Skip to main content
. 2025 Jan 10;13:e63731. doi: 10.2196/63731

Table 4.

Metrics of machine learning.

Classifier AUCa Accuracy Sensitivity Specificity Precision PPVb F1-score NPVc
LRd 0.946 0.817 0.808 0.953 0.818 0.818 0.809 0.954
SVMe 0.980 0.858 0.857 0.965 0.861 0.861 0.854 0.964
RFf 0.976 0.858 0.860 0.965 0.856 0.856 0.854 0.964
KNNg 0.930 0.767 0.772 0.942 0.787 0.787 0.768 0.941
MLPh 0.973 0.825 0.823 0.957 0.830 0.830 0.819 0.956
LightGBMi 0.963 0.900 0.908 0.975 0.895 0.895 0.899 0.974
AdaBoostj 0.962 0.858 0.859 0.964 0.855 0.855 0.856 0.964
XGBoostk 0.961 0.908 0.905 0.978 0.901 0.901 0.901 0.977
CatBoostl 0.970 0.892 0.892 0.974 0.885 0.885 0.885 0.973

aAUC: area under the curve.

bPPV: positive predictive value.

cNPV: negative predictive value.

dLR: Logistic Regression.

eSVM: Support Vector Machine.

fRF: Random Forest.

gKNN: k-nearest neighbor.

hMLP: Multilayer Perceptron.

iLightGBM: Light Gradient-Boosting Machine.

jAdaBoost: Adaptive Boosting.

kXGBoost: Extreme Gradient Boosting.

lCatBoost: Categorical Boosting.