 2.38, 4.24, 2.4, 1.56, 3.79, 2.44, 2.98, 7.32, 0.07, 4.65, 3.43, 6.51, 0.2, 3.61, 23.22, 12.49, 0.99, 15.19, 3.83, 0.26, 7.05, 2.77, 14.24, 4.25, 4.94, 2.51, 0.05, 0.98, 0.15, 3.72, 1.55, 7.62, 2.5, 5.07, 0.06, 0.3, 1.24, 6.98, 5.23, 1.55, 10.81, 2.2, 1.77, 0.11, 7.92, 6.4, 2.81, 11.66, 6.03, 2.95, 1.74, 0.56, 1.36, 0.61, 0.74, 0.17, 3.7, 0.99, 0.11, 8.87, 0.21, 2.77, 0.2, 4.52, 25.37, 14.2, 5.24, 20.83, 1.28, 3.69, 0.82, 3.59, 1.78, 8.06, 5.38, 3.73, 8.22, 7.23, 2.5, 3.68, 1.77, 0.33, 0.13, 0.55, 4.52, 0.19, 1.06, 2.61, 4.14, 1.58, 37.02, 8.74, 4.4, 4.61, 7.88, 0.51, 1.75, 10.03, 3.72, 1.94, 0.3, 3.13, 0.26, 7.78, 7.38.

8.2 Data set 2: proportion of global per capita CO2 emissions in 2022

The second data set comprises the proportion of global CO2 emissions per person for 214 nations in 2022. The electronic address from where it is taken is as follows: https://ourworldindata.org/. The data set consists of the following values: 0.295, 1.743, 3.927, 4.617, 0.452, 8.753, 6.422, 4.238, 2.305, 8.133, 14.985, 6.878, 3.675, 5.171, 25.672, 0.596, 4.377, 6.167, 7.688, 1.789, 0.631, 6.937, 1.349, 1.758, 4.083, 6.103, 2.839, 2.245, 5.004, 23.95, 6.804, 0.263, 0.062, 1.19, 0.343, 14.249, 0.959, 0.041, 0.134, 4.304, 7.993, 1.922, 0.493, 1.245, 3.995, 1.523, 0.417, 4.349, 1.866, 9.189, 5.617, 9.336, 0.036, 4.94, 0.404, 2.106, 2.105, 0.499, 2.312, 2.333, 1.217, 3.031, 0.189, 7.776, 1.053, 0.155, 14.085, 1.155, 6.527, 4.604, 2.851, 2.388, 0.285, 2.963, 7.984, 0.622, 5.745, 10.474, 2.713, 1.076, 0.357, 0.155, 4.374, 0.211, 1.07, 4.082, 4.45, 9.5, 1.997, 2.646, 7.799, 4.025, 7.721, 6.209, 5.727, 2.295, 8.502, 2.03, 13.98, 0.46, 0.518, 4.831, 25.578, 1.425, 3.08, 3.562, 4.354, 1.359, 0.165, 9.242, 3.81, 4.606, 11.618, 1.513, 0.149, 0.103, 8.577, 3.248, 0.312, 3.104, 3.635, 0.957, 3.27, 4.015, 1.324, 1.657, 11.151, 3.656, 4.845, 1.826, 0.243, 0.645, 1.54, 4.17, 0.507, 7.137, 17.641, 6.212, 0.799, 0.117, 0.589, 3.873, 1.951, 3.625, 7.509, 15.73, 0.849, 12.124, 0.666, 2.699, 0.771, 1.33, 1.789, 1.301, 8.107, 4.051, 37.601, 3.74, 11.417, 0.112, 3.299, 4.708, 2.615, 10.293, 2.296, 1.122, 0.582, 18.197, 0.674, 6.025, 6.15, 0.131, 8.912, 14.352, 6.052, 5.998, 0.412, 0.037, 6.746, 11.599, 0.168, 5.164, 0.794, 0.47, 5.803, 3.607, 4.048, 1.249, 11.631, 1.006, 0.238, 3.776, 0.291, 1.769, 22.424, 2.879, 5.105, 11.034, 7.637, 1, 0.127, 3.558, 25.833, 4.72, 14.95, 2.306, 3.483, 0.636, 2.717, 3.5, 2.282, 0.337, 0.446, 0.543.

9 Modified Kies Weibull quantile regression

In some lifetime scenarios, we might require to investigate the impact of some exogenous variables on an endogenous variable. The concept of regression analysis offers researchers an alternative way to undertake such investigations. However, the choice of an appropriate regression model is paramount in order to make reliable inference. When the endogenous variable in question is asymmetric, heavy-tailed or contaminated with outliers, the adoption of a robust regression model such as the quantile regression model (QRM) is vital. In the following, we formulate a new QRM based on the MKWD to study the effect of exogenous variables on a response variable defined on the positive real line.

9.1 The quantile regression model

The formulation of the new QRM for modeling a response variable defined on the positive real line is due to its robustness in handling outliers and allowing the estimation of heterogeneous effects of exogenous variables through the evaluation of various quantiles. The MKW QRM is attained by re-parameterization of the distribution in terms of its quantile function (qf) (see [4648] for more details). Suppose that Y is a random variable that follows the MKWD and η ∈ (0, ∞) is a quantile parameter. Let η = Q(u) in Eq (9), making β the subject from the qf of the MKWD, yields β=η-ϑlog(1+(log(1/(1-p)))ζ-1), p ∈ (0, 1). Inserting β into Eq (8) gives us the re-parameterized density in terms of the qf. Thus, the density function of the MKWD is defined in terms of the qf as

f(y;ϑ,ζ,η)=ζη-ϑlog(1+(log(1/(1-p)))ζ-1)ϑyϑ-1eη-ϑlog(1+(log(1/(1-p)))ζ-1)ζyϑ(1-e-η-ϑlog(1+(log(1/(1-p)))ζ-1)yϑ)1-ζe(eη-ϑlog(1+(log(1/(1-p)))ζ-1)yϑ-1)ζ,y>0. (41)

For p = 0.10, 0.25, 0.50, 0.75, 0.90 and 0.95, the density function of the 10th, 25th, 50th, 75th, 90th and 95th percentiles are attained, respectively.

The MKW QRM is formulated using a monotonically increasing and twice differentiable link function to relate the exogenous variables to the conditional quantiles. Hence, we have

b(ηi)=ziτ,

where b(⋅) is the link function, ηi is the ith quantile parameter, τ = (τ0, τ1, …, τk)′ is the unknown vector of parameters and zi=(1,zi1,zi2,,zik) is the unknown ith vector of exogenous variables. Note that the MKW median regression is obtained when p = 0.50. In this paper, the logarithmic link function is used to link the exogenous variables to the conditional quantiles. Hence,

log(ηi)=ziτ,i=1,2,,n.

The log-likelihood function for estimating the parameters of the regression model for a sample of size n is obtained by substituting ηi into the re-parameterized density function of the MKWD. Hence, the log-likelihood is given by

=i=1nf(yi;ϑ,ζ,ηi). (42)

The estimates of the parameters are obtained by directly maximizing the log-likelihood function.

9.2 Model diagnostics

Examining the model adequacy is vital when fitting a model to a data set. The residuals obtained from fitting the model to the data set are often checked to ensure that they behave well and thus the model provides an adequate fit to the data. We employ the randomized quantile residuals (RQR) in this study to examine the adequacy of the model. The RQR are given by:

ei=Φ-1(F(yi;ϑ^,ζ^,τ^)),i=1,2,,n,

where Φ−1(⋅) is the qf of the standard normal (SN) distribution. If the model offers adequate fit to the data, the RQR are anticipated to follow the SN distribution [49].

9.3 Simulation experiments for the QRM

In this subsection, simulation experiments are executed utilizing three different scenarios of parameter combinations in order to evaluate the performance of the ML method in estimating the parameters of the QRM. The parameter combination used for scenarios I, II and III are: I: τ0 = 0.6, τ1 = −0.1, ϑ = 0.4, ζ = 0.5, II: τ0 = 4.3, τ1 = 0.3, ϑ = 0.2, ζ = 1.5 and III: τ0 = −0.3, τ1 = −0.1, ϑ = 3.2, ζ = 0.5. The experiments are accomplished using the conditional median regression. The experiments are repeated 1000 times for each sample size n = 25, 100, 250, 500, 800, 1000. During the simulations, we employ the following regression structure:

ηi=exp(τ0+τ1zi1),i=1,2,,n.

The exogenous variable, zi1, is generated using the SN distribution and is held fixed in the simulation process. The performance of the ML method is examined using the mean estimate (ME), average absolute bias (AAB), RMSE, coverage probability (CP) of the 95% confidence interval (CI), lower CI (LCI), upper CI (UCI) and average width of the CI (AWCI). From Tables 1618, it is observed that as the sample size increases, the MEs approaches the true parameter value, the AABs and RMSEs decrease as expected, the 95% CI CPs gets closer to the nominal value of 0.95, the CI becomes narrower and the AWCI decreases. The simulation results suggest that the MLEs are consistent and the ML method is able to estimate the regression parameters well.

Table 16. MKW QRM simulation results for scenario I.

Parameters n ME AAB RMSE CP LCI UCI AWCI
τ0 = 0.6 25 0.7652 0.7065 0.8561 0.9280 -0.9543 2.4848 3.4391
100 0.4963 0.3375 0.4392 0.9440 -0.3788 1.3714 1.7502
250 0.5903 0.2233 0.2826 0.9580 0.0354 1.1453 1.1099
500 0.5853 0.1581 0.1960 0.9510 0.1943 0.9762 0.7819
800 0.6072 0.1264 0.1584 0.9380 0.2991 0.9152 0.6161
1000 0.6016 0.1115 0.1386 0.9600 0.3259 0.8773 0.5514
τ1 = −0.1 25 -0.0959 0.5251 0.6913 0.8590 -1.2349 1.0431 2.2781
100 -0.0983 0.2169 0.2733 0.9130 -0.5855 0.3888 0.9743
250 -0.0988 0.1177 0.1476 0.9450 -0.3931 0.1955 0.5885
500 -0.0989 0.0872 0.1092 0.9390 -0.3036 0.1058 0.4094
800 -0.0975 0.0652 0.0793 0.9680 -0.2572 0.0621 0.3193
1000 -0.1040 0.0608 0.0761 0.9300 -0.2471 0.0390 0.2860
ϑ = 0.4 25 0.4901 0.2306 0.3122 0.9650 -0.2048 1.1851 1.3899
100 0.4243 0.0846 0.1205 0.9690 0.1753 0.6734 0.4981
250 0.4088 0.0578 0.0720 0.9690 0.2564 0.5613 0.3050
500 0.4025 0.0414 0.0518 0.9610 0.2979 0.5071 0.2091
800 0.4052 0.0337 0.0430 0.9530 0.3229 0.4876 0.1646
1000 0.4030 0.0293 0.0371 0.9560 0.3297 0.4762 0.1465
ζ = 0.5 25 0.7918 0.4730 1.0623 0.9090 -2.3811 3.9648 6.3460
100 0.5205 0.1187 0.3252 0.9490 0.0662 0.9749 0.9087
250 0.5056 0.0789 0.0975 0.9450 0.2900 0.7213 0.4313
500 0.5063 0.0576 0.0731 0.9440 0.3588 0.6538 0.2949
800 0.5004 0.0448 0.0577 0.9430 0.3872 0.6137 0.2265
1000 0.5016 0.0405 0.0522 0.9430 0.4002 0.6031 0.2029

Table 18. MKW QRM simulation results for scenario III.

Parameters n ME AAB RMSE CP LCI UCI AWCI
τ0 = −0.3 25 -0.2907 0.1049 0.1348 0.8660 -0.5078 -0.0736 0.4342
100 -0.3078 0.0558 0.0678 0.8990 -0.4188 -0.1968 0.2219
250 -0.2935 0.0267 0.0335 0.9470 -0.3616 -0.2254 0.1362
500 -0.2992 0.0206 0.0253 0.9600 -0.3480 -0.2504 0.0976
800 -0.3013 0.0157 0.0202 0.9290 -0.3399 -0.2627 0.0772
1000 -0.2983 0.0139 0.0174 0.9490 -0.3326 -0.2639 0.0687
τ1 = −0.1 25 -0.0971 0.0636 0.0860 0.8770 -0.2439 0.0498 0.2937
100 -0.1016 0.0262 0.0329 0.9140 -0.1616 -0.0415 0.1201
250 -0.0998 0.0151 0.0187 0.9540 -0.1363 -0.0632 0.0732
500 -0.1001 0.0103 0.0130 0.9470 -0.1253 -0.0748 0.0505
800 -0.1004 0.0083 0.0104 0.9390 -0.1205 -0.0803 0.0402
1000 -0.1003 0.0074 0.0094 0.9350 -0.1181 -0.0826 0.0355
ϑ = 3.2 25 3.9027 1.6938 2.2170 0.9700 -1.6902 9.4957 11.1858
100 3.4182 0.5944 0.8012 0.9920 1.3617 5.4747 4.1130
250 3.3189 0.4404 0.5616 0.9850 2.0923 4.5454 2.4531
500 3.2817 0.3068 0.3939 0.9740 2.4381 4.1253 1.6873
800 3.2271 0.2504 0.3223 0.9580 2.5687 3.8856 1.3169
1000 3.2362 0.2138 0.2726 0.9680 2.6492 3.8233 1.1741
ζ = 0.5 25 0.7798 0.4457 1.1977 0.9570 -3.0562 4.6158 7.6721
100 0.4963 0.0978 0.1344 0.9660 0.1476 0.8450 0.6974
250 0.5065 0.0756 0.1002 0.9350 0.2924 0.7206 0.4282
500 0.4958 0.0515 0.0654 0.9370 0.3530 0.6385 0.2854
800 0.5016 0.0433 0.0559 0.9620 0.3877 0.6154 0.2278
1000 0.5002 0.0362 0.0457 0.9580 0.3996 0.6009 0.2013

Table 17. MKW QRM simulation results for scenario II.

Parameters n ME AAB RMSE CP LCI UCI AWCI
τ0 = 4.3 25 4.3740 0.4904 0.6192 0.9330 3.1955 5.5525 2.3571
100 4.3452 0.2477 0.2959 0.9800 3.7437 4.9467 1.2030
250 4.3043 0.1489 0.1884 0.9680 3.9204 4.6882 0.7678
500 4.3174 0.1097 0.1391 0.9210 4.0480 4.5869 0.5390
800 4.2836 0.0883 0.1075 0.9600 4.0697 4.4976 0.4280
1000 4.2979 0.0713 0.0887 0.9730 4.1070 4.4888 0.3818
τ1 = 0.3 25 0.2922 0.4233 0.5384 0.8140 -0.5631 1.1475 1.7106
100 0.3002 0.1907 0.2407 0.9160 -0.1323 0.7327 0.8650
250 0.2988 0.1176 0.1472 0.9370 0.0291 0.5686 0.5395
500 0.3016 0.0782 0.0977 0.9520 0.1118 0.4913 0.3796
800 0.2986 0.0609 0.0765 0.9530 0.1471 0.4500 0.3030
1000 0.2994 0.0555 0.0688 0.9530 0.1644 0.4343 0.2699
ϑ = 0.2 25 0.5076 0.3619 0.5366 0.9730 -0.3469 1.3622 1.7091
100 0.2501 0.1146 0.1589 0.9410 -0.0712 0.5715 0.6426
250 0.2382 0.0774 0.1030 0.9460 0.0458 0.4306 0.3848
500 0.2157 0.0516 0.0666 0.9410 0.0815 0.3499 0.2683
800 0.2087 0.0467 0.0576 0.9280 0.1053 0.3120 0.2067
1000 0.2049 0.0381 0.0474 0.9470 0.1126 0.2973 0.1847
ζ = 1.5 25 1.6138 1.2699 2.0728 0.6450 -7.7622 10.9898 18.7520
100 1.9579 1.0274 2.4129 0.8660 -5.3917 9.3074 14.6992
250 1.6108 0.6396 1.2654 0.8410 -0.8106 4.0321 4.8427
500 1.5594 0.4066 0.6568 0.8760 0.3471 2.7717 2.4246
800 1.5687 0.3809 0.5338 0.8880 0.6459 2.4914 1.8455
1000 1.5532 0.3009 0.4065 0.9100 0.7721 2.3344 1.5623

9.4 Application

The potential of the MKW QRM is exemplified in this subsection. The QRM model is adopted to study the effect of gender on the survival times (in years) up to the inception of hypertension. The details of the data can be found in Anzagra et al. [46]. Anzagra et al. [46] model the data using the Chen Burr-Hatke exponential (CBHE) QRM and identified the 75th percentile as the best with ζ1 = 1022.7740 and ζ2 = 1033.8910. The data is fitted with the regression structure

ηi=exp(τ0+τ1genderi),i=1,2,,119,

where male = 1 and female = 0. Table 19 provides the parameter estimates and information criteria for various quantiles. It shows that “gender” is insignificant. Thus, an individual’s gender has no significant effect on the survival time to the inception of hypertension. The MKW QRM offers a better fit to the data than the CBHE QRM. Among the fitted quantile for the MKW QRM, the 25th percentile yielded the best fit with ζ1 and ζ2 values given as 1013.1460 and 1024.2620, respectively.

Table 19. Parameter estimates for various quantiles and information criteria.

p τ0^ τ1^ ϑ^ ζ^ ζ 1 ζ 2
0.01 Estimates 2.9769 0.0321 0.0350 87.5309 1016.6010 1027.7170
Standard error 0.0847 0.0459 0.0024 5.5861 × 10−6
p-value < 0.0001 0.4773 < 0.0001 < 0.0001
0.10 Estimates 3.4559 0.0005 0.0392 68.8501 1013.1490 1024.2650
Standard error 0.0619 0.0496 0.0030 2.3851 × 10−6
p-value < 0.0001 0.9921 < 0.0001 < 0.0001
0.25 Estimates 3.7259 0.0005 0.0395 68.5204 1013.1460 1024.2620
Standard error 0.0453 0.0496 0.0031 2.4681 × 10−6
p-value < 0.0001 0.9913 < 0.0001 < 0.0001
0.50 Estimates 3.9611 0.0005 0.0393 68.8010 1013.1480 1024.2650
Standard error 0.0349 0.0495 0.0031 1.9873 × 10−6
p-value < 0.0001 0.9914 < 0.0001 < 0.0001
0.75 Estimates 4.1460 0.0001 0.0159 169.6091 1013.5080 1024.6240
Standard error 0.0322 0.0497 0.0012 1.6435 × 10−7
p-value < 0.0001 0.9978 < 0.0001 < 0.0001
0.9 Estimates 4.2814 0.0004 0.0141 191.7239 1013.5360 1024.6530
Standard error 0.0341 0.0497 0.0011 1.7281 × 10−7
p-value < 0.0001 0.9937 < 0.0001 < 0.0001
0.95 Estimates 4.3513 0.0004 0.0307 87.8966 1013.2780 1024.3950
Standard error 0.0362 0.0496 0.0024 1.3344 × 10−6
p-value < 0.0001 0.9936 < 0.0001 < 0.0001
0.99 Estimates 4.4659 0.0003 0.0226 119.6513 1013.4040 1024.5210
Standard error 0.0410 0.0496 0.0018 1.0335 × 10−6
p-value < 0.0001 0.9956 < 0.0001 < 0.0001

The adequacy of the MKW QRM is evaluated by plotting the PP plots of the RQR, see Fig 12, which confirms that the MKW QRM offers reasonable fit to the data.

Fig 12. PP plots of RQR for the MKW QRM.

Fig 12

10 Concluding remarks

This article presented the MKWD, a novel lifetime distribution with three parameters. The statistical properties of the MKWD, including the quantile function, median, moments, mean, variance, skewness, kurtosis, coefficient of variation, moment generating function, incomplete and conditional moments, inequality measures, and order statistics, were computed. Various metrics of entropy and extropy were calculated for the MKWD. The paper examined eight estimation methods to analyze the characteristics of the model parameters for the MKWD. A Monte Carlo simulation was performed to evaluate the effectiveness of these different estimators. The effectiveness of the proposed model was illustrated by analyzing two real data sets. Moreover, the use of survival times data in regression analysis was analyzed by the MKWD, other existing distributions and regression models.

To refer back to the research questions and hypotheses formulated at the beginning:

  • (1)

    The MKWD provides a more accurate fit for lifetime data with non-monotonic failure rates compared to various existing Weibull variants.

  • (2)

    The MKWD exhibits many statistical characteristics that make it suitable for a wide range of applications in reliability and survival analysis.

  • (3)

    MLE demonstrated a better performance than other estimation methods in terms of accuracy and reliability.

  • (4)

    The MKWD showed superior modeling performance when applied to real-world datasets, providing better fits and more accurate predictions than competing distributions.

In summary, we have introduced a distribution that is well suited to model lifetime scenarios with non-monotonic failure rates which, due to its superiority over previously considered distributions, is likely to be used in various domains where understanding the lifespan or durability of objects, systems, or processes is crucial. Thus, it can be applied in engineering and reliability analysis, healthcare and medicine, insurance and actuarial sciences, finance and investment, environmental sciences, quality control and manufacturing, telecommunications and networking, and energy and utilities, just to name a few domains. The limitation of our paper is that we only use the complete samples to estimate the parameters of the MKWD. So, for future works, researchers can use the MKWD to estimate its parameters using different censored schemes.

Data Availability

All relevant data are within the paper.

Funding Statement

We acknowledge nancial support from the Open Access Publication Fund of the University of Hamburg. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1. Weibull W. A: statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. doi: 10.1115/1.4010337 [DOI] [Google Scholar]
  • 2. Luko S. N. (1999). A Review of the Weibull Distribution and Selected Engineering Applications. SAE Transactions, 108, 398–412. [Google Scholar]
  • 3. Therneau TM, Grambsch PM. Modeling Survival Data, Extending the Cox Model. Springer: New York, 2000. [Google Scholar]
  • 4. Nadarajah S.; Cordeiro G.M.; Ortega E.M.M. The exponentiated Weibull distribution: A survey. Stat. Pap. 2013, 54, 839–877. doi: 10.1007/s00362-012-0466-x [DOI] [Google Scholar]
  • 5. Elbatal I.; Aryal G. On the transmuted additive Weibull distribution. Austrian J. Stat. 2013, 42, 117–132. doi: 10.17713/ajs.v42i2.160 [DOI] [Google Scholar]
  • 6. Al-Babtain A.; Fattah A.A.; Hadi A.N.; Merovci F. The Kumaraswamy-transmuted exponentiated modified Weibull distribution. Commun. Stat. Simul. Comput. 2017, 46, 3812–3832. [Google Scholar]
  • 7. Alyami S.A.; Elbatal I.; Alotaibi N.; Almetwally E.M.; Okasha H.M.; Elgarhy M. (2022). Topp-Leone Modified Weibull Model: Theory and Applications to Medical and Engineering Data. Appl. Sci., 12, 10431. doi: 10.3390/app122010431 [DOI] [Google Scholar]
  • 8. Khalil M.G.; Hamedani G.G.; Yousof H.M. The Burr X Exponentiated Weibull Model: Characterizations, Mathematical Properties and Applications to Failure and Survival Times Data. Pak. J. Stat. Oper. Res. 2019, 15, 141–160. doi: 10.18187/pjsor.v15i1.2824 [DOI] [Google Scholar]
  • 9. Alotaibi N.; Elbatal I.; Almetwally E.M.; Alyami S.A.; Al-Moisheer A.S.; Elgarhy M. Bivariate Step-Stress Accelerated Life Tests for the Kavya-Manoharan Exponentiated Weibull Model under Progressive Censoring with Applications. Symmetry 2022, 14, 1791. doi: 10.3390/sym14091791 [DOI] [Google Scholar]
  • 10. Afify A.Z.; Kumar D.; Elbatal I. Marshall Olkin Power Generalized Weibull Distribution with Applications in Engineering and Medicine. J. Stat. Theory Appl. 2020, 19, 223–237. doi: 10.2991/jsta.d.200507.004 [DOI] [Google Scholar]
  • 11. Alotaibi N.; Elbatal I.; Almetwally E.M.; Alyami S.A.; Al-Moisheer A.S.; Elgarhy M. Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data. Mathematics 2022, 10, 1565. doi: 10.3390/math10091565 [DOI] [Google Scholar]
  • 12. Elbatal I., Elgarhy M. and Kibria B. M. G. (2021). Alpha Power Transformed Weibull-G Family of Distributions: Theory and Applications. Journal of Statistical Theory and Applications, 20(2), 340–354. doi: 10.2991/jsta.d.210222.002 [DOI] [Google Scholar]
  • 13. Alahmadi A.A.; Alqawba M.; Almutiry W.; Shawki A.W.; Alrajhi S.; Al-Marzouki S.; Elgarhy M. A New version of Weighted Weibull distribution: Modelling to COVID-19 data. Discret. Dyn. Nat. Soc. 2022, 2022, 3994361. doi: 10.1155/2022/3994361 [DOI] [Google Scholar]
  • 14. Aldahlan M.A.; Jamal F.; Chesneau C.; Elbatal I.; Elgarhy M. Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications. PLoS ONE 2020, 15, e0230004. doi: 10.1371/journal.pone.0230004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Almarashi A.M.; Jamal F.; Chesneau C.; Elgarhy M. The exponentiated truncated inverse Weibull-generated family of distributions with applications. Symmetry 2020, 12, 650. doi: 10.3390/sym12040650 [DOI] [Google Scholar]
  • 16. Al-Moisheer A.S.; Elbatal I.; Almutiry W.; Elgarhy M. Odd inverse power generalized Weibull generated family of distributions:Properties and applications. Math. Probl. Eng. 2021, 2021, 5082192. doi: 10.1155/2021/5082192 [DOI] [Google Scholar]
  • 17. Alkarni S.; Afify A.Z.; Elbatal I.; Elgarhy M. The extended inverse Weibull distribution: Properties and applications. Complexity 2020, 2020, 3297693. doi: 10.1155/2020/3297693 [DOI] [Google Scholar]
  • 18. Abouelmagd T.H.M.; Al-mualim S.; Elgarhy M.; Afify A.Z.; Ahmad M. Properties of the four-parameter Weibull distribution and its applications. Pak. J. Stat. 2017, 33, 449–466. [Google Scholar]
  • 19. Hassan A.; Elgarhy M. Exponentiated Weibull Weibull distribution: Statistical Properties and Applications. Gazi Univ. J. Sci. 2019, 32, 616–635. [Google Scholar]
  • 20. Al-Babtain A.A.; Shakhatreh M.K.; Nassar M.; Afify A.Z. A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications. Mathematics 2020, 8, 1345. doi: 10.3390/math8081345 [DOI] [Google Scholar]
  • 21. Kleiber C. On Lorenz Order with in Parametric Families of Income Distributions. Sankhya, B, 61 (1999), 514–517. [Google Scholar]
  • 22. Zenga M. Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Statistica e Applicazioni, 2007, 4, 3–27. [Google Scholar]
  • 23.Rényi, A. (1960). On measures of entropy and information, Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, 1, 47-561.
  • 24. Campbell L.L. Exponential entropy as a measure of extent of a distribution. Z. Wahrscheinlichkeitstheorie verw Gebiete 5, 217–225 (1966). doi: 10.1007/BF00533058 [DOI] [Google Scholar]
  • 25. Havrda J. and Charvát F. (1967). Quantification method of classification processes, concept of Structural a-entropy, Kybernetika, 3, 1, 30–35. [Google Scholar]
  • 26. Arimoto S. (1971). Information-theoretical considerations on estimation problems, Information and Control, 19, 3, 181–194. doi: 10.1016/S0019-9958(71)90065-9 [DOI] [Google Scholar]
  • 27. Tsallis C. (1988). Possible generalization of Boltzmann-Gibbs statistics, Journal of Statistical Physics, 52, (1-2), 479–487. doi: 10.1007/BF01016429 [DOI] [Google Scholar]
  • 28. Lad F., Sanfilippo G. and Agr G. (2015). Extropy: complementary dual of entropy. Statist. Sci., 30, 40–58. doi: 10.1214/14-STS430 [DOI] [Google Scholar]
  • 29. Balakrishnan N.; Buono F.; Longobardi M. On weighted extropies. Commun. Stat.-Theory Methods 2022, 51, 6250–6267. doi: 10.1080/03610926.2020.1860222 [DOI] [Google Scholar]
  • 30. Qiu G. and Jia K. (2018). The residual extropy of order statistics. Stat. Probab. Letters, 133, 15–22. doi: 10.1016/j.spl.2017.09.014 [DOI] [Google Scholar]
  • 31. Fisher R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical transactions of the Royal Society of London. Series A, 222(594-604), 309–368. doi: 10.1098/rsta.1922.0009 [DOI] [Google Scholar]
  • 32.Fisher, R. A. (1925, July). Theory of statistical estimation. In Mathematical proceedings of the Cambridge philosophical society (Vol. 22, No. 5, pp. 700-725). Cambridge University Press.
  • 33. Choi K. and Bulgren W. G. (1968). An estimation procedure for mixtures of distributions. Journal of the Royal Statistical Society: Series B (Methodological), 30(3), 444–460. doi: 10.1111/j.2517-6161.1968.tb00743.x [DOI] [Google Scholar]
  • 34. Kao J. H.K. (1958). Computer methods for estimating Weibull parameters in reliability studies. IRE Transactions on Reliability and Quality Control, 1958, 15–22. doi: 10.1109/IRE-PGRQC.1958.5007164 [DOI] [Google Scholar]
  • 35. Swain J., Sekhar V., and James R. W. (1988). Least-squares estimation of distribution functions in Johnson’s translation system. Journal of Statistical Computation and Simulation, 29(4), 271–297. doi: 10.1080/00949658808811068 [DOI] [Google Scholar]
  • 36.J. H. K. Kao, Computer Methods for Estimating Weibull Parameters in Reliability Studies, IRE Transactions on Reliability and Quality Control, vol. PGRQC-13, pp. 15-
  • 37. Kao J. H. K. (1959). A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes. Technometrics, 1(4), 389–407. doi: 10.1080/00401706.1959.10489870 [DOI] [Google Scholar]
  • 38. Almalki S. J., Yuan J., A new modified Weibull distribution, Reliab. Eng. Syst. Safety, 111 (2013), 164–170. doi: 10.1016/j.ress.2012.10.018 [DOI] [Google Scholar]
  • 39. Afify A. Z., Cordeiro G. M., Yousof H. M., Alzaatreh A., Nofal Z. M., The Kumaraswamy transmuted-G family of distributions: Properties and applications, J. Data Sci., 14 (2016), 245–270. doi: 10.6339/JDS.201604_14(2).0004 [DOI] [Google Scholar]
  • 40. Khan M. S., King R., Hudson I. L., Transmuted modified Weibull distribution: Properties and application, Eur. J. Pure Appl. Math., 11 (2018), 362–374. doi: 10.29020/nybg.ejpam.v11i2.3208 [DOI] [Google Scholar]
  • 41. Almalki S. J., Yuan J., A new modified Weibull distribution, Reliab. Eng. Syst. Safety, 111 (2013), 164–170. doi: 10.1016/j.ress.2012.10.018 [DOI] [Google Scholar]
  • 42. Al-Sulami D. (2020). Exponentiated exponential Weibull distribution: mathematical properties and application. American journal of applied sciences, 17(1), 188–195. doi: 10.3844/ajassp.2020.188.195 [DOI] [Google Scholar]
  • 43. Afify A. Z., Nofal Z. M., Butt N. S., Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Oper. Res., 10 (2014), 435–454. doi: 10.18187/pjsor.v10i4.836 [DOI] [Google Scholar]
  • 44. Lee C., Famoye F., Olumolade O., Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Stat. Methods, 6 (2007), 173–186. doi: 10.22237/jmasm/1177992960 [DOI] [Google Scholar]
  • 45. Hassan A. S., Shawki A. W., & Muhammed H. Z. (2022). Weighted Weibull-G Family of Distributions: Theory & Application in the Analysis of Renewable Energy Sources. Journal of Positive School Psychology, 6(3), 9201–9216. [Google Scholar]
  • 46. Anzagra L., Abubakari A. G. and Nasiru S. (2023). Chen Burr-Hatke exponential distribution: Properties, regressions and biomedical applications. Computational Journal of Mathematical and Statistical Sciences, 2 (1): 80–105. doi: 10.21608/cjmss.2023.190993.1003 [DOI] [Google Scholar]
  • 47. Abubakari A. G., Luguterah A. and Nasiru S. (2022). Unit exponentiated Fréchet distribution: actuarial measures, quantile regression and applications. Journal of the Indian Society for Probability and Statistics. doi: 10.1007/s41096-022-00129-2 [DOI] [Google Scholar]
  • 48. Nasiru S., Abubakari A. G. and Chesneau C. (2022). New lifetime distribution for modeling data on the unit interval: properties, application and quantile regression. Mathematical and Computational Applications, 27 (105): 1–27. [Google Scholar]
  • 49. Dunn P. K. and Smyth G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5(3): 236–244. doi: 10.1080/10618600.1996.10474708 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All relevant data are within the paper.


Articles from PLOS ONE are provided here courtesy of PLOS

RESOURCES