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ABSTRACT

TAP/hNXF1 is a key factor that mediates general
cellular mRNA export from the nucleus, and its
orthologs are structurally and functionally conserved
from yeast to humans. Metazoans encode additional
proteins that share homology and domain organiza-
tion with TAP/hNXF1, suggesting their participation
in mRNA metabolism; however, the precise role(s)
of these proteins is not well understood. Here, we
found that the human mRNA export factor hNXF2
is specifically expressed in the brain, suggesting a
brain-specific role in mMRNA metabolism. To address
the roles of additional NXF factors, we have identified
and characterized the two Nxf genes, Nxf2 and Nxf7,
which together with the TAP/hNXF1’s ortholog Nxf1
comprise the murine Nxf family. Both mNXF2 and
mNXF7 have a domain structure typical of the NXF
family. We found that mNXF2 protein is expressed
during mouse brain development. Similar to TAP/
hNXF1, the mNXF2 protein is found in the nucleus,
the nuclear envelope and cytoplasm, and is an active
mRNA export receptor. In contrast, mNXF7 localizes
exclusively to cytoplasmic granules and, despite
its overall conserved sequence, lacks mRNA export
activity. We concluded that mNXF2 is an active mRNA
export receptor similar to the prototype TAP/hNXF1,
whereas mMNXF7 may have a more specialized role in
the cytoplasm.

INTRODUCTION

TAP/hNXF1 is the key factor mediating the nuclear export of
mRNAs (1-3), and its orthologs in Saccharomyces cerevisiae,
Drosophila melanogaster and Caenorhabditis elegans were
shown to be essential for general cellular mRNA export (4-6).

Metazoans encode additional NXF-like proteins, which
together with the TAP/hNXF1 orthologs comprise a family
of proteins termed nuclear export factors (NXFs) that are
evolutionarily conserved from yeast to humans. Besides
sequence homology, the NXFs share the domain architecture,
and therefore are thought, by analogy to TAP/hNXF1, to par-
ticipate in mRNA metabolism (7). For the human hNXF2 and
hNXF3 proteins, the mRNA export activity has been con-
firmed by mRNA export assays (6,8). In Drosophila, while
the NXF1 ortholog dmNXF1 is essential (9), additional NXF
proteins were shown to be nonessential for general mRNA
export in cell culture, suggesting roles that are more special-
ized than that of dmNXF1 (10). We previously found that the
C.elegans NXF1 homolog Ce-NXF1 is essential for mRNA
export (4). Although the RNAi depletion of Ce-NXF2 was not
lethal (5), this protein was recently implicated in the post-
transcriptional regulation of tra-2 mRNA, which is required
for female development (11). A human hNXF5 nullisomy was
linked to mental retardation (12). Taken together, these obser-
vations suggest that while the TAP/hNXFI1 orthologs are
essential for general mRNA export in metazoan species, addi-
tional NXF family members have more specialized roles. To
understand these roles, we studied the family of the mouse
NXF proteins. Here, we describe the isolation and character-
ization of two additional mouse Nxf genes, Nxf2 and Nxf7.

MATERIALS AND METHODS
Isolation of cDNAs encoding mNXF2

Gene-specific primers were designed using a short region of
identity between the mouse BAC clone RP23 65A22 and
human TAPX2/hNXF2 ¢cDNA (13). 5" and 3’ rapid amplifica-
tion of cDNA ends (RACEs) were performed on mouse brain
Marathon-ready cDNA (Clontech) using outward primers
complementary to this identity region. The RACE products
were cloned into TOPO vector (Invitrogen), and the cDNAs
were sequenced by BigDye™ Terminator Sequencing Kit
(AB Applied Biosystems). The mouse Nxf2 and Nxf7 genes
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were identified and sequenced from the mouse BAC clones
RP23 65A22 and BAC441N13, respectively.

Recombinant DNA

Expression plasmids for the green fluorescent protein (GFP)-
tagged mNXF2 or mNXF7 proteins or their deletion mutants
were generated by PCR amplification of corresponding
cDNAs, and subsequent insertion of PCR products into the
Sacll and Nhel sites in plasmid pCMV-GFPsg25 (14) in-frame
with GFP. GFP-BGal-tagged mNXF2 and its mutants were
generated by PCR amplification, followed by insertion of
Sacll- and Xbal-digested PCR fragment into Sacll and Nhel
sites in plasmid pGFP-Bgal (13), respectively. Histidine-
tagged mNXF2 was constructed by PCR amplification of
full-length mNXF2 coding sequence, then cloned into BssHII
and Xhol sites in pCMV37M1-10D (15) replacing gag. Single
or multiple point mutations, using 40-80GBgal as a template,
were generated by the QuickChange XL Site-Directed Muta-
genesis kit (Stratagene) according to the manufacturer’s pro-
tocol. The nucleotide sequences of each mutant plasmid were
confirmed by automated BigDye fluorescence sequencing. To
generate glutathione S-transferase (GST)-tagged mNXF2, the
coding region for amino acids 1-400 of mNXF2 was PCR
amplified and subcloned into the pGEX-2T vector (Promega)
for expression in Escherichia coli. Mouse p15/NXT1 expres-
sion plasmid was generated based on GenBank accession no.
NM_019761, and the human p15-1 expression plasmid was
obtained from E. Izaurralde.

Cell culture, transfection and microscopy

Human HeLLa and 293 cells and mouse NIH3T3 and PA317 cells
were transfected with FuGene 6 reagent (Roche) according to
the manufacturer’s protocol. All transfections for subcellular
localization analysis were performed in 35 mm glass-bottom
plates. Approximately 24 h post-transfection cells were fixed
with 3.7% formaldehyde in phosphate-buffered saline. For
some experiments, 20 h post-transfection, fresh media con-
taining 30 nM leptomycin B, actinomycin D (2 pug/ml) or 5,6-
dichlororibofuranosylbenzimidazole (DRB, 30 pg/ml) were
added, and the cells were incubated for 4 h prior to fixation.
As control for the drug-induced relocalization experiments,
the same treatments were performed on cells expressing
GFP-tagged HIV Rev protein. Microscopic analysis of GFP
fluorescence was performed as described previously (13).
Three-dimensional reconstruction of fluorescent images from
confocal Z-stacks was performed using the maximum intensity
projection renderer implemented in Imaris software (Bitplane).

Protein analysis

Chloramphenicol acetyltransferase (CAT) assays and lucifer-
ase measurements were performed as described previously
(13). For western blot analyses, transfected cells were extrac-
ted in 500 ul of lysis buffer (0.5% Triton X-100 and 100 mM
Tris—HCI, pH 7.4), separated on denaturing polyacrylamide
gels and blotted onto nitrocellulose membrane. Polyclonal
antisera against human TAPX2/hNXF2 and mouse mNXF2
were raised in rabbits using purified cellulose-binding domain
(CBD) fusion protein containing amino acids 102-372 of
TAPX2, or GST fusion containing full-length mNXF2 as
immunogens. The TAPX2/hNXF2 antibodies were affinity

purified on immobilized CBD-TAPX2 immunogen. For
western blots, after probing with rabbit anti-TAPX2/hNXF2
or anti-mNXF2 antibody (1:1000) in 5% nonfat dry milk, and
subsequent incubation with donkey anti-rabbit horseradish
peroxidase-conjugated secondary antibody, immunoreactive
proteins were visualized by enhanced chemiluminescence
(ECL plus Western Blotting Detection System, Amersham)
and autography. Pre-made western blots of multiple human
tissues (GenoTech) and ‘mouse brain aging’ blots (RNAWAY)
were quality controlled by the manufacturers to ensure equal
loading and transfer efficiency.

In vitro protein binding assays

Reticulocyte-produced proteins were synthesized and meta-
bolically labeled in coupled transcription/translation system
(TNT T7 Coupled Reticulocyte Lysate System, Promega),
using T7 promoter-containing PCR fragments as templates,
and were adjusted with unprogrammed extract to equal molar
concentrations. These stocks were used in the binding reactions
that contained equimolar amounts of reticulocyte-produced
proteins and 1-2 pg of E.coli-produced GST-tagged proteins
that were immobilized on glutathione—Sepharose beads
(Amersham). The binding was performed in 200 pul RBB
buffer (15 mM HEPES, pH 7.9, 50 mM KCl, 0.1 mM EDTA
and 0.2% Triton X-100) supplemented with 200 mM NaCl.
Following incubation for 15 min at room temperature, the
beads were pelleted and washed three times with binding
buffer. Bound proteins were eluted by boiling in SDS-PAGE
sample buffer, separated by SDS-PAGE and detected using
Phosphoimager.

Biocomputing

Database similarity searches, multiple sequence alignments
and phylogenetic analyses were performed using the standard
programs of Genetics Computer Group package, with default
parameters.

Nucleotide sequence accession

The sequences of mouse Nxf genes and cDNAs were sub-
mitted previously to GenBank under the accession numbers
AY017476, AF490577 for Nxf2, and AY260550, AY266683
for Nxf7.

RESULTS
Identification of mouse NXF-related genes

As a first step to study the role of the NXF family of proteins,
we have identified the complete cDNAs as well as the exonic
structures of the mouse Nxf2 (GenBank accession num-
bers AY017476 and AF490577) and Nxf7 genes (GenBank
accession numbers AY260550 and AY266683). To achieve
the identification of the mouse homologs of human TAP/
hNXFI-related proteins, database searches for NXF-related
mouse expressed sequence tags (ESTs) or cDNAs were
employed, which revealed a homology in the mouse BAC
clone RP23 65A22 to the human TAPX2/hNXF2 cDNA
(13), a hNXF2 isoform. A full-length cDNA clone, termed
Nxf2, was obtained using mouse brain cDNA library as tem-
plate and the intron sequences were identified from the BAC



clone. By comparison of the cDNA and genomic sequences,
the exon and intron structure of the mouse Nxf2 gene was
determined (Figure 1A). We found that the mouse Nxf2
gene is >17 kb in length and consists of 21 coding exons
with 20 in-frame AUGs present in 11 exons. Comparison
of our mNXF2 protein sequence with those published by
Wang et al. (16) (GenBank accession no. NM_031259) and
Jun et al. (12) (GenBank accession no. NP_112549) shows
99% identity with a single E347D amino acid change. Data-
base searches further revealed a partial cDNA sequence of an
additional Nxf-related gene on another BAC clone. By PCR
amplification based on EST homology, a full-length cDNA
corresponding to mouse Nxf7 was obtained and its exonic
structure was determined (Figure 1A). We found that the
mouse Nxf7 gene contains 22 exons, spans >14 kb (GenBank
accession no. AY266683) and encodes a predicted protein of
620 amino acids. Our cDNA clone has a perfect sequence
match with all the exonic sequences in the mouse Nxf7
genomic DNA. The proteins encoded by Nxf-al (GenBank
accession no. AJ305317) and Nxf-a2 (GenBank accession
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no. AJ305318) have a high sequence homology to mNXF7,
although both protein isoforms lack 110 amino acids at the
N-terminus as compared with mNXF7. Comparison of the
mNXF7 protein with NXF-al and NXF-a2 reveals the follow-
ing changes: L354P and L361P (NXF-a2); the replacement of
121-STF-123 with two valine residues (NXF-al and NXF-a2);
NXF-al is a splice variant (lacking exon 10), which results
in an internal deletion of 36 amino acids (nt 271-306) and
removes the sequence between L271 and L306.

Taken together, we identified and isolated two genes termed
mouse Nxf-2 and Nxf-7, whose sequences we have previously
submitted to GenBank. Both genes are located on X chromo-
some, suggesting that they arose from a gene amplification,
whereas Nxf1 is located on chromosome 19. Thus, the mouse
NXF family consists of three members, whereas the human
NXF family comprises five (7). Figure 1B shows a dendro-
gram of NXF family proteins from yeast to humans, illustrat-
ing significant homology both across and within species. On
this tree, the mouse mNXF1 clusters with the other TAP/
hNXF1 orthologs, from birds to humans, as expected (7).
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Figure 1. Mouse Nxf2 and Nxf7. (A) Exon—intron structure of mouse Nxf2 and Nxf7 genes. The cDNAs were isolated and the sequences and the genomic structure
were determined. Exons are shown in black boxes. ATG, translational initiation codon; TAA and TGA, translation termination codons. Asterisks indicate location of
in-frame ATG codons. (B) Dendrogram illustrating the NXF family of proteins. Abbrevations: rn, Rattus norvegicus; cj, Coturnix japonica; dm, Drosophila
melanogaster; sp, Schizosaccharomyces pombe; sc, Saccharomyces cerevisiae. The mouse family members are shown in bold. (C) Multiple sequence alignment of
human TAP/hNXF1 and mouse NXF proteins. The protein domains based on Herold ez al. (7) are indicated. The identified domains mediating nuclear localization of
human TAP/hNXF1 and mNXF2, localization to cytoplasmic granules of mNXF7 and the rim association of mNXF2 are underlined. RBD, RNA-binding domain;
LRR, leucine-rich repeat; NTF2, nuclear transport factor (NTF2)-like domain; UBA-like, ubiquitin associated-like domain.

Interestingly, the ‘additional’ mouse factors mNXF2 and
mNXF7 are close together and further cluster with the ‘addi-
tional’ human factors. We then performed a more detailed
comparison of the mouse NXF family with TAP/hNXF1 pro-
tein, a prototype NXF factor (Figure 1C). While the mouse
mNXF1 and the human TAP/hNXF1 share 90% identity, the
comparison of mNXF1 to mNXF2 and mNXF7 shows reduced
homologies of 47 and 49% amino acid identity, respectively.
Despite this, the mNXF2 and mNXF7 proteins are predicted to
share the domain organization with the human TAP/hNXF1
protein (7), including a non-canonical RNP-type RNA-binding
domain (RBD), the leucine-rich repeats (LRRs), the NTF2-
like domain (mediating interactions with p15/NXT1) and the

ubiquitin associated-like domain (UBA-like) that is part of
nucleoporin-binding region. mNXF2 also has an insertion
of 5 tandem 12 amino acid imperfect repeats located at the
C-terminus of its LRR domain, as previously noted (12), but its
role was not further investigated.

Expression of mNXF2 protein in the brain

To study the mNXF2 protein expression, we generated an
antiserum specific against GST-tagged mNXF2 in rabbits.
Western blot analysis showed that the antiserum recognized
untagged, His-tagged, GFP-tagged or GFP-BGal-tagged
mNXF2 protein (Figure 2A, left panel), whereas it did not
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Figure 2. Specific expression of NXF-related proteins in brain tissue. (A) Western immunoblot analysis of 293 cells transfected with untagged and tagged (HIS, GFP
and GPBgal) mNXF?2 (left panel) and different NXF expression plasmids (right panel) using a rabbit anti-mNXF2 antiserum. (B) Western blot analysis of mouse brain
tissue using monospecific rabbit anti-mNXF2 antiserum. Pre-made ‘mouse brain aging’ blots (RNAWAY) contained normalized amounts of whole brain lysates
from fetus to 1-year-old as indicated. (C) Western blot analysis of human tissues using the monospecific antiserum to human TAPX2/hNXF2. Pre-made blots

(GenoTech) contained normalized amounts of proteins from the indicated tissues.

react with proteins from untransfected human 293 cells. In
addition, it did not cross-react with the human TAP/hNXF1
or mouse mNXF7 proteins (Figure 2A, right panel). The
untagged mNXF2 protein migrated with an apparent mole-
cular mass of ~75 kDa.

It has been previously reported that the mouse NXF-related
mRNAs can be detected using RT-PCR in the brain (12).
Using western immunoblot analysis, we found that the
mNXF2 protein can also be detected in the mouse brain at
different stages of development (Figure 2B). While the
mNXF2 protein could be detected in a brain sample from
an 18-week mouse embryo (E18), its level of expression is
slightly increased at 1 week after birth and kept constant for
~3 months and is still detectable, although at lower levels,
after the age of 6 months. We were unable to address the
expression of mNXF7 protein because of the lack of specific
antibodies.

Similarly, we used a monospecific rabbit antiserum gener-
ated to human TAPX2 that represents an isoform of hNXF2
(13), to probe a human multiple tissue blot. This analysis
revealed that TAPX2/hNXF2 was specifically expressed in
the brain (Figure 2C), but could not be detected in other tissues
examined, such as testis, where mRNA was readily detectable
(data not shown). Taken together, these results confirmed
that NXF-related proteins, such as the human and mouse
NXF2, are expressed in the brain, suggesting the roles in
brain-specific mRNA metabolism.

Distinct subcellular localization of mNXF2 and mNXF7

We next studied the subcellular localization of mNXF2 and
mNXF7 upon transfection of human HeLa cells with plasmids

GFP-mNXF2

GFP-mNXF7

Figure 3. Distinct subcellular localization of mNXF2 and mNXF7 proteins.
HeLa cells were transfected with GFP-tagged mNXF2 and mNXF7 expression
plasmids, as indicated and the proteins were visualized in living cells. The
images were obtained by fluorescent microscopy (Axiovert135TV, Zeiss) and
by the use of a CCD camera and processed using IPLab Spectrum software (13).
Similar results were obtained in numerous experiments and are typical of the
vast majority of expressing cells in each individual experiment. Representative
cells are shown.

expressing GFP-tagged fusion proteins. Figure 3 shows that
mNXF2 localizes to the nucleus, but is excluded from the
nucleolus, accumulates at the nuclear rim and is present in
the cytoplasm. Its localization is similar to that observed for
the human TAP/hNXF1 (13,17,18). In contrast, mNXF7 is
localized exclusively to the cytoplasm (Figure 3), where it
accumulates in granules. Similar localization patterns of
mNXF2 and mNXF7 were found in human 293 cells as well
as in mouse NIH3T3 and PA317 cells (data not shown); thus,
the distinct subcellular localization is independent of the tested
cell lines. The localization of both proteins was not affected
in the presence of Leptomycin B, which excludes a role of
CRML1 in protein export. Also, the presence of Actinomycin D
or DRB did not alter the localization of mNXF2 and mNXF7
(data not shown), indicating that their nucleocytoplasmic
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trafficking is transcription-independent, while it affected the
localization of HIV-1 Rev as expected (19).

Identification of the active nuclear localization
signal of mNXF2

We next determined the nuclear localization signal (NLS)
of mNXF2 using GFP-tagged deletion mutants (Figure 4A).
We found that mutant 1-264 which lacks 407 amino acids
from the C-terminus (Figure 4A) lost the nuclear rim associ-
ation as expected, because it lacks the conserved UBA-like
domain (see Figure 1C). Mutant 1-80GFP still localized to
the nucleus (Figure 4A, 1-80GFP), whereas further deletion to
amino acid 70 resulted in cytoplasmic accumulation of the
mutant protein (Figure 4A, 1-70GFP). This suggests a NLS
located between amino acid 1 and 80 at the N-terminus.
Since GFP is a small protein, a GFP-tagged small poly-
peptide may localize to the nucleus due to passive diffusion.

Localization

To distinguish passive diffusion from active import, we used
GFP-B-galactosidase (GPgal) fusion protein as a tag (13). The
GPgal fusion protein is localized to the cytoplasm because the
fusion protein has a higher molecular mass, and neither GFP
nor Bgal contains an active nuclear import signal (Figure 4B).
In contrast, insertion of the N-terminal 80 residues of mNXF2
(1-80GPgal) conferred nuclear localization on the otherwise
cytoplasmic GBGal, demonstrating that mNXF2 contains an
active nuclear import signal. We also tested this nuclear import
signal using GST-GFP (13) as a tag (data not shown). The
GST-GFP fusion protein is localized to the cytoplasm because
GST can form a dimer, and neither GST nor GFP contains an
active nuclear import signal. Fusion of GST-GFP to amino
acids 2-80 or to amino acids 40-80 of mNXF2 resulted in
nuclear localization (data not shown).

We further mapped the minimal NLS within amino acids
1-80 of mNXF2 and examined the localization of several
deletion mutants (Figure 4B). For the N-terminal deletion
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Figure 4. Identification of NLS of mNXF2. (A and B) HeLa cells were transfected with plasmids producing mNXF2 and N- and C-terminal deletions fused to GFP
(A) or GFP-Bgal (B) and the proteins were visualized as described in Figure 2. The localization of the proteins is indicated. N, nucleus; C, cytoplasm. (C) Fine
mapping of the NLS. Alanine substitution in 40-80GPgal generated a series of mutants and the mutant proteins are visualized. The protein sequence containing the

NLS regions is shown and the critical residues are indicated in bold.



mutants, we found that deletion of amino acids 1-39 did not
alter nuclear localization of the mutant protein (40-80Gpgal),
whereas further deletion to residue 49 (49-80GPgal) resulted
in cytoplasmic accumulation of the fusion protein. Deletion of
10 amino acids from the C-terminus (1-70Gfgal) also abol-
ished nuclear localization of the protein. These results dem-
onstrate that amino acids 40—49 and amino acids 71-80 define
the N- and C-terminal boundaries of the mNXF2 NLS. Taken
together, these results demonstrate that amino acids 40—80 of
mNXF?2 are necessary and sufficient to promote nuclear import
and this peptide constitutes the minimal NLS.

Fine mapping of the mNXF2 NLS

Inspection of the N-terminal region (40-QGRKRGVNY-48)
and the C-terminal region (71-MKRRRERCSY-80) of mNXF2
revealed stretches of basic amino acids. To further study their
role in NLS function, alanine substitutions were introduced
within 40-80Gfgal (Figure 4C). In mutant M4, changes of
three basic amino acids in the N-terminal part of the NLS
domain (R42A, K43A, R44A) led to an impairment of the
NLS and significant cytoplasmic accumulation of the mutant
protein. Double alanine substitutions in the C-terminal part
of the NLS as in mutants M10 (K72A, R73A), M6 (R73A,
R74A), and M5 (R74A, R75A) resulted in loss of NLS func-
tion, whereas mutant M3 (E76A, R77A) has a fully functional
NLS. Using single alanine substitutions, we further found that
the NLS function is abrogated in M11 (K72A) and M7 (R73A)
or significantly affect in M9 (R75A), but the NLS function
is only slightly affected in M8 (R74A). Taken together, our
results demonstrate that the mNXF2 core NLS consists of
two short stretches of basic amino acids (amino acids 42-44
and amino acids 72-75), which are essential for maintaining
full NLS activity. Similarly, we previously found that the
NLS of the human TAP/NXF1 is bipartite consisting of a
C-terminal region contributing (Figure 1C, dotted line) and
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an N-terminal region (solid line) being essential for NLS
activity (13). In both the human TAP/hNXFI and mNXF2,
the core NLS is composed of few basic residues located toward
the N-terminus of the proteins.

Association of mNXF2 and mNXF7 with
nuclear envelope

As previously shown for human TAP/hNXF1, mNXF2-GFP
protein also localized to the nuclear envelope (Figures 3
and 5A). Fusion of the C-terminal portion 545-671 to GFP-
Bgal led to the accumulation of the mutant protein in the cyto-
plasm and the nuclear periphery (Figure 5A, 545-671Gfgal),
whereas fusion to GFP resulted in diffusion of the protein to
the nucleus and accumulation at the nuclear rim. Deletion
mutant 565-671GFP still accumulated at the nuclear rim,
whereas further deletion to amino acids 581 abolished rim
association (581-671GFP). Rim association of the mutants
545-671GFP and 565-671GFP was not affected by digitonin
treatment prior to fixation (data not shown), indicating strong
interactions with the nuclear envelope. Therefore, mNXF2
contains a signal for rim association at the C-terminus,
which shows conservation in location and sequence with
other human NXF proteins (7) (Figure 1C).

Interestingly, we found that although GFP-tagged full-
length mNXF7 or the N-terminal deletion 95-620GFP did not
show apparent nuclear rim association, the deletion of the
N-terminal 263 residues led to the accumulation of the pro-
tein in the nucleus and to its association with the nuclear
rim (Figure 5B, 264—620GFP). Inspection of mNXF7 pro-
tein sequence confirmed the conservation of the C-terminal
portion containing the nuclear rim association determinants
(Figure 1C). By analogy, we previously reported that deletion
of the N-terminal NLS of TAP/hNXF]I resulted in a mutant
protein, which was found to accumulate at the nuclear rim
and the nucleoplasm, suggesting that the ability of NXF to
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Figure 5. Association of mNXF2 and mNXF7 with nuclear envelope. HeLa cells were transfected with plasmids producing the indicated GFP-tagged mNXF2 and

mNXF7 deletion mutants and the images were analyzed as described in Figure 2.
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associate with mobile factors of the nuclear pore complex Mapping of mNXF7 domain responsible for
(NPC) facilitates its nuclear import even in the absence granule formation

of the active N-terminal NLS (13,17,18). We conclude that
although mNXF7 protein shares the key signals with the
prototype TAP/hNXFI, other regions within the protein are
responsible for its distinct localization.

A key property distinguishing mNXF7 from the other
members of the NXF family is its localization to cytoplasmic
granules. Figure 6A shows a series of N- and C-terminal
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Figure 6. Identification of signal mediating granule localization of mNXF7. (A) A panel of N- and C-terminal deletion mutants of GFP-tagged mNXF7 deletion
mutants was analyzed upon transfection of HeLa cells. N, nucleus; C, cytoplasm. Confocal images of GFP fluorescence in the mid-sections through the nuclei.
(B) Three-dimensional rendering of GFP images from confocal Z-stacks.



deletion mutants of mNXF7 designed to identify the domains
responsible for granule formation. Removal of part of the
LRR, the NTF2 and the UBA-like domains as well as the
N-terminal 95 residues did not abolish the localization to
granules. The minimal region necessary and sufficient for
granule formation spans amino acids 95-274, and further
truncation to amino acids 110-210 resulted in uniform local-
ization of the mutant (Figure 6). The localization of some
mutants was further verified using 3D rendering, an approach
that allows to better distinguish the granular and homogeneous
localization patterns. As shown in Figure 6B, this analysis
indeed led to better visualization of the granular pattern of
the wild-type mNXF7 and its mutants encompassing amino
acids 95-562, 1-274 and 95-274, whereas the mutant span-
ning amino acids 110-210 showed mostly homogeneous
localization, confirming the granule phenotypes presented
in Figure 6A. We note that the granule localization deter-
minant in mNXF7 corresponds to part of TAP/hNXF1’s
‘substrate-binding domain’ through which it interacts with
nuclear export cofactors and assembles with mRNP complexes
(2,7,20-22).

mNXF2, but not mNXF7, can promote mRNA export

To test whether mNXF2 or mNXF7 play a role in mRNA
export, we used the CAT reporter plasmid pDM128. Plasmid
pDM128 contains CAT coding sequence and the Rev response
element located within the env intron of HIV-1, flanked by a
splice donor and acceptor sites (23). In 293 cells, such tran-
scripts are retained in the nucleus and, therefore, produce only
background levels of CAT enzyme, whereas coexpression of
export activators, such as HIV-1 Rev or TAP/hNXFI1, leads
to the stimulation of CAT production. We have previously
demonstrated that TAP/hNXF1 indeed enhances the nuclear
export of CAT transcripts (22); therefore, CAT production
directly reflects the nuclear export of this reporter mRNA.

As a positive control, we coexpressed pDM 128 with HIV-1
Rev and found a strong (~10-fold) activation of CAT produc-
tion (Figure 7A), as expected (23). We further showed that
the presence of TAP/hNXF1 resulted in an ~2-fold activation,
whereas cotransfection with its cofactor, the human pl5/
NXT]1, led to ~10-fold activation, in agreement with previous
observations (7,24), whereas the presence of p15/NXT1 alone
had no effect. Using this assay, we found that cotransfection
of mNXF2 alone yielded a significant ~5-fold activation of
CAT expression, demonstrating that mNXF2 is a bonafide
mRNA export factor. Cotransfection with human or mouse
p15/NXT1 did not significantly affect mNXF2 activity. This is
in contrast to the human TAP/hNXF1, which depends on the
exogenous pl5/NXT1 for maximal activity in this assay. We
hypothesize that the mNXF2 has a higher affinity to the NPC
similar to a TAP/hNXF1 mutant having a duplication of its
nucleoporin-binding sites (25) or to endogenous pl15/NXT1;
therefore, it can act independently of exogenous p15/NXT1.
In contrast, mNXF7 failed to activate CAT production both
in the absence and presence of pl15/NXT1 (Figure 7A), con-
sistent with the lack of mRNA export function of this cyto-
plasmic protein. This finding suggests that the mouse NXF7
protein functions at post-export steps in the mRNA meta-
bolism. Similar results were obtained in mouse PA317 cells
(data not shown).
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Figure 7. mNXF?2 is an active mRNA export factor. (A) Human 293 cells were
transfected with the cat reporter pDM 128 either alone, in the presence of HIV-1
rev expression plasmid or in the presence of the indicated untagged NXF
producing plasmids. As indicated, the transfection mixtures contained NXF
expression plasmids together with human p15/NXT1 or p15/NXTT1 alone. Two
days later, the cells were harvested and the CAT production, measured as
percentage of chloramphenicol acetylation, is shown by filled bars. Expression
of the cotransfected luciferase expression plasmid was analyzed for each plate
and the relative luciferase values are shown in open bars. A typical experiment
is shown. (B) mNXF2 binds to TAP/hNXF1 export cofactors. Bacterially
produced GST-tagged NXF proteins were immobilized on glutathione—
Sepharose beads and used in pull-down assays with reticulocyte-produced,
metabolically labeled factors (shown to the left). The bound (B) and 1:100
aliquots of the unbound (U) fractions were separated on SDS-PAGE and
visualized on Phosphoimager.

To understand the mechanism of mNXF2’s nuclear export
activity, we studied its interactions with Y14/MAGOH, the
REF proteins and U2AF35, which are known to bind to TAP/
hNXFI directly and are thought to facilitate the addition of
TAP/hNXF1 to its export substrates (22,26-30). The bacteri-
ally produced recombinant proteins spanning the substrate-
binding domains of mNXF2 and TAP/hNXF1 (amino acids
1-400) were immobilized and used in pull-down assays
together with metabolically labeled binding factors. As a neg-
ative control, we used the mRNA export factor DBP5 (31),
which does not bind TAP/hNXF1 directly. Figure 7B shows
that MAGOH, REF2-II and U2AF35 bound readily to both
TAP/hNXF1 and mNXF2, whereas the binding of Y14 and
DBP5 was low or undetectable. The observed binding of
MAGOH, REF2-II and U2AF35 to TAP/hNXF1 is consistent
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with previous findings (22,26-30). Since the MAGOH sub-
unit binds to TAP/hNXFI much more avidly than Y14 (28),
the lack of REFI-II and Y14 binding confirmed that only
strong interactions were revealed under our assay conditions.
However, we cannot exclude that the reticulocyte-produced
REFI-II and/or Y14 were misfolded or lacked proper post-
translational modifications, and this possibility was not further
addressed. Although TAP/hNXF1 and mNXF2 proteins were
used at similar amounts, the overall binding efficiency of the
tested proteins to TAP/hNXF1 was higher. This effect could
be attributed to a better folding of this recombinant protein,
and it was not further examined. In conclusion, this study
shows that mNXF2 is an mRNA export factor sharing the
localization and functional properties with TAP/hNXF1.

DISCUSSION

In this report, we present the identification and functional
characterization of the mouse Nxf family genes and their cor-
responding proteins. Since some mammalian NXF factors are
believed to be expressed specifically in the brain, and because
human hNXFS5 nullisomy is linked to mental retardation (12),
we wished to understand the possible roles of such proteins. We
have chosen to study the Nxf gene family in mouse, because
this species is widely used as a model to study human neuro-
logical disease, yet possesses only two NxfI-related genes.

The mouse mNXF2 and the human hNXF2 are
expressed in the brain

Previously, mRNA analysis was used as evidence of brain-
specific expression for the NXF factors, such as mNXF2,
mNXF7, and hNXF5. Using hNXF2 as a model, we found
that this approach can lead to gross overestimation of the pre-
dicted protein expression levels, because of high abundance of
aberrant, non-coding splice products in certain tissues
such as testis (A. Zolotukhin, S. Lindtner, S. Smulevitch
and B.K. Felber, unpublished data). We therefore sought to
verify the brain-specific expression of NXF family factors at
the protein level and raised antibodies to mNXF2 and its
human counterpart, TAPX2/hNXF2. By using these antibod-
ies, we show here that the expression of the human TAPX?2/
hNXF2 protein is restricted to the brain (Figure 2C), and that
the mouse mNXF2 expression levels in the brain are devel-
opmentally regulated (Figure 2B), suggesting brain-related
function(s) of these proteins.

mNXF2 is an active mRNA export receptor, with
properties similar to those of TAP/hNXF1

We show here that mNXF2 behaves like a typical NXF factor,
since it shows mRNA export activity, localizes mostly to the
nucleus and the nuclear envelope, and contains active nuclear
localization and NPC-association signals that are positioned
similar to those of TAP/hNXF1. We also show that mNXF2
and the human TAP/hNXF1 share the ability to interact with
mRNA splicing/export cofactors, such as MAGOH, REF and
U2AF35, strongly suggesting a shared nuclear export mech-
anism. While this manuscript was under review, another group
(32) has reported that mNXF2, but not mNXF7, binds in vitro
to the TAP/hNXF1 export cofactor pl5, further supporting
our conclusions. The few differences we observed between

mNXF2 and the prototype export factor, TAP/hNXF1, include
(i) a more pronounced cytoplasmic and nuclear envelope
localization of mNXF2, whereas TAP/hNXF1 is mostly found
in the nucleoplasm (ii) mNXF2 shows a more relaxed require-
ment for the cofactor pI5/NXT1 in the CAT nuclear export
assays used.

We believe that these small differences do not likely
account for a brain-specific role of mNXF2 that is distinct
from that of TAP/hNXF1. Rather, we propose that mNXF2
functions differently from TAP/hNXF1 due to its restricted
substrate specificity. In this model, mNXF2, unlike the pro-
miscuous TAP/hNXF1, only associates with a specific subset
of transcripts in the brain, leading to their regulation during
development. Further work is required to characterize such
transcripts and the responsible determinants within mNXF2.

mNXF7 is atypical of NXF family

Unexpectedly, we found that mNXF7 is a cytoplasmic protein
that is completely excluded from the nucleus. However, these
localization data at steady-state do not rule out that mNXF7
can enter the nucleus, especially considering the presence of a
cryptic NLS (see below). Independent of its fusion to detection
tags (such as GFP and HA), species and cell lines, mNXF7
forms granules in the cytoplasm and is targeted to these gran-
ules via a region that spans amino acids 95-274. Interestingly,
when devoid of this region, mNXF7 assumes the subcellular
localization that is typical of a generic NXF factor, revealing
nuclear import and nuclear envelope localization deter-
minants. Apparently, these determinants are overridden in
the wild-type mNXF7 protein by a potent granule localization
signal. However, the conservation of active, NXF-like signals
within mNXF7 points to their functional importance and sug-
gests that the role of this protein may require nuclear entry
and NPC binding. In agreement with its unusual localization,
mNXF7 did not show nuclear export activity in CAT assays,
probably due to its absence from or short dwelling time in the
nucleus. We cannot exclude though, that mNXF7 may have an
export activity that is strictly specific toward a subclass of
transcripts and is not revealed using the cat mRNA reporter.
In summary, we propose that mNXF7 plays a highly special-
ized role(s) in the cytoplasm that is distinct from that of other
NXFs studied so far. Based on homology to TAP/hNXF1 and
shared domain organization, it is likely that mNXF7 is engaged
in mRNA metabolism. At present, we do not know whether
such proposed activities include the mRNA nuclear export
per se, or are restricted to post-export events. Understanding
the precise biological role of mNXF7 and the underlying
molecular mechanisms remains a goal for future studies.
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