TABLE III:
Test AUROC for feature incremental learning. The best results are shown in bold.
| Datasets | ||||||||
|---|---|---|---|---|---|---|---|---|
| CG | CA | DS | AD | CB | BL | IO | IC | |
| LR | 0.670 | 0.773 | 0.475 | 0.832 | 0.727 | 0.806 | 0.655 | 0.825 |
| XGBoost | 0.608 | 0.817 | 0.527 | 0.891 | 0.778 | 0.816 | 0.692 | 0.898 |
| MLP | 0.586 | 0.676 | 0.516 | 0.890 | 0.631 | 0.825 | 0.626 | 0.885 |
| SNN | 0.583 | 0.738 | 0.442 | 0.888 | 0.644 | 0.818 | 0.643 | 0.881 |
| TabNet | 0.573 | 0.689 | 0.419 | 0.886 | 0.571 | 0.837 | 0.680 | 0.882 |
| DCN | 0.674 | 0.835 | 0.578 | 0.893 | 0.778 | 0.840 | 0.660 | 0.891 |
| AutoInt | 0.671 | 0.825 | 0.563 | 0.893 | 0.769 | 0.836 | 0.676 | 0.887 |
| TabTrans | 0.653 | 0.732 | 0.584 | 0.856 | 0.784 | 0.792 | 0.674 | 0.828 |
| FT-Trans | 0.662 | 0.824 | 0.626 | 0.892 | 0.768 | 0.840 | 0.645 | 0.889 |
| VIME | 0.621 | 0.697 | 0.571 | 0.892 | 0.769 | 0.803 | 0.683 | 0.881 |
| SCARF | 0.651 | 0.753 | 0.556 | 0.891 | 0.703 | 0.829 | 0.680 | 0.887 |
| TransTab | 0.741 | 0.879 | 0.665 | 0.894 | 0.791 | 0.841 | 0.739 | 0.897 |
| MambaTab-D | 0.787 | 0.961 | 0.669 | 0.904 | 0.860 | 0.853 | 0.783 | 0.908 |