Table 4.
Metrics of machine learning.
Classifier | AUCa | Accuracy | Sensitivity | Specificity | Precision | PPVb | F1-score | NPVc |
LRd | 0.946 | 0.817 | 0.808 | 0.953 | 0.818 | 0.818 | 0.809 | 0.954 |
SVMe | 0.980 | 0.858 | 0.857 | 0.965 | 0.861 | 0.861 | 0.854 | 0.964 |
RFf | 0.976 | 0.858 | 0.860 | 0.965 | 0.856 | 0.856 | 0.854 | 0.964 |
KNNg | 0.930 | 0.767 | 0.772 | 0.942 | 0.787 | 0.787 | 0.768 | 0.941 |
MLPh | 0.973 | 0.825 | 0.823 | 0.957 | 0.830 | 0.830 | 0.819 | 0.956 |
LightGBMi | 0.963 | 0.900 | 0.908 | 0.975 | 0.895 | 0.895 | 0.899 | 0.974 |
AdaBoostj | 0.962 | 0.858 | 0.859 | 0.964 | 0.855 | 0.855 | 0.856 | 0.964 |
XGBoostk | 0.961 | 0.908 | 0.905 | 0.978 | 0.901 | 0.901 | 0.901 | 0.977 |
CatBoostl | 0.970 | 0.892 | 0.892 | 0.974 | 0.885 | 0.885 | 0.885 | 0.973 |
aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLR: Logistic Regression.
eSVM: Support Vector Machine.
fRF: Random Forest.
gKNN: k-nearest neighbor.
hMLP: Multilayer Perceptron.
iLightGBM: Light Gradient-Boosting Machine.
jAdaBoost: Adaptive Boosting.
kXGBoost: Extreme Gradient Boosting.
lCatBoost: Categorical Boosting.