Skip to main content
. Author manuscript; available in PMC: 2025 Jan 23.
Published in final edited form as: Proc (IEEE Conf Multimed Inf Process Retr). 2024 Oct 15;2024:369–375. doi: 10.1109/mipr62202.2024.00065

TABLE III:

Test AUROC for feature incremental learning. The best results are shown in bold.

Methods Datasets
CG CA DS AD CB BL IO IC
LR 0.670 0.773 0.475 0.832 0.727 0.806 0.655 0.825
XGBoost 0.608 0.817 0.527 0.891 0.778 0.816 0.692 0.898
MLP 0.586 0.676 0.516 0.890 0.631 0.825 0.626 0.885
SNN 0.583 0.738 0.442 0.888 0.644 0.818 0.643 0.881
TabNet 0.573 0.689 0.419 0.886 0.571 0.837 0.680 0.882
DCN 0.674 0.835 0.578 0.893 0.778 0.840 0.660 0.891
AutoInt 0.671 0.825 0.563 0.893 0.769 0.836 0.676 0.887
TabTrans 0.653 0.732 0.584 0.856 0.784 0.792 0.674 0.828
FT-Trans 0.662 0.824 0.626 0.892 0.768 0.840 0.645 0.889
VIME 0.621 0.697 0.571 0.892 0.769 0.803 0.683 0.881
SCARF 0.651 0.753 0.556 0.891 0.703 0.829 0.680 0.887
TransTab 0.741 0.879 0.665 0.894 0.791 0.841 0.739 0.897
MambaTab-D 0.787 0.961 0.669 0.904 0.860 0.853 0.783 0.908