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Abstract

Identifying novel and functional RNA structures remains a significant challenge in RNA motif design
and is crucial for developing RNA-based therapeutics. Here we introduce a computational topology-
based approach with unsupervised machine-learning algorithms to estimate the database size and content
of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667
possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.11% (121 dual
graphs) correspond to approximately 200,000 known RNA atomic fragments/substructures (collected in
2021) using the RNA-as-Graphs (RAG) mapping method. The remaining 99.89% of the dual graphs may be
RNA-like or non-RNA-like. To determine which dual graphs in the 99.89% hypothetical set are more likely
to be associated with RNA structures, we apply computational topology descriptors using the Persistent
Spectral Graphs (PSG) method to characterize each graph using 19 PSG-based features and use clustering
algorithms that partition all possible dual graphs into two clusters. The cluster with the higher percentage
of known dual graphs for RNA is defined as the ”RNA-like” cluster, while the other is considered as
”non-RNA-like”. The distance of each dual graph to the center of the RNA-like cluster represents the
likelihood of it belonging to RNA structures. From validation, our PSG-based RNA-like cluster includes
97.3% of the 121 known RNA dual graphs, suggesting good performance. Furthermore, 46.017% of the
hypothetical RNAs are predicted to be RNA-like. Among the top 15 graphs identified as high-likelihood
candidates for novel RNA motifs, 4 were confirmed from the RNA dataset collected in 2022. Significantly,
we observe that all the top 15 RNA-like dual graphs can be separated into multiple subgraphs, whereas the
top 15 non-RNA-like dual graphs tend not to have any subgraphs (subgraphs preserve pseudoknots and
junctions). Moreover, a significant topological difference between top RNA-like and non-RNA-like graphs
is evident when comparing their topological features (e.g. Betti-0 and Betti-1 numbers). These findings
provide valuable insights into the size of the RNA motif universe and RNA design strategies, offering a
novel framework for predicting RNA graph topologies and guiding the discovery of novel RNA motifs,
perhaps anti-viral therapeutics by subgraph assembly.
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1 Introduction

Ribonucleic acid (RNA) molecules are essential biomolecules that play critical roles in various biological
processes, including protein synthesis, gene expression, gene regulation, RNA editing, and RNA interfer-
ence [1]. This functional versatility is largely due to RNA’s ability to fold into complex secondary and
tertiary structures, which allows RNAs to perform diverse functions within cells [2]. Consequently, design-
ing novel RNA secondary or tertiary structures capable of executing specific functions has become a major
focus of research. Traditional RNA structure prediction methods primarily rely on thermodynamic models
that minimize free energy to predict the most stable RNA conformations [3, 4]. While these methods are
effective, recent advances in deep learning techniques, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), have further accelerated the development of RNA structure prediction
tools [5, 6]. These deep learning models leverage large datasets to learn complex folding patterns, offer-
ing improved accuracy over traditional methods. However, while these computational approaches excel
at predicting protein structures, they are limited to RNA structure prediction due to data paucity and fall
short in providing a comprehensive understanding of the overall diversity and topological features of RNA
molecules. Thus, there is a growing need for a more holistic approach to RNA structure analysis and design
– one that systematically explores and classifies a wide range of possible RNA topologies, and that is easily
scalable to the increasing amount of biological data.

To address this need, we applied our previously developed coarse-grained framework, RNA-as-Graphs
(RAG), to map existing RNA atomic fragments and substructures to 2D dual graphs with vertices ranging
from 2 to 9 [7–9]. In this framework, double-stranded helical stems are represented as vertices, while single-
stranded regions that connect secondary elements, such as bulges, loops, and junctions, are represented
as edges. This approach provides a concise representation of RNA structures as dual graphs, capturing
key structural features while simplifying the complexities inherent in traditional secondary and tertiary
representations. The existing RNA dual graphs generated through this method are part of a larger dataset
encompassing all 110,667 possible dual graphs with vertices in the same size range. This extensive dataset
raises intriguing questions: 1) For those dual graphs that do not correspond to any known RNA structures
(i.e., hypothetical dual graphs), can we effectively determine which are more RNA-like versus non-RNA-
like? 2) What is the size of the possible RNA motif space?

To explore these questions, we initially calculated graph features and applied unsupervised clustering
methods, including Partitioning Around Medoids (PAM) and k-means, to categorize hypothetical dual
graphs into RNA-like and non-RNA-like groups [8]. This approach successfully classified 72–77% of all
existing graph topologies. One year later, we enhanced the accuracy of classifying RNA-like graphs by
incorporating updated features derived from Fiedler vectors and a new scoring model [10]. While these
graph-based features offer a simplified and structured way to explore RNA motifs, they may miss subtle
topological and geometric nuances that are crucial for RNA functionality.

To capture these nuances, we employed a computational topology method called Persistent Spectral Graph
(PSG) [11, 12] to extract comprehensive topology-based and geometry-based features of dual graphs. PSG
has proven effective in capturing meaningful structural information of biomolecules, including proteins
and RNAs [13–15]. Specifically, PSG involves creating a filtration of simplicial complex K and building
a series of q-order persistent Laplacian on K. The number of 0-eigenvalues of the qth-order persistent
Laplacian indicates the number of q-cocycles in a given point-cloud dataset. For instance, the number of 0,
1, and 2-cocycles respectively corresponds to the number of connected components, cycles, and holes in 3D.
Additionally, the non-zero eigenvalues of the qth-order persistent Laplacian will further reveal geometric
shape evolution information about the data. Details are provided in the Methods section and Supporting
Information.

Building on the PSG framework, we have developed a clustering approach using 19 PSG-based features
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to partition the graphs into RNA-like and non-RNA-like clusters. Our approach significantly outperforms
previous methods by achieving higher accuracy in clustering known RNA graphs and identifying high-
likelihood candidates for novel RNA motifs. Notably, our results show that the RNA-like cluster generated
by our model contains 97.3% of known RNA dual graphs compared to 88.3% in our earlier work 1 [10].
Among the top 15 graphs identified as high-likelihood candidates for novel RNA motifs, four were quickly
validated against a new 3D RNA dataset collected in 2022 with 181 dual graphs [16]. Clustering also sug-
gests that the size of the RNA-like motif universe is about 50% at least.

Furthermore, the distinct topological differences observed between the partitionable RNA-like and few
(irreducible) non-RNA-like graphs offer valuable insights for future RNA motif design. These findings un-
derscore the potential of our method to guide RNA-based therapeutic development and synthetic biology
by facilitating the discovery and engineering of novel RNA structures. The intriguing result that about half
hypothetical RNA motifs of the motif atlas are RNA-like underscores the modularity of RNA molecules
(since they are built from subgraph motifs) and their hierarchical nature.

2 Methods

2.1 Data collection and pre-processing

2.1.1 Dual graph representation of RNA structures

In 2003, we developed the ”RNA-As-Graphs” (RAG) framework [17] to map the existing 3D structures of
RNA molecules to their corresponding 2D dual graph representations (see Figure 1). This mapping process
is both non-injective and non-surjective, meaning that multiple distinct 2D structures can correspond to the
same 2D dual graph (non-injective), and some 2D dual graph topologies may not correspond to existing
3D RNA structures (non-surjective). This dual graph representation of RNA structures helps reconcile
three topological RNA modules: tree (edge-cut with two edges), pseudoknot (edge-cut with three edges),
and bridge (one-edge-connected). Our tree library is more intuitive but cannot represent pseudoknots.
Essentially, our dual graphs are a coarse-graining approach for representing RNA motifs by following the
”planar dual graph rules”:

1. Represent a double-stranded helical stem as a vertex,

2. Represent a single strand that may occur in segments connecting the secondary elements (e.g., bulges,
loops, junctions, and stems) as an edge,

3. No representation is required on the 3’ and 5’ ends of the RNA secondary structure.

Our RAG framework has evolved through multiple versions over time, refining search algorithms to find
the most recent existing 3D RNA structures, and applying these tools to important RNA problems, most
recently viral RNA frameshifting ( [18–21]).

In this work, we use two sets of existing 3D RNA atomic fragments libraries: one reported in 2021 [10]
(referred to as the Prior Existing), and the other reported in 2022 later [16] (”Current Existing”). The 81
RNA structures discovered between these two periods can serve as validation data.

2.1.2 Enumeration of all possible dual graphs

Graph theory enumeration [17] can generate all possible non-isomorphic graph topologies for vertices rang-
ing from 2 to 9, resulting in 110,667 distinct dual graph topologies [22]. Let G∗ = (V ∗, E∗) be a dual graph

1This comparison is based on dual graph datasets where the number of vertices ranges from 4 to 9. This range is chosen because
PSG-based methods require a minimum of 4 vertices for generation. The accuracy reported in [10] is 97.06% on a dataset with vertices
ranging from 2 to 9.
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Figure 1: The secondary structural of 1A9L with its corresponding dual graph representations under ”RNA-As-Graphs” (RAG) frame-
work. The adjacency matrix describes the connectivity between nodes and edges.

with vertices V ∗ = {v1, v2, . . . , vn} and edges E∗ = {e1, e2, . . . , em}. Here n is the number of vertices (or
nodes), and m is the number of edges. The adjacency matrix of dual graph G∗ is defined as:

A =


2, if i = j and vi has a self-loop

0, if i = j and vi does not have a self-loop

Nij , if i ̸= j,

(1)

where Nij represents the number of edges between vi and vj . Since multiple edges between two vertices are
allowed. Hence, the minimal value of Nij is 0, and the maximum is 3. In Figure 1, stem 1 has a self-loop;
therefore, the entry A11 = 2. Additionally, there are two edges between stem 1 and stem 2, so the entry
A12 = 2.

To uniquely identify each graph topology, we assign a unique graph ID a k, where a denotes the number
of vertices and k indicates the descending rank based on the Fiedler number of the graph Laplacian within
all graph topologies with a vertices. For example, graph ID 4 1 refers to the graph topology with 4 vertices
that has the smallest Fiedler number among all 4 vertices graph topologies.

Table 1: Enumeration of all possible non-isomorphic graph topologies and corresponding RNA molecules in Prior Existing
and Current Existing. The number of all possible graphs, graphs with a match to existing RNA molecules in the Prior Existing
and Current Existing corresponding to a specific vertex number is listed.

Vertex Possible Graphs Exist Graphs in 2021 Dataset Existing in 2022 Dataset

2 3 3 3
3 8 7 8
4 29 17 22
5 110 20 29
6 508 22 37
7 2,551 21 34
8 14,670 14 20
9 92,788 17 28

Total 110,667 121 181

Table 1 lists the numbers of all possible 2D graphs and all graphs corresponding to existing RNA molecules
in the Prior Existing and Current Existing. Notably, only a small portion of these graph topologies match
known RNA structures, and the remaining motifs are called ”hypothetical”. This suggests that many graph
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topologies remain unpaired with real-world RNA structures, highlighting potential areas for future re-
search and discovery. As the number of vertices increases, the number of possible topologies grows expo-
nentially, with 92,788 topologies for 9 vertices.

To mitigate the effect of unbalanced data, we create datasets based on the number of vertices. Specifically,
we gather all possible graph topologies with 4 and 5 vertices into a dataset named ”Dataset V4&5.” Sim-
ilarly, we create ”Dataset V6” for 6-vertices graphs, ”Dataset V7” for 7-vertices graphs, ”Dataset V8” for
8-vertices graphs, and ”Dataset V9” for 9-vertices graphs. We also compile all topologies into a comprehen-
sive dataset named ”Dataset All.” We exclude vertices 2 and 3 from further analysis, as they correspond
to known RNA structures. These 6 datasets with 4 and more vertices are used in the clustering analysis in
Section 3.1.

2.2 Topological Feature Engineering

2.2.1 Generalization of persistent spectral graph-based features on dual graphs

We assume that each entry aij of adjacency matrix A = (aij) of dual graph G∗ = (V ∗, E∗) represents
the distance between vertices vi and vj (when i ̸= j), and aij is an integer in [0, 1, 2, 3]. In this work,
we choose the distance-based filtration between two vertices of a dual graph and construct a series of
simplicial complexes to form persistent Laplacians. Specifically, given a set of vertices V ∗ = {v1, v2, . . . , vn}
of a dual graph G∗ = (V ∗, E∗), we consider a nested family of simplicial complexes that are created for
a positive real number d (In this work, we set distance filtration parameter d = 1, 2, 3). Denoting the
simplicial complex generated for d by Kd, the traditional qth-order Laplacian is the special case of qth-order
0-persistent Laplacian at Kd:

Ld,0
q = Bd,0

q+1(B
d,0
q+1)

T + (Bd
q )

TBd
q . (2)

The spectrum of Ld,0
q is simply associated with a snapshot of the filtration,

Spec(Ld,0
q ) = {λd,0

1,q , λ
d,0
2,q , · · · , λ

d,0
Nd

q ,q
}. (3)

With this association, we have the result that the q-th 0-persistent Betti number βd,0
q = βd

q is equal to the
number of zeros in Spec(Ld,0

q ). For simplicity, we call the q-th 0-persistent Betti number as Betti q number.
Typically, the Betti q number refers to the number of q-dimensional holes on a topological surface. For
example, Betti 0, 1, and 2 represent the number of connected components, 1-dimensional cycles (i.e., loops),
and 2-dimensional cycles (i.e., cavities) of a given system, respectively. Figure 2 shows the dual graph 4 23
with its corresponding simplicial complexes K1, K2, and K3 when the distance filtration parameter d = 1, 2,
and 3, respectively. The persistent Laplacians Ld,0

0 at different distance filtration d of dual graph 4 23 are
also shown.

We chose 18 statistical values of the Spec(Ld,0
q ) features to describe a dual graph as follows:

• 4 features from Spec(Ld,0
0 ) when d = 1: summation, non-zero smallest, variance, and the number of

zeros;

• 7 features from Spec(Ld,0
0 ) when d = 2: summation, non-zero smallest, maximum, average, standard

deviation, variance, and the number of zeros;

• 7 features fromSpec(Ld,0
0 ) when d = 3: summation, non-zero smallest, maximum, average, standard

deviation, variance, and the number of zeros.

However, the distance filtration does not consider the self-loop information in the adjacency matrix A =

(aij) when i = j. Therefore, we include the average degree (Avg(Deg)) as an additional feature to describe
a dual graph, which is defined as:

Avg(Deg) =
∑

i aii
2n

, (4)
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where n is the number of vertices (i.e., |V ∗|). Basic concepts regarding persistent spectral graphs are de-
scribed in Supporting Information S1.1 and S1.2.

Distance
1 2 3 40
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Betti 1
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Figure 2: Adjacency matrix of dual graph 4 23 (PDB ID 6FLQ) and its simplicial complexes and persistent Laplacians at different
distance filtration values. Here, the yellow line represents the barcode of Betti 1, while the red lines are the barcode of Betti 0. (See
Supporting information for details on Betti numbers.)

2.2.2 Dual-RAG-IF design setup

We use the Dual-RAG-IF package [18,19,23] to find RNA sequences that fold onto a target 2D fold described
as a dual graph. The initial RAG-IF program is based on a genetic algorithm to mutate an initial sequence,
determine its 2D folding at each step, and then generate collectively a large number of sequences that fold
on the desired motif, which are then sorted by minimal mutations from the starting sequence. More details
are available in [23]. Dual-RAG-IF has successfully applied to find structure-altering mutations for the
SARS-CoV-2 frameshifting element [18, 19].

There are three key steps in Dual-RAG-IF: 1) Mutation region identification: Mutation regions can be
determined either manually or automatically. For manual design, the input must include a target 2D struc-
ture in dot-bracket notation defining with the target dual graph, along with a sequence that marks mutation
regions by representing residues as ’N’. For automatic design, we only need the target dual graph informa-
tion, and the entire sequence is taken as the mutation region. 2) Candidate sequence generation: Candidate
sequences with mutations are generated using a genetic algorithm. Each candidate is evaluated by applying
two 2D folding programs (such as NUPACK [24], IPknot [25], and PKNOTS [26]) capable of handling pseu-
doknots to verify the resulting fold, and a sequence is considered successful when both programs agree on
the target fold. In our application, we use the NUPACK and IPknot packages. 3) Sequence optimization:
The candidate sequences are ordered by minimal mutations, ensuring an optimal final design.

3 Results

3.1 Clustering Analysis

3.1.1 Overview

Our two datasets from 2021 and 2022 contain graph topologies. Graphs corresponding to existing 3D RNA
structures are assigned the label of 1. The remaining hypothetical RNA topologies can be either non-RNA
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structures (label 0) or real RNAs (label 1), but their true nature is currently unknown due to the limited
number of discovered RNA molecules. Our aim is to identify the highly RNA-like structures among these
hypothetical RNA topologies. To address this, unsupervised machine learning methods are most suitable.

Specifically, we apply 6 clustering algorithms that can partition all possible graphs into exactly two clusters:
k-means clustering, mini-batch k-means clustering, Gaussian mixture models, hierarchical (ward) cluster-
ing, spectral clustering, and birch clustering. PSG-based features were used as inputs for these clustering
methods. The cluster containing the majority of existing real RNAs was designated as the RNA-like cluster
(graphs in this cluster were assigned a predicted label of 1). The other cluster was designated as the non-
RNA-like cluster (graphs in this cluster were assigned a predicted label of 0). The closer an RNA motif is
to the RNA-like cluster center, the higher the possibility of being the most RNA-like graph. This approach
leverages the existing RNA structures to infer the potential nature of the hypothetical graph topologies.

Our 19 PSG-based features describe each graph topology and are used in the six clustering algorithms
across datasets grouped by vertex numbers: Dataset V4&5, Dataset V6, Dataset V7, Dataset V8, Dataset
V9, and Dataset All for comparison. With unsupervised machine learning clustering algorithms, we have
no predefined labels for hypothetical graphs to compare the predictions against, but we know the label
of existing graph topologies (label 1). Therefore, we primarily use sensitivity to evaluate the clustering
performance. Sensitivity refers to the percentage of existing graph topologies correctly clustered into the
RNA-like cluster. Therefore, a high sensitivity score indicates that the clustering method is accurately cap-
turing and grouping the RNA-like graph topologies, reflecting good prediction performance. Additionally,
we also use the silhouette score, which measures how similar each graph is to its assigned cluster (cohesion)
compared to the other clusters (seperation), and the homogeneity score, which measures how uniformly
the clustering results group the existing RNA structures within the same cluster. High silhouette scores and
high homogeneity values indicate effective clustering.

3.1.2 Comparative analysis of clustering methods across datasets

To better visualize the clustering results, we use principal component analysis (PCA) to reduce the feature
dimension to 2. Figure 3 presents the clustering results of six different algorithms (columns in Figure 3)
applied to various datasets (rows in Figure 3), characterized by persistent spectral graph-based (PSG) fea-
tures. In Figure 3, all graphs in the Prior Existing are visualized with dots, while all cross symbols represent
the hypothetical graph topologies. The red cluster represents the RNA-like cluster, while the grey cluster
indicates the non-RNA-like cluster. Due to the large time complexity of hierarchical (ward) clustering on
larger datasets V9 and All, we did not report clustering performance for these datasets (NA in Figure 3).
Thus the first two k-means methods (the k-means clustering is also used in our previous RNA clustering
work [10]) exhibit good performance and scale well as dataset size increase.

We see that the k-means clustering and mini-batch k-means clustering have well-separated clusters across
all datasets. The GMM method generally has fewer mis-clustered grey dots, but its two clusters tend to
overlap more compared to other clustering methods. Hierarchical clustering with Ward’s method performs
well especially as datasets increase but is not feasible for larger datasets due to its O(n3) time complexity
[27]. Spectral clustering shows varied performance on different datasets; it clusters every existing graph
into the RNA-like cluster on Dataset V9 and Dataset All but produces an almost non-existent non-RNA-
like cluster. Lastly, Birch clustering shows good separation for smaller datasets, but its performance appears
to degrade on Dataset All. The sensitivities and percentages of graphs clustered as RNA-like are given in
Table 2. In particular, we see from Table 2 that the predicted percentage of RNA-like motifs among all
clustering methods on Dataset All varies from 32.505% to 99.990%. The more reliable k-means and mini-
batch k-means clustering methods based on combined sensitivity, silhouette, and homogeneity scores yield
about 46%. Because our analysis consider lower vertex numbers, namely up to 9, this estimate is likely a
lower bound.
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Figure 3: Clustering results by six methods with persistent spectral graph-based features on six datasets grouped by motif vertices:
Dataset V4&5, Dataset V6, Dataset V7, Dataset V8, Dataset V9, and Dataset All. The red and grey clusters are the RNA-like and
non-RNA-like clusters, respectively. The circled red dot symbols indicate existing RNA molecules, while the cross symbols denote
hypothetical graphs. The first two methods (k-means) exhibit the most reliable performance.

We also analyze the performance of each clustering method by its silhouette score and homogeneity score
(See Supporting Information S1.4). The silhouette score measures how similar a data point is to its own clus-
ter compared to other clusters, indicating the cohesion and separation of clusters. The homogeneity score
assesses whether clusters contain only data points that belong to a single ground truth class, reflecting the
purity of clusters with respect to true labels. Higher silhouette and homogeneity scores indicate a more
effective clustering algorithm with well-separated and accurately defined clusters. Although the spectral
clustering algorithm achieves 100% sensitivity on Dataset V9 and Dataset All, it has a relatively low silhou-
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Table 2: Comparison of sensitivity and percentage of RNA-like graphs under six clustering methods. The red values denote
predictions by the k-mean and mini-batch k-mean methods of the RNA-like group size.

Datasets

V4&5 V6 V7 V8 V9 All

k-means Sensitivity(%) 72.973 86.364 85.714 92.857 94.118 97.297
RNA-like(%) 59.712 55.118 49.079 48.712 46.241 46.017

Mini-batch k-means Sensitivity(%) 56.757 86.364 95.238 92.857 94.118 97.297
RNA-like(%) 42.446 56.496 59.153 48.541 42.683 46.795

GMM Sensitivity(%) 86.486 90.909 90.476 78.571 94.118 90.090
RNA-like(%) 76.259 72.638 72.677 72.904 73.517 73.412

Hierarchical (ward) Sensitivity(%) 67.568 86.364 71.429 100.000 NA NA
RNA-like(%) 61.151 60.236 33.242 69.659 NA NA

Spectral Sensitivity(%) 70.270 86.364 90.476 78.571 100.000 100.000
RNA-like(%) 58.993 60.630 90.396 99.843 98.189 99.990

Birch Sensitivity(%) 83.784 86.364 57.143 85.714 94.118 76.577
RNA-like(%) 85.612 68.504 29.008 48.480 62.461 32.505

ette score and homogeneity score, indicating poor clustering performance on these two datasets. Similarly,
while GMM has the highest sensitivities on Datasets V4&5 and V6, its silhouette and homogeneity scores
are the lowest among the clustering methods evaluated. This suggests that relying solely on sensitivity to
choose the suitable clustering methods for identifying top RNA-like graphs may not be sufficient. There-
fore, a more comprehensive approach, considering multiple evaluation metrics and clustering algorithms
are necessary to assess their performance and hence prediction regarding most likely RNA-like graphs.

3.1.3 Comparison of different feature performance of k-means clustering

For the k-means clustering method, we also evaluate in Table 3 the s and e features as used before [10] com-
pared to the topological and geometric features by PSG introduced in this work. We see that the sensitivity
(the percentage of existing graph topologies in 2021 dataset correctly clustered into the RNA-like cluster)
has been improved by PSG features from 88.288% to 97.297% on Dataset All.

Table 3: Comparison of sensitivity and percentage of RNA-like graphs using different features for k-means clustering.

Datasets

V4&5 V6 V7 V8 V9 All

k-means s and e Sensitivity(%) 70.270 72.727 57.143 64.286 64.706 88.288
RNA-like(%) 70.504 67.913 71.815 69.843 71.749 72.169

k-means PSG Sensitivity(%) 72.973 86.364 85.714 92.857 94.118 97.297
RNA-like(%) 59.712 55.118 49.079 48.712 46.241 46.017

3.2 Top central structures within clusters among six clustering methods.

Now it is interesting to explore the most RNA-like and unlikely RNA-like predicted hypothetical graphs.
For each dataset (V4&5, V6, V7, V8, V9, and All), we selected the top 15 RNA-like hypothetical graphs
closest to the center of the RNA-like cluster and the top 15 non-RNA-like hypothetical graphs closest to the
center of the non-RNA-like cluster using each of the six clustering methods. We then collect graphs that
commonly appeared in the top 15 lists of three, four, and five clustering algorithms, for both RNA-like and
non-RNA-like structures. These motifs are considered to be the most likely RNA-like 2D structures.
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Figure 4 illustrates the most RNA-like (red) and non-RNA-like (grey) graphs that commonly appear five
times among all clustering algorithms among all datasets (V4&5 - V9), respectively. They are all 4, 5, and
6-vertex graphs. While the top RNA-like motifs appear to be combinations of two different subgraphs, the
top non-RNA-like motifs resemble clusters of polygons.

Figure 4: Graphs commonly clustered as top RNA-like and non-RNA-like graphs by five clustering methods. Red graphs represent
the RNA-like graphs, while grey graphs represent the non-RNA-like graphs.

We also partition the most likely RNA-like and non-RNA-like graphs (from Figure 4) into subgraphs by the
algorithms described in [28]. Tables 4 and 5 list the subgraphs of the top 15 most likely RNA-like graphs and
the top 15 non-RNA-like graphs, respectively. Surprisingly, we find that the top RNA-like graph topologies
all have corresponding subgraphs, while the top 15 non-RNA-like graphs are non-separable. Recall that
subgraph division preserves junctions and pseudoknots [22]. This suggests that RNAs favor hierarchical
combinations of simple motifs rather than complex intertwined topologies. This striking result may guide
future RNA design. Not only can we suggest which topologies are RNA-like, but also how to design them
as simple combinations of subgraphs. In particular, the top 15 candidates for novel RNA motifs include
graphs (4 17, 5 76, 5 39, and 6 71) that were indeed found in the 2022 3D RNA dataset.
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Table 4: Top 15 most RNA-like dual graph IDs and their subgraphs. Here, we use blue IDs to represent the existing
RNA motifs. The three graph IDs colored red are those we design in the last subsection of Results (Figure 6 later).

Graph ID Subgraphs Graph ID Subgraphs Graph ID Subgraphs

5 87 2 1, 2 2, 3 2, 3 7, 4 18 6 46 2 2, 5 18 5 110 2 2, 3 4, 3 6, 4 17
6 71 2 2, 5 18 5 51 2 1, 2 2, 3 2, 3 8, 4 13 6 207 2 2, 5 55
4 13 2 1, 3 8 6 378 2 1, 5 83 4 17 2 2, 3 6
6 13 2 1, 2 2, 3 2, 4 19, 5 4 5 76 2 1, 4 26 6 304 2 1, 3 1, 4 26, 5 76
5 39 2 2, 4 20 6 274 2 1, 5 55 6 122 2 1, 2 2, 3 2, 4 20, 5 37

Table 5: Top 15 most non-RNA-like dual graph IDs their subgraphs.

Graph ID Subgraphs Graph ID Subgraphs Graph ID Subgraphs

5 43 / 6 145 / 6 60 /
6 21 / 6 64 / 6 321 /
6 130 / 6 103 / 6 128 /
6 175 / 6 182 / 6 251 /
6 89 / 6 179 / 6 22 /

3.3 Topological analysis on top RNA-like and non-RNA-like structures.

For each graph, we can calculate its persistent betti 0 (β0,d
0 ) and persistent betti 1 (β0,d

1 ) based on distance
filtration. In Figure 5, we analyze the topological barcode for top RNA-like graphs 5 51 and 4 13, as well
as top non-RNA-like graphs 6 145 and 6 251. Topological barcode measures the persistence of topological
features like connected components, loops, and voids within a dataset across varying scales. The persistent
betti 0 (β0,d

0 ) and persistent betti 1 (β0,d
1 ) can be obtained by counting the red and yellow bars at a specific

distance filtration, respectively. Two patterns from Figure 5 can be observed: 1) RNA-like graphs exhibit
more changes in Betti 0s, whereas non-RNA-like graphs do not show many Betti 0 changes. 2) RNA-like
graphs do not have Betti 1 bars, while non-RNA-like graphs are more likely to have at least one Betti 1
bar. The same patterns exist in all graphs illustrated in Figure 4. Details can be found in the Supporting
Information. Therefore, we suggest that future research can follow these rules in designing new RNA-like
motifs.

Graph ID: 4_13Graph ID: 5_51

0 1 2 43

Betti 0
Betti 1

0 1 2 43

P
er

si
st

en
t b

ar
co

de

a) b) Graph ID: 6_145 Graph ID: 6_251

0 1 2 43 0 1 2 43
distance filtration distance filtration

c) d)

distance filtration distance filtration

Betti 0
Betti 1

Figure 5: Persistent barcode of graph topologies. The red panel shows the persistent barcode of RNA-like graphs a) 5 51 and b) 4 13.
The grey panel shows the persistent barcode of non-RNA-like graphs c) 6 145 and d) 6 251. At a specific distance filtration d, the count
of red bars represents the persistent betti 0 β0,d

0 , while the count of yellow bars indicates the persistent betti 1 β0,d
1 .

3.4 Validation

Using the 121 existing RNA dual graphs collected in 2021, we apply the k-means clustering method with
PSG features to partition all possible dual graphs into two clusters: an RNA-like cluster and a non-RNA-like
cluster. In the RNA-like cluster, 10 4 or 5-vertex, 17 6-vertex, 15 8-vertex, 14-8 vertex, and 12 9-vertex dual
graphs are found in the new 2022 dataset. These results indicate the reliability of our model in accurately
separating dual graphs into RNA-like and non-RNA-like.
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3.5 RNA Motif Design Examples

Using the subgraph information in Table 4 and leveraging our previous work with the Dual-RAG-IF pack-
age, we have successfully designed several high-likelihood RNA-like motifs from their subgraphs for
graphs: 4 13, 4 17, and 5 39 as shown in Figure 6. Specifically, graph 4 13 contains two subgraphs that
align with existing RNA motifs: 2 1 and 3 8. For subgraph 2 1, we select the RNA motif with PDB ID
1K2G, while for subgraph 3 8, we chose the RNA motif with PDB ID 1F5U. We then combine the RNA se-
quences of these two motifs and use them as input for the inverse folding Dual-RAG-IF package [18,19,23].
Through nucleotide mutations by a genetic evolution algorithm, we generate 555 sequences whose graph
IDs match 4 13. Similarly, highly likely RNA topology 4 17 has two subgraphs that align with existing RNA
motifs: 2 2 and 3 6. For subgraph 2 2, we select the RNA motif with PDB ID 1A3M, while for subgraph
3 6, we chose the RNA motif with PDB ID 1YZ9. By combining these sequences together and feeding into
the Dual-RAG-IF, we obtain 117 potential RNA sequences that are predicted to fold onto our target graph
ID 4 17. In addition, 84 RNA sequences corresponding to graph ID 5 39 are also designed similarly from
PDB structures 6AZ3 and 4RZD for subgraphs 2 2 and 4 20, respectively. Figure 6 lists 60 RNA sequences
corresponding to these three target motifs 4 13, 4 17, and 5 39. Detailed sequence information can be found
in the Supporting Information.

1 584 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
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(a) 20 designed sequences for target graph 4_13 (b) 20 designed sequences for target graph 4_17

(c) 20 designed sequences for target graph 5_39

4_13

4_17

5_39

(d) Graph topologies

2_1 + 3_8

2_2 + 3_6
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Figure 6: Multiple sequence alignment plot generated by Unipro UGENE [29]. (a), (b), and (c) shows 20 designed RNA sequences for
target graphs 4 13, 4 17, and 5 39, correspondingly. The first sequence (in red box) in each MSA panel is a combined sequence from
two subgraphs. (d) shows the target graph topologies (red) and their subgraphs (blue).

4 Summary and Discussion

4.1 Summary

In this work, we have introduced new topological descriptors (PSG) and showed their value in cluster-
ing the library of RNA motifs trained by existing RNAs to predict RNA-like hypothetical topologies. We
showed that the k-means clustering method performs especially well among all six clustering methods
considered, as suggested by its high sensitivity, silhouette, and homogeneity scores. The predicted RNA-
like topologies of around 46% suggest that many possible RNA motifs in the RNA motif atlas are likely
designable or exist in nature; this estimate of the size of the RNA motif universe will be refined as our
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solved RNA database increases in volume. In particular, our striking result that all top RNA-like motifs
are decomposable into subgraphs, whereas our top non-RNA-like topologies are irreducible, underscores
the modularity and hierarchical nature of biological RNAs. Our work also directly suggests how to design
these new RNA-like topologies by combining sequences that correspond to their subgraphs in a build-up
strategy as done previously [7, 23].

4.2 Future Directions for RNA Motif Design

Our work indicates that the RNA-like universe is at least 46% and that biological RNA topologies are more
likely to contain subgraphs that distinguish them from non-RNA-like structures. Echoing this finding from
the perspective of Persistent Spectral Graph (PSG) analysis is that RNA-like graphs tend to exhibit more
changes in Betti 0 numbers or the number of connected components, and show an absence of Betti 1 bars
or 1-dimensional loops. These findings suggest that the topological features captured by PSG, such as Betti
numbers, can be critical indicators of RNA-like characteristics.

Based on these insights, it would be promising to build a comprehensive library of RNA-like graphs charac-
terized by their topological and spectral properties, such as their Betti number profiles and subgraph com-
positions. This library could serve as a valuable resource for RNA motif design by providing a structured
database of potential RNA structures that are more likely to exhibit stable and functional conformations.
Researchers could use this library to efficiently screen for novel RNA motifs with desired structural and
functional properties, potentially guiding the discovery of new RNA-based therapeutics, biosensors, and
regulatory elements. Given the rising popularity and success of AI prediction for systems (such as proteins)
where databases are extensive, maintenance of such databases for RNA remains crucial.

In conclusion, our methods and findings provide valuable tools and topological insights for guiding future
RNA motif design by highlighting the importance of subgraph patterns and topological features in distin-
guishing RNA-like and non-RNA-like structures. Our work points to successful build-up approaches for
combining nucleotide sequences of corresponding subgraphs of the target graph, as done using RAG [23].
Our library of RNA-like graphs, informed by PSG analysis and enhanced by machine learning, helps the
discovery and development of novel RNA motifs, paving the way for innovative RNA-based technologies.

Code and Data availability

The code and data for the feature and clustering algorithms are available at the public repository PSGRNA-
Clustering. The RNA inverse folding using dual graph representations package is available at Dual-RAG-
IF.

Supporting Information

The Supporting Information is available for:

S1 Supplementary Methods

S1.1 Basic topological concepts

S1.1.1 Topological concepts

S1.1.2 Combinatorial Laplacians

S1.2 Persistent spectral graphs

S1.2 Clustering algorithms
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S1.3.1 k-means clustering

S1.3.2 Mini-batch k-means clustering

S1.3.3 Gaussian mixture model (GMM)

S1.3.4 Hierarchical clustering using Ward’s method

S1.3.5 Spectral clustering

S1.3.6 Balanced iterative reducing and clustering using hierarchies (Birch)

S1.4 Evaluation Metrics

S1.4.1 Silhouette score and homogeneity score

S1.4.2 Sensitivity of binary clusters

S1.5 Designed samples
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