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Abstract
Purpose

The infrapatellar fat pad (IFP) has the lowest pain threshold among all knee joint components and causes
anterior knee pain after knee arthroplasty. It has been reported that selective muscle atrophy of the vastus
medialis (VM) and fibrosis of the IFP may develop following knee joint surgery. Ultrasound enables
visualization of IFP deformation (A1) from within the joint to the proximal area in response to muscle
contraction, and this may be helpful in developing preventive and therapeutic strategies for IFP fibrosis.
Therefore, this study aimed to clarify the relationship between quadriceps muscle thickness and dynamic
changes in IFP during quadriceps setting (QS).

Methods

This study involved six participants (all men, 12 knees) with no history of knee joint problems, with a mean
age of 36.7+8.7 years. We used ultrasound imaging to evaluate quadriceps muscle thickness and IFP
dynamics. The muscle thicknesses of the VM, vastus lateralis (VL), vastus intermedius (VI) and rectus
femoris (RF) were measured at rest and during QS with maximal contraction. The IFP measured the anterior-
posterior width and the patellar tendon-tibia angle. The differences between conditions were examined
using the Wilcoxon signed-rank test, and the correlation between the differences between measurement
conditions was calculated using the Spearman rank correlation coefficient.

Results

The thickness of each muscle was measured and only the vastus lateralis muscle showed a significantly lower
value during QS, while all other measurements showed higher values (VM: p=0.0029, VL: p=0.0414, VI:
p=0.0022, RF: p=0.0022, compared to resting). The mean anteroposterior width of the IFP increased by 0.9
mm medially (p=0.015) and 1.4 mm laterally (p=0.0076). Regarding the correlation between the
measurements, a significant positive correlation was observed only between the VM difference and the
lateral IFP difference (p=0.81, p=0.0071).

Discussion

The IFP provides a cushioning effect for the patellofemoral joint and reduces friction between the articular
cartilage and the patellar ligament through functional deformation. In this study, a significant positive
correlation was found between VM difference and lateral IFP difference. These findings suggest that the
contractile force of the VM may be related to the extent by which the IFP is pushed outward, and changes in
the flexibility of the soft tissues around the knee, such as IFP, may contribute to functional impairment in
patients with knee joint disease.

Conclusion

This is the first study to quantitatively assess the extent of IFP deformation in the medial and lateral patella.
The results of the study suggest that changes in soft tissue flexibility around the knee, such as in the IFP,
may contribute to functional impairment in patients with knee joint disease.

Categories: Anatomy, Physical Medicine & Rehabilitation, Orthopedics
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Introduction
The infrapatellar fat pad (IFP) fills the space in front of the knee surrounded by the femur, tibia, patella, and
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patellar tendon [1]. Inflammation in the IFP can lead to edema, proliferation, and contractures, potentially
limiting knee motion in conditions such as Hoffa syndrome and IFP contracture syndrome [2]. The IFP is rich
in free nerve endings and has been reported to have the lowest pain threshold among all knee joint
components, making it the key source of anterior knee pain (AKP) following knee surgery [3,4]. It has also
been reported that selective muscle atrophy of the vastus medialis (VM), fibrosis of the IFP, and changes in
patella height occur after knee joint surgery [5,6]. Ultrasound imaging can visualize IFP deformation from
within the joint to the proximal area in response to muscle contraction, which may be useful for evaluating
strategies to prevent and treat IFP fibrosis [7]. Previous studies have used magnetic resonance imaging (MRI)
to measure the angle between the patellar tendon and the anterior tibia ((patellar tendon-tibial angle,
(PTTA)) at each knee flexion angle and evaluate the extent of IFP deformation [8,9]. Based on these findings,
when the change in the PTTA is significant, the extent of IFP deformation is significant, and the extent of
IFP deformation can be predicted by measuring the PTTA. It has also been reported that during quadriceps
setting (QS), the IFP spreads as if it is being pushed out to the periphery, and the thickness of the patella
increases both on the inside and outside. QS is an isometric exercise aimed at strengthening the quadriceps,
which is performed in long sitting position, with a rolled towel placed under the popliteal fossa. The towel is
pressed down by contracting the quadriceps. Differences in the degree of quadriceps muscle contraction
during QS may affect the extent of IFP deformation [10]. Given the association between IFP and AKP
following knee joint surgery, verifying the effect of changes in quadriceps muscle thickness during QS, which
is frequently used in postoperative rehabilitation of the knee joint on dynamic changes in IFP may aid in the
treatment of patients with knee disease. Therefore, this study aimed to clarify the relationship between
quadriceps muscle thickness and dynamic changes in IFP during QS.

Materials And Methods

This study included 12 knees from six men (mean age: 36.7£8.7 years), with no history of knee joint
problems. Basic information about the participants was obtained, including height, weight, age, sex, and
body mass index. Exclusion criteria included those with a history of orthopedic disease, cardiovascular
disease or cerebrovascular disease, or those with a limited range of knee joint motion or knee pain. This
study was conducted between 15 May and 14 July 2023. This study was conducted in accordance with the
guidelines outlined in Declaration of Helsinki, ensuring confidentiality of personal information. Written
informed consent was obtained from all participants. This study was approved by the Ethics Committee of
the Wajinkai Hospital, Japan (approval number: 230502).

To evaluate the muscle thickness and IFP dynamics of the quadriceps femoris, we took B-mode ultrasound
images using an ultrasound diagnostic device (Konica Minolta, SONIIMAGE HS2) with a 10 MHz linear
probe. Furthermore, ultrasound imaging was performed by a single examiner who underwent training to
ensure clear ultrasound images could be taken. The measurement position was a sitting position with the
knee joint flexed at 20°. The joint angle was maintained passively using a goniometer, with a cushion placed
in the popliteal fossa. We measured the muscle thickness of the VM, vastus intermedius (VI), vastus lateralis
(VL), and rectus femoris (RF) at rest and during QS with maximal contraction [7]. Maximal contraction (A1)
was confirmed by palpation. Difference in muscle thickness was calculated by subtracting the value at rest
from the value during QS. The measurement sites for each muscle thickness were VM, 5 cm at a 45-degree
angle to the line connecting the anterior superior iliac spine (ASIS) and the patella, VI and RF, at the
midpoint between the ASIS and the patella, and VL, at the midpoint between the greater trochanter and
lateral epicondyle [11]. The PTTA and the anteroposterior width of the distal 1/3 of the patella, medial and
lateral were measured. The PTTA was measured directly above the patellar ligament, parallel to the fiber
course of the patellar ligament, and a long-axis image was taken at the insertion point of the patellar
ligament so that the anterior surface of the proximal tibia and IFP were visualized. The angle between the
patellar tendon and the anterior surface of the proximal tibia was measured (Figure ).
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FIGURE 1: A method for ultrasound imaging of the infrapatellar fat pad
at the anterior aspect of the proximal tibia.

Aand B are the position of the probe when measuring. A: anterior view; B: lateral view; C: ultrasound image. The
angle composed of the deep border of the patellar tendon and the anterior surface of the proximal tibia was
defined as the patellar tendon-tibia angle and measured.

PT, patellar tendon; IFP, infrapatellar fat pad; PTTA, patellar tendon-tibia angle. Scale bar 10 mm.

The probe was placed at the distal 1/3 level of the patella to capture the medial IFP in a short-axis image. The
medial edge of the patellar surface cartilage, depicted as a hypoechoic area on the anterior medial surface of
the femur, was used as the reference point, and the distance between the patellar retinaculum and the
reference point was measured as the thickness of the IFP. The outside of the graft was photographed in the
same way (Figure 2). The thickness of each tissue and the PTTA were calculated as the average value by three
examiners.
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FIGURE 2: Imaging method for medial IFP thickness.

A: a line was drawn medially at the distal 1/3 of the length of the long axis of the patella to determine the imaging
position. B: a short-axis ultrasound image was taken with the probe placed between the patella and the tibia. C:
shows the actual imaging. The same method was used for the outer IFP thickness, and imaging was performed at
the lateral part of the patella. D: shows medial IFP thickness measurement method. A vertical line was drawn at
the border between the medial femoral condyle and the articular cartilage of the patellar surface, and the thickness
of the IFP was measured at that point. Arrows indicate the medial edge of the articular cartilage of the patellar
surface.

MC: medial condyle; PC: patellar surface cartilage; MR: medial patellar retinaculum; IFP: infrapatellar fat pad.
Scale bar 10 mm.

Statistical analysis

Statistical analysis was performed using statistical analysis software (SPSS Version 22; Chicago, IL, USA),
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muscle
Rest or QS

Thickness

Difference value [1QS-Rest[]

and normality was confirmed using the Shapiro-Wilk test. In addition, the differences between conditions
were examined using the Wilcoxon signed-rank test, and the correlation between the differences between
measurement conditions was calculated using the Spearman rank correlation coefficient. Effect sizes were

interpreted based on Cohen et al.’s criteria: small (0.1< p<0.3), medium (0.3<p<0.5), and large at (0.5< p)[12].

The significance level for each was set at 5%.

Results
Changes in thickness of each tissue during rest and QS

The mean difference in muscle thickness of each quadriceps muscle between rest and QS was VM
(6.124.6mm), VL (-1.5£2.6mm), VI (6.6+2.3mm) and RF (5.9£3.2mm) (p<0.05) (Table 1).

VM (mm) VL (mm) VI (mm) RF (mm)
Rest Qs Rest Qs Rest Qs Rest Qs
25.2%¥3.9 31.3%4.4 13.9+4.0 20.5%4.5 18.41£3.2 24.2+3.1 24.8+2.5 23.3+3.1

6.1+4.6 * -1.5+2.6 * 6.6+2.3 * 5943.2*

TABLE 1: Changes in thickness of each muscle rest and QS.

Values are meantstandard deviation (SD). The statistical method used was the Wilcoxon signed-rank test, * : p<0.05

QS: quadriceps setting; VM: vastus medialis; VL: vastus lateralis; VI: vastus intermedius; RF: rectus femoris.

IFP

Rest or QS

measured value

difference value

[1QS-Rest!]

The mean difference in PTTA was 3.1%2.9°, the medial IFP was 0.9+1.0 mm, and the lateral IFP was 1.4+1.3
mm (p<0.05). During QS, only VL showed a reduction in thickness, whereas all other muscles demonstrated
significant increases in thickness (p<0.05) (Table 2).

PTTA (angle, °) Medial IFP (thickness, mm) Lateral IFP (thickness, mm)
Rest QS Rest QS Rest QS
32.8%6.1 35.9+7.3 2407 3.8+1.6 3.5¢1.0 44413
3.1£2.9* 0.9+1.0* 1.4+1.3*

TABLE 2: Changes in thickness of each IFP rest and QS.

Values are mean + standard deviation (SD). The statistical method used was the Wilcoxon signed-rank test,* : p<0.05.

IFP: infrapatellar fat pad, QS: quadriceps setting, PTTA: patellar tendon-tibia angle.

Correlation between differences in muscle thickness and IFP width
between conditions

The correlation table is shown in Table 3. A significant positive correlation was observed only between the
VM difference and the lateral IFP difference (p=0.81, p<0.05) (Figure 34). The change in VI muscle thickness
and the change in PTTA showed a tendency toward a negative correlation (p=-0.53, p=0.078) (Figure 3B). No
significant correlation was observed in the other measurements.
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APTTA
A medial IFP

A lateral IFP

AVM AVL AVl ARF
0.12 -0.27 -0.53" -0.25
-0.22 0.39 0.08 -0.14
0.81* -0.25 0.23 0.1

TABLE 3: A muscle thickness and A IFP correlation table.

The statistical method used was the Spearman rank correlation coefficient, * : p<0.05, 1 : p<0.1

PTTA: patellar tendon-tibia angle; IFP: infrapatellar fat pad; VM: vastus medialis; VL: vastus lateralis; VI: vastus intermedius; RF: rectus femoris.
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FIGURE 3: Correlation between A muscle thickness and A IFP.

VM: vastus medialis; IFP: infrapatellar fat pad; VI: vastus intermedius; PTTA: patellar tendon-tibial angle.

Regarding inter-examiner reliability, the intraclass correlation coefficient (1.2) for quadriceps muscle
thickness and IFP during QS (rest to contraction) were VM (0.826-0.865), VL (0.804-0.866), RF (0.943-0.892),
VI (0.988-0.975), medial IFP (0.803-0.822), lateral IFP (0.719-0.900), and PTTA (0.553-0.761).

Discussion

The current study is the first to quantitatively evaluate dynamic changes in the IFP in the medial and lateral
patella. Many recent studies have evaluated fibrosis and associated elastic changes in the IFP via ultrasound
[4,13,14]. Advances in ultrasound elastography technology have made it possible to assess the elasticity of
soft tissues, and have been applied in evaluation of the IFP [4,13]. There have also been reports of the use of
dynamic ultrasonography to evaluate morphological changes in the IFP during exercise [14]. Ultrasound is
simpler, more cost-effective, noninvasive, and safer than MRI, but the assessment techniques performed in
these aforementioned studies are expensive additional and optional features of ultrasound, and cannot be
performed in many clinical centers. Conversely, the evaluation method used in the present study can be
performed in many clinical facilities because it uses B-mode, a standard feature of ultrasound imaging. If
this method for evaluating dynamic changes in the IFP can be established via future validation in actual
patients, it could be generalized to many clinical settings and provide useful insights into the IFP.

Changes in thickness of each muscle during rest and QS

In this study, we used ultrasound echo to examine the changes in muscle thickness, medial and lateral
anterior width of the IFP, and PTTA of each quadriceps muscle during QS in healthy adult men. Muscle
thickness significantly increased in the VM, VI, and RF during QS, and was significantly decreased in the VL.
In the IFP, medial and lateral anterior width and PTTA significantly increased after QS. The results of the
change in quadriceps muscle thickness during QS were similar to those reported by Kawai [15]. The decrease
in VL muscle thickness reflects its unique contraction pattern, where thickness shifts outward and forward
upon contraction. We believe that the change in the shape of the vastus lateralis on the horizontal plane
associated with muscle contraction was the cause of the decrease in muscle thickness. Furthermore, the
decrease in VL thickness may be due to the measurement site of this muscle. Although ultrasound is
considered to be unsuitable for measuring the thickness of deep muscles such as the VI, its effectiveness in
measuring superficial muscles including the VL has been well established, so we believe that it is necessary
to verify the cause of this in the future [16].
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Changes in thickness of each IFP during rest and QS

The extent of IFP deformation was measured by defining the lower part of the patella as the PTTA and the
IFP on the medial and lateral sides of the patella as the border between the femoral condyle and the medial
and lateral patellar retinaculum in the short-axis image. Both the PTTA and the medial and lateral IFP
showed a significant increase after QS. A study examining the dynamics of the IFP using the ultrasound echo
reported that quadriceps contraction straightens the concave patellar tendon and moves the IFP forward,
filling the space between the patellar tendon and the anterior surface of the tibial tuberosity [17]. In this
study, the PTTA, which indicates the extent of anterior movement of the inferior part of the IFP, also
increased with quadriceps muscle contraction, supporting previous studies. A new finding in this study was
the positive correlation between the increase in VM muscle thickness during QS and the increase in the
anterior-posterior width of the lateral side of the IFP. There have been no previous studies showing such
results, and we speculated that contraction of the VM would cause the patella to move medially, narrowing
the medial sub-patellar space, pushing the medial IFP outward, and increasing the thickness of the lateral
IFP. In recent years, the presence of a proximal IFP located on the medial and lateral sides of the patella has
been reported. In a report examining 36 knees from fresh cadavers, 100% had a superomedial type IFP, 83%
had a superomedial type IFP, and 11% had a loop type IFP [18]. The IFP is a dynamic structure that, together
with the synovial folds of the knee joint, provides internal support for the patella and influences external
support for the patellar retinaculum [19]. These findings suggest that the IFP is affected by patellar
movement and patellar retinaculum tension via quadriceps muscle contraction. It has been reported that
isometric contraction of the quadriceps moves the patella proximally, and the patellar tendon compresses
the infrapatellar region, including the IFP, causing it to protrude to both sides of the patellar tendon. In
addition, a study using Biodex reported that selective contraction of the VM increases the medial movement
and tilt of the patella [20]. It has also been reported that in healthy knees, the surrounding knee tissues,
especially the lateral patellar retinaculum, have the flexibility to accommodate the movement of the IFP,
suggesting that the contractile force of the VM may be related to the extent by which the IFP is pushed
outward. However, in this study, we were unable to measure patellar alignment using ultrasound echo, as
was done by Asayama et al., nor could we evaluate soft tissue tension. Consequently, the effect of muscle
contraction on the tissues around the knee remains unclear [21]. In addition, the extent of change in the
anterior-posterior width of the IFP in this study may have been lower than that reported in previous studies,
both internally and externally. Furthermore, no correlation was observed in this study between the extent of
movement of the IFP internally and externally. Given that the volume and dynamics of IFP may be
influenced by the participant characteristics, we intend to increase the sample size and conduct further
verification in future studies. In this study, no correlation was found between VM contraction and medial
IFP thickness. However, we believe that by evaluating muscle and IFP thickness during QS, we can observe
dynamic changes in IFP and clarify the relationship between muscle strength and IFP.

Limitations of this study

The first limitation of this study was the insufficient inter-examiner reliability of echography. Specifically,
the PTTA showed low reliability. Previous studies have reported that the PTTA changes significantly with
load, and muscle contraction may also change the PTTA [8]. In this study, we attempted to standardize the
measurements by placing a cushion in the popliteal fossa; however, it is necessary to reconsider positioning
during ultrasound irradiation. The second limitation is that the sample size is small. In this study, a
correlation was observed between VM muscle thickness and the extent of change in the lateral IFP; however,
some items showed a tendency toward correlation. Therefore, it is necessary to increase the sample size and
verify this. In addition, this study only targeted men, and it is possible that the relationship between sex,
BMI and IFP volume also affects the amount of change in the measurements [22]. In the future, we would like
to examine the relationship between dynamic changes in muscle tissue, IFP and knee function (pain and
walking performance) in patients with knee disease.

Conclusions

This is the first study to quantitatively assess the extent of IFP deformation in the medial and lateral patella.
Regarding the correlation between the measurements, a significant positive correlation was observed only
between the VM difference and the lateral IFP difference. These results suggest that changes in the
flexibility of the soft tissues around the knee, such as IFP, may contribute to functional impairment in
patients with knee joint disease. The evaluation methods described herein have the potential to be widely
generalized in clinical practice, and may contribute to a better understanding of pathophysiology related to
the IFP.
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