Skip to main content
. 2025 Jan 23;14(1):22. doi: 10.1167/tvst.14.1.22

Table 4.

VF Prediction Accuracy of Five Models Using Original and Artifact-Corrected Datasets as Input

Model Original Dataset (Control) Artifact-Corrected Dataset
DenseNet-121
 RMSE 4.77 (4.40, 5.13) 4.79 (4.42, 5.15)
 MAE 3.82 (3.50, 4.15) 3.83 (3.50, 4.15)
ResNet-34
 RMSE 4.65 (4.30, 4.99) 4.71 (4.35, 5.07)
 MAE 3.69 (3.39, 3.99) 3.72 (3.41, 4.03)
VGG-16
 RMSE 4.97 (4.61, 5.33) 5.03 (4.67, 5.39)
 MAE 3.94 (3.62, 4.26) 3.97 (3.66, 4.29)
ViT-Base
 RMSE 4.57 (4.19, 4.96) 4.50 (4.13, 4.88)
 MAE 3.55 (3.18, 3.82) 3.50 (3.18, 3.82)
DINO-ViT Base
 RMSE 4.59 (4.22, 4.96) 4.44 (4.07, 4.82)
 MAE 3.61 (3.29, 3.94) 3.46 (3.14, 3.79)

dB, decibels; DINO, Distillation with No Labels; MAE, mean absolute error; RMSE, root mean square error; VF, visual field; ViT, Vision Transformer.

Values are reported as mean RMSE (dB) or MAE (dB) along with 95% confidence intervals.