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Introduction
Intervertebral degenerative disc disease (IVDD) is a 
pathological process that destroys the structure of the 
intervertebral discs. The progression of this disease pre-
disposes to the risk of disc herniation, spinal stenosis, 
spinal slippage and spinal instability, which uniformly 
presents clinically as low back pain and radiating pain in 
the lower limbs [1, 2]. Globally, about 700 million people 
are experiencing IVDD, with annual medical expendi-
tures amounting to billions of RMB, putting enormous 
pressure on family finances and national finances [3–5]. 
Finding effective treatment is crucial for IVDD.
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Abstract
Background  Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work 
productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly 
understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic 
proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide 
(H2O2)-induced model of rat annulus fibrosus cells (AFCs).

Methods  AFCs were exposed to H2O2 to model oxidative stress-induced degeneration. Protein expression levels of 
collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p 
expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to 
evaluate changes in protein expression and pathway activation.

Results  H2O2 exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while 
MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression 
and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, 
confirming its role in regulating the mTOR pathway and autophagy.

Conclusions  Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. 
These findings suggest a potential therapeutic target for mitigating IVDD progression.
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The pathogenesis of IVDD is primarily associated 
with the degeneration and structural destruction of the 
intervertebral disc tissue. The intervertebral disc is an 
invaluable tissue in the structure of the human spine 
and plays a key role in the normal physiological activity 
of the spine by increasing joint mobility, stress tolerance, 
shock absorption and protection of the brain and spinal 
column. Degenerative disc disease is the degenerative 
process of water loss and functional failure in the disc tis-
sue [6, 7]. The function of the annulus fibrosus is to limit 
the position of the nucleus pulposus and provide axial 
tension [8]. As the intervertebral disc degenerates, the 
content of collagen type 1 and aggrecan, which mainly 
constitutes the annulus fibrosus tissue, decreases, causing 
changes in the mechanical properties of the tissue (e.g., 
properties such as modulus of elasticity and energy stor-
age modulus), which ultimately leads to rupture of the 
annulus fibrosus and extrusion of the nucleus pulposus, 
resulting in clinical manifestations such as pain and nerve 
damage [9]. The mechanisms underlying annulus fibrosus 
degeneration remain poorly understood, and no effective 
treatment currently exists. Therefore, identifying path-
ways to mitigate or treat annulus fibrosus degeneration is 
of critical importance.

Autophagy is a self-degradation process that occurs 
within the cell and plays an important role in both 
healthy and pathological states by transporting car-
goes such as misfolded or aggregated proteins, damaged 
organelles, and intracellular pathogens via autophagic 
vesicles (a type of double-membrane-bound vesicles) to 
the lysosome for degradation and by transporting the 
degraded molecular products (e.g., amino acids, ATP, 
etc.) back to the cytoplasm of the cell [10–13]. In normal 
cellular physiological activities, autophagy achieves intra-
cellular homeostasis and intracellular protein homeo-
stasis through the degradation and recycling of cellular 
products by lysosomes [10, 14]. Previous studies have 
found that the progression of IVDD is accompanied by 
an increase in this autophagy deficiency [15–17]. The 
deficiency of this autophagic system is in association with 
the degradation of the extracellular matrix (ECM) and 
the apoptosis of nucleus pulposus (NP) cells [18, 19]. In a 
previous study by Ye et al. [20] it was shown that autoph-
agic activity in rat nucleus pulposus cells decreased with 
age and that there was a large intracellular hoarding of 
autophagic vesicles as well as an increase in autophagy-
related proteins. Increasingly, studies have shown that 
proper autophagy activation can protect NP cells, such 
as Lin Xie et al. [21] who concluded that activation of 
mitochondrial autophagy and inhibition of apoptosis 
using cyclic RNA could improve IVDD. Whereas most 
studies have focused on NP cells, the intervertebral disc 
as a whole, its annulus fibrosus component and cellular 
autophagy have been poorly studied. Therefore, in our 

work, we investigate the degeneration and autophagy of 
the annulus fibrosus cells (AFCs).

MicroRNA (miRNA) is a crucial player in gene expres-
sion. It restrains translation by binding to mRNA mole-
cules and destroys them [22, 23]. In past studies, miRNAs 
have been shown to contribute to disc degeneration by 
inhibiting structural protein expression and activat-
ing ECM degradation enzymes [24–27]. For instance, 
miR-132 and miR-7 were found to be highly expressed 
in degenerating discs, directly inhibiting GDF5, which 
promotes disc ECM synthesis. miR-27b was shown to 
be reduced in degenerating discs in a study by Ming Ji 
et al. and its target gene, matrix metalloproteinases 13 
(MMP13), was synthesized in large quantities to degrade 
ECM. These evidences have suggested a possible role of 
miRNAs in the pathogenesis of IVDD.

This study focuses on the interaction between autoph-
agy and IVDD induced by oxidative stress. To explore 
the protective role of autophagy in AFC degeneration, 
researchers conducted bioinformatic analyses to identify 
specific miRNA pathways associated with autophagy in 
AFCs. The ultimate goal is to identify potential therapeu-
tic modalities for annulus fibrosus degeneration, which 
may offer new avenues for the treatment of IVDD.

Methods and materials
Isolation and culture of Rat AF cells
Five-week-old male Sprague-Dawley rats had the cau-
dal annulus fibrosus tissue removed with euthanasia. It 
was minced and digested with collagenase for 6  h. The 
digest was carefully sieved through a 50 μm cell strainer. 
The collected AF cells were cultured in F12 medium. The 
culture conditions were maintained at 37 °C with a con-
trolled atmosphere of 5% CO2 and 5% O2. Upon reach-
ing a cellular confluence of 90%, the cells were subjected 
to dissociation via treatment with a 0.05% trypsin-eth-
ylenediaminetetraacetic acid (EDTA) solution, and sub-
sequently seeded in culture plates appropriate for their 
growth conditions. The entirety of cells employed in this 
investigation were cultivated as monolayers during the 
initial third generation of AF cells, and all experimental 
procedures were meticulously conducted in triplicate, 
constituting a total of three replicates (n = 3).

The animal experiments required for this study were 
conducted under the regulations of the Animal Protec-
tion and Utilization Committee of Soochow University. 
This study was approved by the Ethics Committee of 
Soochow University (SUDA20230911A02).

AF cells treatments
AF cells were added to 96-well plates with a concentra-
tion of 700 cells per well. After cells reached 90% con-
fluence, H2O2 (100 μM) was added to cultural medium 
and incubated for 24  h, respectively. In the group with 
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rapamycin (RAPA) treatment, the AF cells were first 
treated with a complete medium containing rapamycin 
for 3 h, then followed by the above steps.

CCK8
Cellular Activity Tests were performed by using a cyto-
toxicity assay kit according to instructions. AF cells were 
seeded in 96-well plates at 2 × 103 cells per well. After 1, 
3, and 5 days of incubation respectively, they were incu-
bated with 90 μL complete medium and 10  μl CCK-8 
reagent solution for 2  h. The automated microplate 
reader was used to measure the optical densities (OD) at 
450 nm for both the control and treatment groups.

Western blot analysis
The quantification of protein extraction from rat spinal 
tissues for the assessment of aggrecan fragmentation 
was performed utilizing the Western blot technique, 
following a previously established protocol. Briefly, AF 
cells were seeded in 6-well plates at 5 × 105 cells per well. 
when cells reached 90% confluence, whole-cell extracts 
were separated by RIPA lysate (supplemented with phos-
phatase inhibitors and protease inhibitors). The entire 
protein extracts underwent separation through 7.5% 
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE), followed by transfer onto a nitrocel-
lulose (NC) membrane. Subsequently, the NC membrane 
was subjected to incubation in a solution containing 10 
mM Tris-buffered saline with 1.0% Tween 20 and 5% 
dehydrated skim milk to effectively obstruct non-specific 
protein interactions. The membranes were subsequently 
incubated overnight with 1:1000 rabbit polyclonal anti-
Aggrecan primary antibody (with rabbit polyclonal anti-
bodies against Collagen I (1:1000 dilution, ab34710), 
Collagen II (ab188570), matrix metalloproteinases 3 
(MMP 3) (ab53015), MMP 13 (ab39012), p62 (ab109012), 
Beclin 1 (ab217179), LC3B (ab192890), beta Actin 
(ab8227) mTOR (ab32028), (Abcam, UK) and phospho-
mTOR (p-mTOR, 09-343, Sigma-Aldrich, Germany), 
followed by anti-rabbit goat secondary antibody with 
HRP, for 1 h. Membrane visualization was accomplished 
through the application of an enhanced chemilumines-
cence reagent. Protein expression levels, normalized to 
β-actin, were assessed through analysis conducted with 
ImageJ software, developed by the National Institutes of 
Health, Bethesda, MD, USA.

mCherry-GFP-LC3B adenovirus transfection
To ascertain autophagic flux, AFCs were transfected 
with an adenoviral vector carrying the mCherry-GFP-
LC3 fusion protein. AFCs were seeded in 24-well plates, 
which included slides for cell adhesion, at a density of 
1 × 10^4 cells per well. Upon achieving 50% confluence, 
the mCherry-GFP-LC3B adenovirus was diluted in a 

culture medium and subsequently administered to the 
cells at a multiplicity of infection of 20, in accordance 
with the manufacturer’s instructions. Three replicates 
were set up for each group and incubated for 24 h. After 
decanting the supernatant, the cells were transferred into 
1  ml of fresh medium and incubated for an additional 
24 h. Subsequently, they were fixed with 4% paraformal-
dehyde at room temperature for a duration of 20  min. 
Subsequently, the cells on the slides were treated with 
drops of anti-fluorescence quenching mounting solution. 
Once mounted, the cells were shielded from light and 
subjected to imaging using a fluorescence microscope 
(Carl Zeiss, Germany) to observe LC3 puncta.

Reverse transcription-polymerase chain reaction (RT-PCR)
For the detection of messenger RNA, AF cells underwent 
lysis, and the extraction of total RNA was performed 
employing the Trizol reagent. Complementary DNA 
templates were synthesized utilizing the PrimeScript™ 
RT reagent Kit with gDNA Eraser (Takara, Japan). Uti-
lizing the SYBR Premix Ex Taq™ II Kit (Takara Shiga, 
Japan), reverse transcription-polymerase chain reaction 
was carried out on the Mx3000P system (Stratagene, US), 
adhering to the manufacturer’s instructions. RT-PCR was 
carried out utilizing the All-In-One™ miRNA First-Strand 
cDNA Synthesis Kit (GeneCopoeia, US) in combination 
with the All-In-One™ miRNA qPCR Kit (GeneCopoeia, 
US), using GADPH as the internal reference. The assess-
ment of relative mRNA expression levels was performed 
using the 2-ΔΔCt method.

Immunofluorescence examination
Immunofluorescence staining was conducted follow-
ing previously established protocols [28]. Following the 
removal of the culture medium, AF cells were fixed for 
20  min using 4% paraformaldehyde. Subsequently, they 
were permeabilized for 60 min with 0.03% Triton X-100 
and blocked for 60 min with 5% BSA. Subsequently, the 
cells were exposed to a primary antibody and incubated 
overnight at 4 °C in a controlled humidity chamber. Fol-
lowing this, the cells underwent three washes and were 
then exposed to fluorescein-conjugated secondary anti-
bodies for a duration of 1  h, followed by labeling with 
DAPI for 5 min. The fluorescence intensity was analyzed 
by fluorescence microscopy (Carl Zeiss, Germany).

Histological staining
Rat intervertebral disc specimens were initially fixed in a 
4% buffered paraformaldehyde solution for 48 h to facili-
tate preservation, followed by a one-month decalcifica-
tion process using 10% EDTA. Subsequently, the tissues 
underwent dehydration through sequential graded etha-
nol solutions before being embedded in paraffin. Three 
serial sections (5-μm thick) were cut from each specimen 
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using a microtome. Hematoxylin and eosin (H&E) stain-
ing or Safranin-O&Fastgreen staining was performed to 
observe morphology and matrix degeneration, with spec-
imens examined and photographed under high-quality 
microscopy.

The disc samples used in this study were subjected to 
immunohistochemical staining. To prepare the samples, 
they were first blocked by incubating them with 5% (w/v) 
horse serum. Then, primary antibodies specific to LC3B 
and mTOR were applied to the samples. Staining pro-
cedures were meticulously followed in accordance with 
the protocol provided in the user manual accompanying 
the DAB Horseradish Peroxidase Color Development 
Kit obtained. Once the staining was completed, the his-
tological sections were examined under a microscope. 
The researchers counted the number of cells that showed 
positive staining in the AF tissues of each disc in the dif-
ferent experimental groups. This approach allowed the 
researchers to assess the expression levels of LC3B and 
mTOR in the AF tissues and compare them between 
the groups. By quantifying the positively stained cells, 
the researchers could gain insights into the distribution 
and abundance of these specific markers in the different 
experimental conditions.

miRNA prediction and expression analysis
miRNA prediction upstream of mTOR was performed 
using miRmap (mirmap.ezlab.org), miRWalk (mirwalk.
umm.uni-heidelberg.de) and miRDB (mirdb.org) online 
databases. The prediction of gene binding sites was con-
ducted using TargetScanHuman (www.Targetscan.org). 
The screening and comparison of a predicted miRNA-
mRNA data pair were conducted. Subsequently, cells 
were treated with miRNA inhibitors to examine their 
effects on mTOR and autophagy levels after miRNA 
inhibition.

Statistical analysis
The experiments were performed in triplicate, and the 
results were reported as the mean ± standard deviation. 
Statistical analyses were conducted using SPSS statistical 
software version 26.0.

Moreover, significant differences between two indepen-
dent groups were evaluated employing Student’s t-test, 
while distinctions among multiple groups were assessed 
through one-way analysis of variance (ANOVA). The sta-
tistical graphs were generated using the software Graph-
Pad Prism 9.0. The significance levels were indicated as 
follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Result
Autophagy activation after annulus fibrosus degeneration
The previous studies conducted by our research group 
have demonstrated a reduction in autophagy levels 

during the degeneration of cartilage tissue. By reinstat-
ing the autophagic expression of the tissue, it is possible 
to ameliorate its degenerative process [29]. The expres-
sion of autophagy was thus investigated in a rat model 
of degeneration. HE staining of the rat disc degeneration 
model revealed a reduction in the nucleus pulposus and 
disorganization of the annulus fibrosus within the degen-
erated disc. The degenerated annulus fibrosus exhibited 
a decrease in collagen content as observed through Saf-
ranin-O&Fastgreen staining. The immunohistochemical 
staining results indicated a decrease in autophagy levels 
in the degenerated tissues, as evidenced by an increase 
in P62 expression and a decrease in LC3 expression 
(Fig.  1A). In the established model of AFC degenera-
tion, a decrease in the synthesis of collagen type I was 
observed at both the protein and gene levels, with their 
expression being less than half that of the normal group 
(P < 0.05, 95% confidence interval: -0.7771 to -0.1360). 
The expression of both MMP3 and MMP13 proteins was 
significantly upregulated by more than 80%, accompa-
nied by a robust synthesis of their respective mRNAs, as 
well as an enhanced metabolic activity for degradation of 
the extracellular matrix (Fig. 1B-C).

Activation of autophagy decelerates H2O2-induced 
degeneration of AFCs
In order to investigate the role of autophagy in the degen-
eration of fibrous annulus, 50 nM was picked as the 
intervention concentration of RAPA and 4  h was sug-
gested as the intervention time of RAPA in view of the 
relevant literature [30]. The Western Blot results revealed 
a significant reduction of approximately 50% in the levels 
of collagen I and collagen II in the H2O2 group compared 
to the Ctrl group (P < 0.05, respectively, 95% confidence 
interval: -0.4773 to -0.3570, -0.5045 to -0.4276) (Fig. 2B-
C). However, no statistically significant difference was 
observed between the RAPA group and the Ctrl group. 
Extracellular matrix levels in the H2O2 + RAPA group 
were significantly higher compared to the H2O2 group, 
but still lower than the Ctrl group. The results of RT-
qPCR also corroborated the protein alterations (Fig. 2A). 
The expression of MMP13 in the H2O2 group was 
approximately four times higher compared to that in the 
Ctrl group, whereas its levels were reduced upon addition 
of RAPA, thereby leading to a significant amelioration in 
extracellular matrix degradation (Fig. 2D-E). This further 
demonstrated the effectiveness of RAPA in retarding the 
degeneration of AFCs.

AFCs autophagy activation is activated by mTOR pathway
To further explore the relationship between autophagy 
and the regression of AFCs, the level of autophagy was 
examined. The findings indicated a marginal elevation in 
autophagy levels of AFCs following hydrogen peroxide 

http://www.Targetscan.org
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Fig. 1  H2O2 induced degeneration of annulus fibrosus. (A) Tissues’ staining and immunohistochemical staining of different degenerated discs (Scale bar 
= 10 μm). (B) The effects of H2O2 on the protein levels of COL I, COL II, MMP3 and MMP13 in AFCs were determined using Western blot assays. (C) RT-PCR 
analysis for the expression of COL I, COL II, MMP3 and MMP13 mRNA levels in AFCs after H2O2 treatment. H2O2 hydrogen peroxide, COL I collagen I, COL 
II collagen II, MMP3 matrix metalloproteinases 3, MMP13 matrix metalloproteinases 13, RT-PCR reverse transcription-polymerase chain reaction. (*P < 0.05, 
**P < 0.01, ***P < 0.001 and ****P < 0.0001; between the indicated groups)
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induction, which was consistent with the observations 
made in tissues. In the H2O2 + RAPA group, the P62 
protein was significantly depleted, while the produc-
tion of Beclin-1, LC3B, ATG5, and ATG7 was markedly 
increased in the AFCs. These findings indicate a sub-
stantial enhancement of autophagy in the cells, which 

corresponds to the alleviation of AFC degeneration 
observed in the previous analysis (Fig. 3A–C). These were 
shown that RAPA activates AFC autophagy to improve 
the H2O2-induced degeneration (Fig.  3D). Researchers 
also further analyzed the expression of the mTOR path-
way and found that there was a reduction in the amount 

Fig. 2  Effect of RAPA on degeneration of AFCs after H2O2 treatment. A) RT-PCR analysis for the expression of COL I, COL II, MMP3 and MMP13 mRNA 
levels in AFCs after H2O2 and RAPA treatment. B-C) The effects of H2O2 and RAPA on the protein levels of COL I, COL II, MMP3 and MMP13 in AFCs were 
determined using Western blot assays. D-E) Immunofluorescence analysis for the expression of COL II and MMP13 proteins in AFCs after H2O2 and RAPA 
treatment. (Scale bar = 100 μm). RAPA rapamycin. (*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001; between the indicated groups)
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Fig. 3  Effect of RAPA on autophagy in AFCs. A) RT-PCR analysis for the expression of P62, Beclin-1, LC3B, Atg5 and Atg7 mRNA levels in AFCs after H2O2 
and RAPA treatment. B-C) The effects of H2O2 and RAPA on the protein levels of P62, Beclin-1, LC3, p-mTOR and mTOR in AFCs were determined using 
Western blot assays. D) Fluorescence analysis for the expression of LC3B protein in AFCs after adenovirus expressing mCherry-GFP-LC3B fusion protein 
treatment. (Scale bar = 100 μm). (*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001; between the indicated groups)
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of phosphorylated mTOR in the AFCs after the addition 
of RAPA treatment (Fig.  3B). The ratio of p-mTOR to 
mTOR was reduced compared to the CTRL group. This 
suggests that activation of AFC autophagy by the mTOR 
pathway ameliorates H2O2-induced degeneration.

microRNAs may play an important role in the activation of 
AFC autophagy
The mechanism underlying the involvement of autoph-
agy in intervertebral disc degeneration was further inves-
tigated. The prediction of miRNAs upstream of mTOR 
was performed using online databases including miRDB 
(91), miRmap (479) and miRWalk (32) respectively, as 
shown in Fig. 4A. By conducting a comprehensive analy-
sis and comparison of prediction results obtained from 
various databases, researchers successfully identified a 
specific miRNA-RNA pair. Subsequently, an in-depth 
binding site prediction was performed for the interaction 
between miR-2355-5p and mTOR genes (Fig.  4B). For 
this purpose, we retrieved the sequencing results pertain-
ing to AFC from the GEO database. Upon reanalysis of 
the transcriptome sequencing data of GSE45856, miR-
2355-5p exhibited differential expression in AFC with 
varying degeneration grades. The expression of miR-
2355-5p was observed to be downregulated in AFC sam-
ples with degeneration grade II. In contrast, it showed a 
significant upregulation, exceeding 50%, in AFC samples 
with degeneration grades IV and V (Fig. 4C–E). The cell 

degeneration model also demonstrated similar findings 
of elevated miR-2355-5p expression. Furthermore, the 
administration of RAPA resulted in a further increase 
in miR-2355-5p levels, while its inhibition by the miR-
2355-5p inhibitor (YI) showed some degree of suppres-
sion (Fig. 4F).

Autophagy activation via the hsa-miR-2355-5p/mTOR 
pathway to exert a protective effect on the fibrous annulus
The inclusion of YI in the protein assay related to extra-
cellular matrix metabolism attenuated the extracellular 
matrix salvage effect of RAPA on AFC. The expression of 
extracellular matrix proteins (Collagen I and Collagen II) 
at the protein and gene levels was found to be reduced 
in the H2O2 + Rapamycin + YI (HRYI) group compared 
to the HR group (Fig. 5A). Moreover, a reduction in the 
autophagic flux (Beclin-1 and LC-3) was observed in 
the HRYI cohort relative to the HR group. Meanwhile, 
Western Blot showed an increase in mTOR protein in the 
HRYI group compared to the HR group, suggesting that 
their mRNA may be inhibited by miR-2355-5p, which 
in turn inhibits the entire mTOR autophagic pathway 
(Fig.  5B-C). Consistently, RT-PCR also showed similar 
results, with downstream genes of the mTOR pathway 
being variously lowered in the HRYI group. Expres-
sion of the extracellular matrix decreased with lower 
levels of autophagy as well. This suggests the possibility 

Fig. 4  Expression of miR-2355-5p in human tissues and animal models. (A) Prediction, screening and analysis of miRNA-mRNA pairs were found the best 
pair of upstream of mTOR. (B) MTOR and miR-2355-5p predicted binding sites. C-D) Volcano and heat maps of gene expression in GSE45856. E) Expres-
sion of miR-2355-5p in GSE45856 in different degenerating tissues of the human body. F) RT-PCR analysis of miR-2355-5p expression in AFCs. (*P < 0.05, 
**P < 0.01, ***P < 0.001 and ****P < 0.0001; between the indicated groups)
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Fig. 5  Expression of autophagy-related and degeneration-related proteins after inhibition of miR-2355-5p. A) RT-PCR analysis for the expression of COL1, 
COL2, Beclin-1, LC3B, Atg5 and Atg7 mRNA levels in AFCs after H2O2 and RAPA treatment. B-C) The effects of RAPA and miR-2355-5P inhibitor on the 
protein levels of COL1, COL2, MMP3, MMP13, P62, Beclin-1, LC3 and p-mTOR in AFCs were determined using Western blot assays. YI miR-2355-5p inhibitor. 
(*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001; between the indicated groups)

 



Page 10 of 13Yu et al. Journal of Orthopaedic Surgery and Research           (2025) 20:86 

that miR-2355-5p may be a way for RAPA to inhibit the 
mTOR pathway and, in consequence, the autophagy of 
AFC.

Discussion
Annulus fibrosus is a key part of the histological structure 
and mechanical composition of the intervertebral disc 
[31]. A healthy annulus fibrosus maintains the normal 
structure of the intervertebral disc by wrapping around 
the nucleus pulposus [32, 33]. The annulus fibrosus sup-
ports the nucleus pulposus in all directions to accom-
modate different postures of the spine [34, 35]. In the 
process of IVDD, the annulus fibrosus breaks down and 
the nucleus pulposus herniates, causing damage to the 
nerves and leading to a range of clinical symptoms [36, 
37]. At the same time, the disruption of the mechanical 
structure causes it to lose its function of cushioning and 
regulating the spinal lines of force, leading to instability 
of the corresponding vertebral structures and accelerat-
ing the degeneration of other healthy discs [38–40]. How-
ever, the focus of disc research to date has been on the 
nucleus pulposus and cartilage endplates, with limited 
research on the annulus fibrosus, which has restricted 
therapy for IVDD. Therefore, this paper focuses on the 
changes in the fibrous annulus during disc degeneration. 
Building on a previously established model of nucleus 
pulposus cell degeneration [41], this study designed and 
developed a model of H2O2-induced degeneration in 
AFCs. This model successfully mimics the extracellular 
matrix degradation characteristic of the annulus fibrosus 
during disc degeneration. Notably, significant changes in 
autophagy were observed within the AFCs during this 
process, underscoring the potential of autophagy as a 
pivotal area for further investigation.

In the development of IVDD, most previous studies 
have found a sustained increase in autophagy in disc tis-
sue [20, 42], whereas in more recent studies it has been 
found that autophagy in disc tissue increases to a certain 
level and persists for a period of time, and then returns 
to basal levels [17, 43, 44]. This is in contrast to the previ-
ous belief that autophagy is a line of defense for the body 
[45] and is maintained at a high level during the ongoing 
inflammation of IVDD [46]. Apparently, these are more 
in line with the dynamic regulation of the intervertebral 
disc microenvironment, where autophagy is stimulated 
to slow down oxidative stress-induced apoptosis in the 
early stages of IVDD, functioning as a stress regulator. 
Autophagy, the body’s emergency response, does not 
remain at high levels for long and sustained high levels 
of autophagy lead to the impairment of individual cell 
functions and ultimately to apoptosis [47, 48]. Interver-
tebral discs are nutrient-deprived tissues with relatively 
inactive cells proliferating and differentiating in their 
various parts [49]. Maintaining high levels of autophagy 

for a long time, resulting in massive apoptosis and poor 
cell replacement, can lead to disc tissue destruction [50]. 
In the present study, we observed a decrease in autoph-
agy levels within animal tissues, whereas in the cellular 
model, autophagy levels were slightly elevated in the 
H2O2 group compared to the healthy group. This sug-
gests that there are dynamic fluctuations in autophagy 
levels within degenerating discs, which aligns with cur-
rent research on autophagy in the annulus fibrosus [51, 
52]. The upregulation of miRNA expression observed in 
the sequencing results from human tissue databases sug-
gests that AFCs maintain an elevated level of autophagy 
to counteract the oxidative stress microenvironment 
during the degeneration process. The in vitro cellular 
model utilized in this study aligns more closely with the 
typical stages of IVDD that can induce clinical symptoms 
in medical practice. It offers valuable insights for the 
current investigation into the role of autophagy in AFC 
degeneration.

In our study, autophagy of AFCs stimulated via the 
mTOR pathway showed significant alleviation of oxida-
tive stress-induced degeneration. It suggests that during 
tissue degeneration, the self-regulatory capacity of the 
tissue limits the alteration of its autophagy level. Topi-
cal drugs, which enable them to increase autophagy lev-
els more effectively, can better exert their anti-oxidative 
stress capacity. In studies related to cartilage endplates, 
type II collagen expressed by chondrocytes induced 
to degenerate was found to rebound effectively upon 
increasing their autophagic levels [16, 53, 54]. Reduced 
expression of MMP3, which destroys the extracellular 
matrix, has also been shown in studies of NP cells fol-
lowing increased autophagy [18, 55–57]. These studies 
certainly remind us of the relationship between fibro-
blasts and autophagy. In early related explorations, only 
autophagy was found to potentially alleviate IVDD-
induced senescence and apoptosis of AFC [58]. In recent 
work, its associated possible mechanisms have only 
gradually emerged. In Gao et al. [30] the mTOR pathway 
became a possible pathway to induce autophagy in AFCs, 
and in Ni et al. the ERK pathway was indicated to be able 
to be a pathway to induce autophagy in AFCs [43]. This 
well illustrates the reticulation of signaling pathways and 
suggests that autophagy induced by different pathways 
can likewise mitigate oxidative stress-induced degrada-
tion of annulus fibrosus. When certain key molecules of 
intervertebral disc autophagy are inhibited, the disc tis-
sue alternatively maintains its autophagy levels through 
other pathways [59, 60]. This well illustrates the impor-
tant role of autophagy in the physiopathological activity 
of the intervertebral disc and the potential of modulating 
autophagy in the therapeutic field of IVDD.

MiRNAs represent a category of non-coding, single-
stranded RNA molecules with an approximate length 
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of 22 nucleotides [61]. Originating from endogenous 
genes, these molecules play a central role in governing 
gene expression [62, 63]. In the context of investigat-
ing miRNA-mediated gene regulation upstream of the 
mTOR pathway, the researchers employed online bio-
informatic databases to predict miRNAs and identified 
miR-2355-5p as a potential key gene upstream of mTOR, 
based on their respective weights. Previous studies have 
demonstrated that miR-2355-5p can inhibit cancer cell 
proliferation in various cancer cells [64, 65] and promote 
angiogenesis [66, 67]. However, its association with cel-
lular autophagy in NP cells has only been confirmed 
in the study conducted by Yu Guo et al. [68], and lim-
ited research has been conducted on its involvement in 
mTOR pathway-mediated autophagy. The researchers of 
the current study reveal that miR-2355-5p may function 
as a potential gene upstream of mTOR by suppressing its 
expression. This finding suggests that cellular autophagy 
can be regulated by modulating the miR-2355-5p/mTOR 
pathway in AFC, potentially providing relief from the cel-
lular damage caused by IVDD.

This study has several limitations. In the experimen-
tal design, male rats were chosen for the experiments to 
control for a single variable and ensure consistency and 
reproducibility of the results. Using male rats also mini-
mizes the potential impact of sex hormones on degen-
eration and autophagy. However, the lack of investigation 
into the effects of gender limits the generalizability of 
this study. The rat model used in this study has several 
advantages, including its moderate size, docile tempera-
ment, large blood volume, and high reproductive capac-
ity. Additionally, the genetic similarity between rats and 
humans is relatively high. However, since rats are quadru-
peds, the mechanical stress on their intervertebral discs 
differs significantly from that in humans, limiting the 
applicability of this model to disc-related research. Fur-
thermore, the study’s analysis of human miRNAs from 
the GEO database was limited, focusing only on mTOR-
related molecular pathways. A broader exploration of 
other potential signaling pathways would provide a more 
comprehensive and accurate understanding. Addition-
ally, this research is confined to cell and animal experi-
ments, and does not extend to studies of human annulus 
fibrosus tissue or cells, which remains a limitation of this 
study. Lastly, the local application of autophagy modula-
tion to intervertebral discs and ensuring that the autoph-
agy levels remain within a safe range will be the focus of 
further research by our team.

In conclusion, the researchers propose that targeting 
the miR-2355-5p/mTOR pathway could be a promising 
strategy for regulating cellular autophagy and mitigating 
the cellular damage associated with IVDD.

Conclusion
In this experiment, we demonstrated that autophagy of 
fibroblasts mediated by increasing miR-2355-5p/mTOR 
pathway can alleviate degeneration caused by hydrogen 
peroxide-induced oxidative stress. This provides a refer-
ence and idea for the next basic and clinical studies.
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