TABLE II:
Test AUROC for vanilla supervised learning. The best results are shown in bold and the second best are shown in underlined.
| Datasets | ||||||||
|---|---|---|---|---|---|---|---|---|
| CG | CA | DS | AD | CB | BL | IO | IC | |
| LR | 0.720 | 0.836 | 0.557 | 0.851 | 0.748 | 0.801 | 0.769 | 0.860 |
| XGBoost | 0.726 | 0.895 | 0.587 | 0.912 | 0.892 | 0.821 | 0.758 | 0.925 |
| MLP | 0.643 | 0.832 | 0.568 | 0.904 | 0.613 | 0.832 | 0.779 | 0.893 |
| SNN | 0.641 | 0.880 | 0.540 | 0.902 | 0.621 | 0.834 | 0.794 | 0.892 |
| TabNet | 0.585 | 0.800 | 0.478 | 0.904 | 0.680 | 0.819 | 0.742 | 0.896 |
| DCN | 0.739 | 0.870 | 0.674 | 0.913 | 0.848 | 0.840 | 0.768 | 0.915 |
| AutoInt | 0.744 | 0.866 | 0.672 | 0.913 | 0.808 | 0.844 | 0.762 | 0.916 |
| TabTrans | 0.718 | 0.860 | 0.648 | 0.914 | 0.855 | 0.820 | 0.794 | 0.882 |
| FT-Trans | 0.739 | 0.859 | 0.657 | 0.913 | 0.862 | 0.841 | 0.793 | 0.915 |
| VIME | 0.735 | 0.852 | 0.485 | 0.912 | 0.769 | 0.837 | 0.786 | 0.908 |
| SCARF | 0.733 | 0.861 | 0.663 | 0.911 | 0.719 | 0.833 | 0.758 | 0.905 |
| TransTab | 0.768 | 0.881 | 0.643 | 0.907 | 0.851 | 0.845 | 0.822 | 0.919 |
| UniTabE-S | 0.760 | 0.930 | 0.620 | 0.910 | 0.850 | 0.840 | 0.740 | — |
| MambaTab-D | 0.771 | 0.954 | 0.643 | 0.906 | 0.862 | 0.852 | 0.785 | 0.906 |
| MambaTab-T | 0.801 | 0.963 | 0.681 | 0.914 | 0.896 | 0.854 | 0.812 | 0.920 |