Skip to main content
. Author manuscript; available in PMC: 2025 Jan 23.
Published in final edited form as: Proc (IEEE Conf Multimed Inf Process Retr). 2024 Oct 15;2024:369–375. doi: 10.1109/mipr62202.2024.00065

TABLE II:

Test AUROC for vanilla supervised learning. The best results are shown in bold and the second best are shown in underlined.

Methods Datasets
CG CA DS AD CB BL IO IC
LR 0.720 0.836 0.557 0.851 0.748 0.801 0.769 0.860
XGBoost 0.726 0.895 0.587 0.912 0.892 0.821 0.758 0.925
MLP 0.643 0.832 0.568 0.904 0.613 0.832 0.779 0.893
SNN 0.641 0.880 0.540 0.902 0.621 0.834 0.794 0.892
TabNet 0.585 0.800 0.478 0.904 0.680 0.819 0.742 0.896
DCN 0.739 0.870 0.674 0.913 0.848 0.840 0.768 0.915
AutoInt 0.744 0.866 0.672 0.913 0.808 0.844 0.762 0.916
TabTrans 0.718 0.860 0.648 0.914 0.855 0.820 0.794 0.882
FT-Trans 0.739 0.859 0.657 0.913 0.862 0.841 0.793 0.915
VIME 0.735 0.852 0.485 0.912 0.769 0.837 0.786 0.908
SCARF 0.733 0.861 0.663 0.911 0.719 0.833 0.758 0.905
TransTab 0.768 0.881 0.643 0.907 0.851 0.845 0.822 0.919
UniTabE-S 0.760 0.930 0.620 0.910 0.850 0.840 0.740
MambaTab-D 0.771 0.954 0.643 0.906 0.862 0.852 0.785 0.906
MambaTab-T 0.801 0.963 0.681 0.914 0.896 0.854 0.812 0.920