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Abstract 

An intestinal population of beneficial commensal microorganisms helps maintain human health,
and some of these bacteria have been found to significantly reduce the risk of gut-associated
disease and to alleviate disease symptoms. The genomic characterization of probiotic bacteria and
other commensal intestinal bacteria that is now under way will help to deepen our understanding
of their beneficial effects.
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While the sequencing of the human genome [1,2] has

increased our understanding of the role of genetic factors in

health and disease, each human being harbors many more

genes than those in their own genome. These belong to our

commensal and symbiotic intestinal microorganisms - our

intestinal ‘microbiome’ - which play an important role in

maintaining human health and well-being. A more appropri-

ate image of ourselves would be drawn if the genomes of our

intestinal microbiota were taken into account. The micro-

biome may contain more than 100 times the number of

genes in the human genome [3] and provides many func-

tions that humans have thus not needed to develop them-

selves. The indigenous intestinal microbiota provides a

barrier against pathogenic bacteria and other harmful food

components [4-6]. It has also been shown to have a direct

impact on the morphology of the gut [7], and many intestinal

diseases can be linked to disturbances in the intestinal

microbial population [8]. 

The indigenous microbiota of an infant’s gastrointestinal

tract is originally created through contact with the diverse

microbiota of the parents and the immediate environment.

During breast feeding, initial microbial colonization is

enhanced by galacto-oligosaccharides in breast milk and

contact with the skin microbiota of the mother. This early

colonization process directs the microbial succession until

weaning and forms the basis for a healthy microbiota. The

viable microbes in the adult intestine outnumber the cells in

the human body tenfold, and the composition of this micro-

bial population throughout life is unique to each human

being. During adulthood and aging the composition and

diversity of the microbiota can vary as a result of disease and

the genetic background of the individual.

Current research into the intestinal microbiome is focused

on obtaining genomic data from important intestinal com-

mensals and from probiotics, microorganisms that appear to

actively promote health. This genomic information indicates

that gut commensals not only derive food and other growth

factors from the intestinal contents but also influence their

human hosts by providing maturational signals for the

developing infant and child, as well as providing signals that

can lead to an alteration in the barrier mechanisms of the gut.

It has been reported that colonization by particular bacteria

has a major role in rapidly providing humans with energy

from their food [9]. For example, the intestinal commensal

Bacteroides thetaiotaomicron has been shown to have a

major role in this process, and whole-genome transcriptional

profiling of the bacterium has shown that specific diets can be

associated with selective upregulation of bacterial genes that

facilitate delivery of products of carbohydrate breakdown to

the host’s energy metabolism [10,11]. Key microbial groups in

the intestinal microbiota are highly flexible in adapting to

changes in diet, and thus detailed prediction of their actions



and effects may be difficult. Although genomic studies have

revealed important details about the impact of the intestinal

microbiota on specific processes [3,11-14], the effects of

species composition and microbial diversity and their poten-

tial compensatory functions are still not understood.

Probiotics and health
A probiotic has been defined by a working group of the

International Life Sciences Institute Europe (ILSI Europe)

as “a viable microbial food supplement which beneficially

influences the health of the host” [15]. Probiotics are usually

members of the healthy gut microbiota and their addition

can assist in returning a disturbed microbiota to its normal

beneficial composition. The ILSI definition implies that

safety and efficacy must be scientifically demonstrated for

each new probiotic strain and product. Criteria for selecting

probiotics that are specific for a desired target have been

developed, but general criteria that must be satisfied include

the ability to adhere to intestinal mucosa and tolerance of

acid and bile. Such criteria have proved useful but cumber-

some in current selection processes, as there are several

adherence mechanisms and they influence gene upregula-

tion differently in the host. Therefore, two different adhesion

studies need to be conducted on each strain and their predic-

tive value for specific functions is not always good or

optimal. Demonstration of the effects of probiotics on health

includes research on mechanisms and clinical intervention

studies with human subjects belonging to target groups. 

The revelation of the human genome sequence has increased

our understanding of the genetic deviations that lead to or

predispose to gastrointestinal disease as well as to diseases

associated with the gut, such as food allergies. In 1995, the

first genome of a free-living organism, the bacterium

Haemophilus influenzae, was sequenced [16]. Since then,

over 200 bacterial genome sequences, mainly of pathogenic

microorganisms, have been completed. The first genome of a

mammalian lactic-acid bacterium, that of Lactococcus lactis,

a microorganism of great industrial interest, was completed

in 2001 [17]. More recently, the genomes of numerous other

lactic-acid bacteria [18], bifidobacteria [12] and other

intestinal microorganisms [13,19,20] have been sequenced,

and others are under way [21]. Table 1 lists the probiotic bac-

teria that have been sequenced. These great breakthroughs

have demonstrated that evolution has adapted both

microbes and humans to their current state of cohabitation,

or even symbiosis, which is beneficial to both parties and

facilitates a healthy and relatively stable but adaptable

gut environment. 

Lessons from genomes 
Lactic-acid bacteria and bifidobacteria can act as biomarkers

of gut health by giving early warning of aberrations that rep-

resent a risk of specific gut diseases. Only a few members of

the genera Lactobacillus and Bifidobacterium, two genera

that provide many probiotics, have been completely

sequenced. The key issue for the microbiota, for probiotics,

and for their human hosts is the flexibility of the micro-

organisms in coping with a changeable local environment

and microenvironments. 

This flexibility is emphasized in the completed genomes of

intestinal and probiotic microorganisms. The complete

genome sequence of the probiotic Lactobacillus acidophilus

NCFM has recently been published by Altermann et al. [22].

The genome is relatively small and the bacterium appears to

be unable to synthesize several amino acids, vitamins and

cofactors. It also encodes a number of permeases, glycolases

and peptidases for rapid uptake and utilization of sugars and

amino acids from the human intestine, especially the upper

gastrointestinal tract. The authors also report a number of

cell-surface proteins, such as mucus- and fibronectin-

binding proteins, that enable this strain to adhere to the

intestinal epithelium and to exchange signals with the

intestinal immune system. Flexibility is guaranteed by a

number of regulatory systems, including several transcrip-

tional regulators, six PurR-type repressors and nine two-

component systems, and by a variety of sugar transporters.

The genome of another probiotic, Lactobacillus johnsonii

[23], also lacks some genes involved in the synthesis of

amino acids, purine nucleotides and numerous cofactors,

but contains numerous peptidases, amino-acid permeases

and other transporters, indicating a strong dependence on

the host. 

The presence of bile-salt hydrolases and transporters in

these bacteria indicates an adaptation to the upper gastro-

intestinal tract [23], enabling the bacteria to survive the

acidic and bile-rich environments of the stomach and small

intestine. In this regard, bile-salt hydrolases have been

found in most of the sequenced genomes of bifidobacteria

and lactic-acid bacteria [24], and these enzymes can have a

significant impact on bacterial survival. Another lactic-acid

bacterium, Lactobacillus plantarum WCFS1, also contains

a large number of genes related to carbohydrate transport

and utilization, and has genes for the production of

exopolysaccharides and antimicrobial agents [18], indicating a

good adaptation to a variety of environments, including the
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Table 1

Probiotic bacteria with completed genome sequences

Strain Size (Mb) Reference

Bifidobacterium longum NCC 2705 2.25 [12]

Lactobacillus plantarum WCFS1 3.30 [18]

Lactobacillus johnsonii NCC 533 2.02 [23]

Lactobacillus acidophilus NCFM 1.99 [22]



human small intestine [14]. In general, flexibility and

adaptability are reflected by a large number of regulatory

and transport functions. 

Microorganisms that inhabit the human colon, such as

B. thetaiotaomicron and Bifidobacterium longum [12], have

a great number of genes devoted to oligosaccharide trans-

port and metabolism, indicating adaptation to life in the

large intestine and differentiating them from, for example,

L. johnsonii [23]. Genomic research has also provided initial

information on the relationship between components of

the diet and intestinal microorganisms. The genome of

B. longum [12] suggests the ability to scan for nutrient avail-

ability in the lower gastrointestinal tract in human infants.

This strain is adapted to utilizing the oligosaccharides in

human milk along with intestinal mucins that are available

in the colon of breast-fed infants. On the other hand, the

genome of L. acidophilus has a gene cluster related to the

metabolism of fructo-oligosaccharides, carbohydrates that

are commonly used as prebiotics, or substrates to enhance

the growth of beneficial commensals in the colon [25].

Microbe-host interactions
Genomic information on B. longum [12], L. plantarum [18],

L. johnsonii [23] and L. acidophilus [22] also gives insight

into the adhesive mechanisms of these microorganisms,

which provide the basis both for populating the gut and for

communicating developmental signals to specific areas and

sites in the gut mucosa. In addition, a eukaryotic-type serine

protease inhibitor was identified in the genome of B. longum

which may contribute to the immunomodulatory activity of

this species. Operons coding for bacteriocins have been iden-

tified in L. johnsonii and L. acidophilus, and they may have a

role in influencing the succession of microbiota in humans

over time.

It is obvious that an understanding of the cross-talk between

the intestinal microbiota and its host would expand our

understanding of the relationship between microbiota and

health. Specific imbalances or deviations in the intestinal

microbiota may render us more vulnerable to intestinal

inflammatory diseases and to diseases beyond the intestinal

environment. Genomic information will be important in

understanding this cross-talk. Genomic data from B. longum

and Bacteroides thetaiotaomicron, for example, provide

information on how these bacteria are specifically adapted to

the gut. B. thetaiotaomicron contains the largest number of

genes related to carbohydrate uptake and metabolism so far

reported for a sequenced bacterial genome [13]. It has also

been shown to modulate glycosylation of the intestinal mucus

and to induce the production of antimicrobials by the mucosa

[26], and it attenuates inflammation in an in vitro model

[27]. These observations suggest mechanisms by which

intestinal microbes may influence the gut microecology and

shape the immune system. Genomic information from

Bacteroides has also shown how these intestinal bacteria

may be able to evade detection by the immune system by

changing the composition of the capsular surface polysac-

charide, and therefore their antigenicity [13,20].

The genome sequences now available give some idea of the

potential properties of these microorganisms, but give no

information about the situation in vivo. A full response to

the local environment will only be triggered when all the

factors, including physicochemical conditions and microbe-

host interactions, are present. In this regard, genomic

research can be extremely useful, as it should provide the

necessary tools, such as DNA microarrays, for unraveling the

functions of probiotics and gut-related bacteria in vivo [14]

and for monitoring the effect of probiotic consumption on

gene expression in the host [28]. At the same time, genomics

will open avenues to understanding microbe-host and

microbe-microbe cross-talk, and will provide mechanisms

for the specific effects of probiotics on host gene expression

and cell proliferation that have been observed in model

systems. The weak messages provided so far by the mass of

microarray data will have to be correctly interpreted and

bioinformatic approaches developed.

Towards a complete understanding of
probiotics
Integrating microbial genomic and transcriptional infor-

mation with data on host gene expression in the exposed

mucosal sites and elsewhere will help in understanding the

roles of probiotics, microbiota, and microbe-microbe and

host-microbe interactions. Symbiotic microorganisms may

dedicate part of their genomes to processes that are benefi-

cial to both the host and the microbe, and identification of

such processes will help in the development of new probi-

otics. Functional redundancy in the ecosystem can guaran-

tee that these key processes are not affected by

environmental changes [29]. Again, genomic research will

provide the evidence of redundancy which will, in turn,

help to identify the key processes.

From a functional point of view, genomic analysis often allows

one to assign a possible function to uncharacterized genes that

have homology with annotated genes of known or putative

function. Genes with known function represent 71% of the

genes of B. longum, 70% of L. plantarum, 40% of Bac-

teroides fragilis and 58% of B. thetaiotaomicron, indicating

the need to characterize the functions of the remaining,

unknown, genes. The availability of probiotic genomes will be

very important for predicting the capabilities of the various

probiotic microorganisms [30], and will also allow the develop-

ment of genetic tools to analyze the functionality of these

strains as probiotics [31]. This will also provide information

about their mechanisms of action, facilitating the development

or selection of a new generation of probiotics. Such data will

also enable us to know which factors influence the performance
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of probiotics, thus allowing a rational approach to strain

improvement.

The comparative genomics of probiotic and symbiotic

microorganisms and pathogens will provide valuable infor-

mation on the features of these different lifestyles. This will,

in turn, shed light on the detailed functional properties of

probiotics and their safety, as well as their evolutionary rela-

tionships. In conclusion, genetic studies on the current gen-

eration of probiotic microorganisms will increase our

understanding of their biological mechanisms and provide

an important step toward understanding human biology in

its most complete sense.
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