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SUMMARY

Recent advances in generative modeling enable efficient sampling of protein structures, but
their tendency to optimize for designability imposes a bias toward idealized structures at the
expense of loops and other complex structural motifs critical for function. We introduce SHAPES
(Structural and Hierarchical Assessment of Proteins with Embedding Similarity) to evaluate five
state-of-the-art generative models of protein structures. Using structural embeddings across
multiple structural hierarchies, ranging from local geometries to global protein architectures, we
reveal substantial undersampling of the observed protein structure space by these models. We
use Fréchet Protein Distance (FPD) to quantify distributional coverage. Different models are
distinct in their coverage behavior across different sampling noise scales and temperatures; the
frequency of TERtiary Motifs (TERMs) further supports the observations. More robust sequence
design and structure prediction methods are likely crucial in guiding the development of models
with improved coverage of the designable protein space.

INTRODUCTION

Navigating the design space of protein structures has traditionally relied on domain expertise
guided by energy functions1. With the introduction of generative models, structure-based design
and hypothesis generation has become more robust. Instead of relying on energy functions,
the protein structure space parameterized under a generative model facilitates sample gener-
ation and selection according to designability metrics2. While generative models are capable
of efficiently sampling from protein structure space, evaluation of their capacity to generate all
observed structural features in proteins remains understudied and unquantified.

Generative models aim to capture a complex data distribution by applying a learned trans-
formation which turns noise into realistic samples (Figure 1A)3. An application of generative
modeling is the ability to sample novel, diverse and realistic protein structures. The quality of
a sampled backbone is typically evaluated with designability, measured in silico by computing
the Root Mean Square Deviation (RMSD) of the predicted structures from the sequences de-
signed for it with the original backbone. In our analysis, we designed eight sequences with
ProteinMPNN4 and predicted their structures with ESMFold5. A protein backbone is said to be
designable if at least one predicted structure has RMSD < 2.0 Ångstroms to the designed back-
bone. Many experimental successes have been reported, making designability a robust metric
to filter designs6–8. However, sampled structures are often idealized, containing higher propor-
tions of alpha helices and beta sheets than native structures deposited in the Protein Data Bank
(PDB) (Figure 1B)9. This biased sampling of secondary structures motivates the following ques-
tions: 1. What regions of protein structure space are not being covered by generative models
optimized for designability? 2. How can we quantify and interpret the distributional coverage of
protein structure space? 3. What limitations does biased sampling place on the ability to design
functional structural elements?
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Figure 1. Generative models capture a biased set of protein structure space. (A) Generative models
of protein structures convert noise to samples which are optimized to match the data distribution, e.g.
CATH. Models are optimized for the ability to draw samples with high designability, which implicitly imposes
a filter that over-emphasizes the designable subspace of protein structures and under-emphasizes the
undesignable subspace. (B) Secondary structure elements more prominently show alpha helices and
beta sheets in sampled structures compared to native structures in CATH.

To answer these questions, we present the SHAPES framework to analyze the behavior of
generative models of protein structures. We quantify distributional similarity with Fréchet Pro-
tein Distance (FPD), analogous to the Fréchet ProtT5 Distance introduced by Alamdari et al.10

but using embeddings of protein structures instead of embeddings of protein sequences. The
SHAPES evaluation framework consists of sampling a set of structures from a generative model,
computing embeddings and the FPD of the embeddings with a reference dataset to quantify
distribution similarity. We examine five different models: Chroma11, Genie212, Protpardelle13,
RFdiffusion6, and Multiflow14. They are all based on diffusion or flow-matching models, but each
is trained with different structural representations and have different sampling schemes. RFdif-
fusion relies on a pretrained structure prediction model (RoseTTAFold) while other models are
trained from scratch. Each residue is represented by a frame (rotation and translation), where
both are denoised during sampling. Multiflow also uses residue frames but introduces a discrete
flow-matching objective for sequence prediction trained jointly with the structure flow-matching
objective. Chroma introduces correlated noise that models the polymer chain structure and the
scaling of the radius of gyration of proteins. Genie2 uses Frenet-Serret frames during denoising
formed by triplets of adjacent alpha-carbon atoms. Protpardelle treats each residue as atomic
coordinates instead of frames and is not equivariant to rotations, unlike the network architec-
tures in other models. These differences result in different parameterizations of the distribution
of protein structures.

We show that many models do not cover the full diversity of structural elements at all structural
hierarchies, from nearest neighbor geometries, to local amino acid environment shells, to global
protein architectures. While coverage improves with higher temperatures and noise scales dur-
ing sampling, such samples also reveal unique pathologies of generated structures which make
them less designable than low-temperature samples. Finally, we use TERtiary Motifs (TERMs)15
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to validate the FPD trends and show that complex functional motifs involving loops are more
likely to be found in samples drawn from models with greater coverage of the PDB.

RESULTS

Optimizing Designability Leads to Complexity Reduction

Designability aims to answer the question of whether or not there exists a sequence which can
fold into a given backbone. By definition, this criterion is satisfied for all accurately modeled
structures deposited in the PDB. However, we find that 43.7% of structures in CATH16 are not
designable, even when using the native sequence, in agreement with recent works which show
similar results14,17. Using designability as a metric to guide the development of generative mod-
els and for ranking designs inevitably steers sampling towards the designable subset of protein
structures and does not measure the ability to model the full set of observed protein structures.

Figure 2. Partial diffusion with RFdiffusion reduces structural complexity. (A) 20 steps of partial
diffusion using RFdiffusion applied to 21,663 samples of Protpardelle leads to reduced loop content and
more alpha and beta content. Partial diffusion by RFdiffusion induces a vector field in secondary structure
content. We approximate the true vector field using the start and end secondary structure content before
and after partial diffusion. (B) The max TM score is taken over each group of eight ProteinMPNN designed
sequences for each structure. The median is taken over all structures for every length. (C) Example of a
high temperature sample from Protpardelle (left) and the structural edits made by 20 steps of RFdiffusion
partial diffusion at the default sampling temperature.

For generative models optimized to maximize designability, what structural features do they
introduce? To understand this, we partially add noise to 21,663 structures generated with Prot-
pardelle at high temperature, which are on average less designable than low temperature sam-
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ples, then denoise the structures with RFdiffusion which produces more designable structures
on average. Indeed, designability improves across all lengths (Figure 2B), but is coupled with
a reduction in loop content and an increase in alpha and beta secondary structures (Figure
2A). Notably, the RFdiffusion-induced vector field which transports secondary structure density
from the Protpardelle to the Partial Diffusion distributions consistently shows movement towards
higher secondary structure content, except near the diagonal boundary where beta content is
replaced with alpha content. We show an example in which the front-facing loop is remodeled
into two helices with a minimal turn (Figure 2C). We posit that the gain in designability is partly
attributed to complexity reduction, in particular the erasure of loops which are difficult to design
and predict. This behavior is valuable in design tasks which require engineering structural rigidity
but could be a limitation in design tasks which require structural flexibility, such as engineering
for allostery18.

SHAPES Reveal Undersampled Regions of Protein Structure Space

The increase in secondary structure content does not fully elucidate the differences between
designable and undesignable regions of protein structure space, as both designable and undes-
ignable CATH structures have similar secondary structure distributions (Supplementary Figure
1). To capture more fine-grained features of protein geometry, we use learned representations
of protein structures at all structural hierarchies. Local amino acid nearest neighbor geome-
tries are represented by Foldseek tokens, local amino acid environments including second shell
contacts and beyond are represented by ProteinMPNN and ESM3 embeddings, and the geome-
try of protein architectures are represented by ProtDomainSegmentor embeddings (Figure 3A).
Foldseek tokens are learned through an autoencoding objective of nearest neighbor geometric
features19. They represent a discrete structural alphabet used for accurate and rapid retrieval in
large structural datasets. ProteinMPNN encoder embeddings are used by its decoder to predict
amino acid identity, thus the embedding is rich in information on the structural context which
surrounds all residue types4. ESM3 encoder embeddings are used by its decoder to predict
masked coordinates rather than masked residue type, but again it necessitates the representa-
tion of diverse structural context20. ProtDomainSegmentor embeddings are used to predict the
CATH architecture for each residue21. Indeed, principal components of such embeddings exhibit
more separation between designable and undesignable structures (Supplementary Figure 1).

To better understand the distributional coverage behavior of generative models of protein
structure, in particular the subspaces which samples tend to over-sample and under-sample, we
drew 64,989 structures each from Chroma11, Genie212, Protpardelle13, RFdiffusion6, and 21,663
from Multiflow14, matching the length distribution in Ingraham et al.’s CATH dataset16,22. We
compared samples to ground truth structures from the CATH dataset as it represents a broad,
expert-curated distribution of all known protein domains. We computed structure embeddings
and visualized the first two principal components. The reference dataset is further filtered by
resolution < 3.0 Å, Rfree < 0.25 and no NMR structures.

Using ESM3 mean-pooled encoder embeddings, the first two principal components show
a distinct streak in sampled structures not present in native CATH structures, indicating novel
structural elements, along with a region present in CATH but not present in sampled structures
(Figure 3B). The equivalent plots for ProteinMPNN and ProtDomainSegmentor embeddings are
given in Supplementary Figure 2. We rendered the structures in Figure 3C and show that the
streak is formed by idealized alpha helical structures and the undersampled region, mostly alpha-
beta mixtures, is enriched in enzyme domains.
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Figure 3. Protein structure embeddings reveal undersampled and de novo structure space. (A)
Protein structure embeddings used in SHAPES. After mean-pooling across the sequence dimension, the
dimensionality is 128 for ProteinMPNN and ESM3, 4096 for ProtDomainSegmentor. Foldseek tokens
are discrete and cannot be mean-pooled, thus we count the frequency of each token in each length
range (Supplementary Figure 11). (B) First two principal components of mean-pooled ESM3 embed-
dings colored by helix content determined by DSSP23,24. The indicated dashed guide lines denote visual
boundaries of native structure space not sampled (Undersampled) and novel regions of protein structure
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space only observed in samples but not in native structures (De novo). (C) Rasterized visualization of
panel B with 16 equally spaced grid squares in each principal component axis. A representative structure
from each grid was chosen at random. Empty grid squares indicate the absence of any structure in the
enclosed region. De novo alpha helices are shaded along the lower-right diagonal and the structures from
CATH which do not have corresponding structures in the samples are shaded along the left and top rims.
The structures are displayed in CATH raster plot are given in the Supplementary Information.

We show rasterized plots for all five models stratified by designable and undesignable along
with the underlying CATH distribution for ESM3 and ProtDomainSegmentor embeddings in Sup-
plementary Figures S14 to S71. We omit ProteinMPNN raster plots for sampled structures as
the sampled distribution is too narrow for structure visualization to be insightful. The designable
structures are typically more concentrated and less diverse than the undesignable structures. In
addition to undersampling of undesignable CATH structure space, there exist large regions of
designable CATH structure space more enriched in beta sheets and loops such as immunoglob-
ulins that are undersampled by all models. This pattern is consistent across models and struc-
ture embeddings. Pathologies in undesignable samples are also revealed: flexible tails with a
rigid core, lever-arm effects where a flexible linker can cause large RMSD in the rigid bodies it
links, poor packing, unpaired or poorly paired beta strands, an isolated beta sheet, little to no
secondary structure, and chain breaks. However, not all undesignable structures exhibit visually
notable pathologies and it is plausible that such undesignable samples can become designable
with improved sequence design models.

Fréchet Protein Distance (FPD) reveal undersampling of fold distributions

To quantitatively compare the distributional coverage of different models, we compute the Fréchet
distance, where lower values indicate greater distribution similarity (Methods, Figure 4, Supple-
mentary Figures 3-4). As observed in Genie2,12, increasing the noise injected during sampling
broadens the secondary structure distribution coverage. To quantify the effect of sampling tem-
perature, we also sample at medium and high temperature settings from each diffusion-based
model 21,336 structures each, except Multiflow as an analogous parameter is not exposed to
the user, (Figure 4, Supplementary Figures 3-4) and compute the FPD of each setting. The
exact values of the high temperature parameter differs between models and were chosen based
on the highest temperature which still can generate plausible samples by visual inspection. For
Chroma, inverse temperature 3 coincides with the point beyond which the evidence lower bound
starts to drop sharply (Supplementary Figure 2 in Chroma11). We also report the FPD computed
using designable samples (FPD-D) and undesignable samples (FPD-ND). As sampling temper-
ature increases, the sampled structures generally become more diverse as expected. Relating
the effect of sampling temperature back to designability, we observe a consistent trend of fewer
designable samples at higher sampling temperatures (Supplementary Figure 5-6). However, this
designability-diversity trade-off is distinct from a designability-coverage trade-off: the trend in the
FPD gap, defined as the difference between FPD-D and FPD-ND, is distinct between models.
In Chroma, while the overall increase in diversity gives better distributional coverage, the distri-
bution coverage of designable samples at higher temperature becomes worse. In RFdiffusion,
while diversity visibly increases, we observe a mode shift which leads to worse coverage. In
Genie2 and Protpardelle, coverage improves for both designable and undesignable samples.
Based on the distinction between diversity vs. distribution coverage, we recommend reporting
both FPD-D and FPD-ND to quantify how much of the increase in diversity is due to venturing
into non-natural structure space or due to better coverage of the training data distribution, along
with reporting designability-coverage trade-offs (Supplementary Figure 7).
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While CATH provides an expert-curated distribution of diverse protein domains, solely using
CATH as ground truth may be misleading as different models have different training data dis-
tributions. We compute the same FPD metrics using another reference distribution, the PDB
as clustered in AlphaFold3 (AF3-PDB) (Supplementary Figures 8-10)25. We observe the same
trends in FPD and the FPD gap across different embedding types and sampling temperatures,
indicating that the biased coverage is not due to differences in CATH data leakage into the train-
ing set between models or artifacts in CATH domain parsing but rather a general behavior.

Figure 4. Generative models do not capture the full expressivity of PDB structures. PCA projec-
tions of ESM3 mean-pooled encoder embeddings with sampled structure projections overlayed on CATH
structure projections. The streak observed in the sampled structures is not present in the native CATH
distribution (Figure 3B). The top row corresponds to default sampling temperatures for each model. FPD:
Fréchet Protein Distance for all samples to CATH reference set. FPD-D: FPD for designable samples with
RMSD < 2.0 Å. FPD-ND: FPD for undesignable samples with RMSD > 2.0 Å. Plots for ProtDomainSeg-
mentor and ProteinMPNN embeddings are given in Supplementary Figures 3-4. Plots for all continuous
embeddings with AF3-PDB as the reference distribution instead of CATH are given in Supplementary
Figures 8-10.
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FPD Trends Agree with Frequency Differences in Residue Nearest Neigh-
bor Geometry

While ProteinMPNN and ESM3 capture local residue environments, strictly local geometric fea-
tures may be over-smoothed given the large number of neighbors ProteinMPNN (48) and ESM3
(16) uses as context. A structure representation which uses geometric features derived from
only a single nearest neighbor is Foldseek. As they are discrete, they cannot be mean-pooled.
Instead, we compute similarity to a reference distribution of structures by counting the frequen-
cies of Foldseek tokens per length range, representing the nearest-neighbor geometries com-
monly observed in each bin. Foldseek tokens are grouped per-token (unigram) and per pair
of adjacent tokens (bigram). The KL divergence between unigram and bigram Foldseek token
frequencies of CATH or AF3-PDB structures with sampled structures agree with trends in FPD
using continuous embeddings, where higher sampling temperatures and noise scales give lower
KL divergences. Stratifying by length ranges, we also reveal a length-dependent bias in cover-
age of native local structural elements (Supplementary Figure 11). Chroma, Protpardelle, and
especially Multiflow (Supplementary Figure 12) have greater mismatch for longer protein lengths
while Genie2 coverage is more even throughout. In particular, there is a large distribution mis-
match for protein lengths below 100 amino acids in RFdiffusion samples. The coverage is not
uniform across length ranges, as RFdiffusion matches the native CATH distribution more closely
for proteins longer than 150 amino acids. Interestingly for RFdiffusion, increased noise scale
improves coverage for proteins shorter than 150 amino acids but worsens coverage for longer
proteins, in agreement with the higher FPD at higher noise scales. For all other models, the ef-
fect of sampling temperature is consistent, with higher temperature giving better coverage. The
agreement with FPD trends using ProteinMPNN and ESM3 embeddings confirms that the con-
clusions drawn for continuous embeddings are not due to embedding artifacts but are general
across embedding types. The same trends are also observed with both CATH and AF3-PDB as
the reference distribution.

Functional Tertiary Structural Alphabets are Underrepresented

The incomplete coverage protein structure space indicates that there exist tertiary structural
elements present in native structures but are absent in the samples. To evaluate this, we queried
sampled structure sets with recurring metal-binding TERtiary Motifs (TERMs)15 (Figure 5). We
elect to use TERMs because they form a tertiary structural alphabet derived from a set cover
of the PDB such that each TERM is a structural building block and has realizations in native
structures. The rank order of TERMs is based on the amount of structural novelty each TERM
introduces which we can use to gain intuition on a generative model’s ability to sample frequent
vs. rare TERMs. The motifs range from short loops to double and triple loop contacts and
fragments of secondary structure elements. Notably, TERMs are more interpretable than the
embeddings used to compute FPD. We used MASTER26 to rapidly search structure sets, with a
dynamic RMSD threshold as defined in Mackenzie et al.15 for a match to count.

Some TERMs, such as Calcium 034754, Calcium 008622, and Calcium 130482, are preva-
lent across different model samples. In contrast, some TERMs, such as Magnesium 001807,
Copper 005382, Copper 294816, and Sodium 002955, are entirely absent from almost all model
samples except Protpardelle. In general, Protpardelle is able to cover all TERMs, in agreement
with achieving the lowest FPD of the models benchmarked. For most TERMs, the number of
matches in the 21,336 CATH structures is greater than the number of matches found in the
21,336 sampled structures per model setting, indicating widespread undersampling, except for
Copper 034863 which is much more oversampled by Chroma and RFdiffusion.
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Figure 5. Functional tertiary structural alphabets are absent in samples. A: CATH, B: Chroma
Default, C: Chroma Inverse Temperature 3, D: Chroma Inverse Temperature 4, E: Genie2 Default, F:
Genie2 Scale 0.8, G: Genie2 Scale 1.0, H: MultiFlow, I: RFdiffusion Default, J: RFdiffusion Noise Scale 2,
K: RFdiffusion Noise Scale 3, L: Protpardelle Stepscale 0.8, M: Protpardelle Stepscale 1.0, N: Protpardelle
Stepscale 1.2. Counts of metal-binding TERMs in CATH and sampled structure sets when queried by
MASTER. The RMSD threshold for each TERM depends on its complexity measured by the number of
residues and the number of fragments, where more complex TERMs have less strict RMSD thresholds
for a match to be counted (Methods).

DISCUSSION

To address the three questions motivating this study, using SHAPES we show that structures
containing loops and loops mixed with alpha-beta structures, in which enzymes are prevalent,
are not covered by most generative models. The degree to which each model covers protein
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structure space is quantified using FPD for comparison between different models. Specifically,
RFdiffusion is optimized for highly designable samples with high secondary structure content,
Genie2 generalizes to novel protein architectures while retaining consistent local geometric fea-
tures with high noise scales, and Protpardelle can sample diverse loops. Distribution spread
can be improved across all models by increasing sampling temperature and noise scale at the
expense of designability and sometimes the coverage of the native distribution. This biased
sampling imposes a limitation on the ability to sample functional structural elements.

The ability to draw unbiased samples from the protein fold space is crucial to solving motif
scaffolding problems. Conditional generation is the process of drawing samples from P(scaffold |
motif) = P(scaffold, motif) / P(motif) which may be computationally intractable when the likelihood
of generating the motif in any scaffold is near zero. We posit that the unpredictable performance
of models in motif-scaffolding benchmarks, which vary from motif to motif6,20, can in part be
attributed to the frequency each motif is found in unconditional samples. When unconditional
samples do not cover scaffolds which host motifs, especially those which exist in the PDB, con-
ditional sampling could force the sampling trajectory out-of-distribution and generate unrealistic
samples. While generating idealized de novo proteins is highly impactful, as demonstrated by
the design of picomolar binders and highly active enzymes7,8,27, designing subtle but functional
mechanisms inherent to natural protein structures can be challenging when sampling from non-
natural or biased distributions of structures. For example, designing an enzyme that is amenable
to optimization by directed evolution may be more facile with scaffolds sampled from a native
structure distribution than with highly idealized scaffolds, since naturally abundant structures are
products of evolution.

SHAPES offers unique advantages over using pairwise TM score or the number of clusters
as diversity metrics. Mean pairwise TM score below 0.6 can be obtained trivially by mode col-
lapse on two dissimilar folds. The number of clusters can be arbitrarily increased by generating
a single alpha helix with increasing lengths. In both cases, SHAPES features are able to de-
tect inadequate distribution coverage. Importantly, SHAPES highlights undersampled regions in
which their precise identification is critical if the goal is to train a generative model which covers
the full conformational diversity, thus also capturing the full functional diversity, that exists in a
target data distribution. Nonetheless, current metrics of designability, diversity, and novelty are
still useful as they all offer different perspectives on the performance of generative models of
protein structures. The usefulness of a generative model for a protein designer depends on the
objective, whether representation learning is used to predict function28,29, generating diversity
within a single fold30, or extrapolating beyond natural protein structures and thereby removing
the structural vestiges of evolution that hamper recombinant expression and yield. FPD is de-
pendent on the choice of reference structures, so use cases in which the goal is to inherently
sample from a custom set of structures, such as nanobody design, can be easily handled.

Designability currently guides samples towards a non-natural structure distribution. As natu-
ral structures incorporate flexible elements such as loops to achieve function, we anticipate that
increased robustness in sequence design and structure prediction models will expand the space
of designable protein functions such that designability can guide samples towards any desired
region of protein structures while not sacrificing its predictive power on the likelihood of exper-
imental success. As the known protein structure universe continues to expand31 and protein
design goals become more multi-objective and ambitious, we hope that SHAPES can guide the
development of the next generation of generative models of protein structures.
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LIMITATIONS

For consistency, we elect to use the standard sequence design method in the field, Protein-
MPNN4. Use of other sequence design methods may give different designability results, in par-
ticular using the built-in sequence design models in Chroma and Multiflow. Also for consistency,
we elect to use ESMFold for structure prediction instead of AlphaFold2 despite its limitations32.
We reasoned that given the very low designability of AlphaFold2 in single sequence mode
(1.34% on CATH with native sequences)17 and the absence of multiple sequence alignments
to run AlphaFold2 in MSA-mode for ProteinMPNN-designed sequences, a fast and relatively ro-
bust single-sequence model such as ESMFold is most appropriate. Different structure-prediction
models would also give different designability results. Results for the coverage behavior of con-
ditional sampling may be different than the unconditional setting analyzed here due to different
forms of guidance used during sampling and cases in which an unconditional model is fine-tuned
to obtain a conditional model. We leave analysis of conditional samples to future work.

While SHAPES does not rely on the sequence design capability of ProteinMPNN, it nonethe-
less relies on representations learned from models trained for unrelated tasks. An alternative
is to use embeddings directly extracted from a diffusion model3,33. Other embeddings can be
used, as long as they can capture features which can discern samples apart, such as using
LigandMPNN34 embeddings to evaluate generative models of all-atom protein structures.
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METHODS

SHAPES

Using SHAPES consists of the following steps:

1. Choose a target training data distribution. Here we choose CATH16 and AF3-PDB9.

2. Sample structures at varying lengths from a generative model. Here we match the length
distribution of the reference dataset.

3. Compute structure embeddings: Foldseek, ProteinMPNN, ESM3, and ProtDomainSeg-
mentor

4. Compute Fréchet Protein Distance (FPD) for each continuous embedding and KL-divergence
for Foldseek tokens.

5. Visualization of distribution coverage.

Fréchet Protein Distance (FPD)

Given N data points from a ground truth distribution pdata(x) and M samples from a model
psample(x), we compute embeddings {z(i)data}Ni=1 and {z(j)sample}Mj=1. The distributional similarity of
sampled structures to reference structures can be quantified by computing the Fréchet Protein
Distance (FPD) given by Equation 1.

∥µdata − µsample∥22 + Tr
(
Σdata +Σsample − 2

(
ΣdataΣsample

) 1
2

)
(1)

where µdata and µsample are the mean vectors of the reference structures and the sampled
structures respectively, and Σdata and Σsample are the covariance matrices of the reference struc-
tures and the sampled structures respectively. In practice, fewer samples, on the order of 2000
can be used to estimate the FPD computed with a large number of samples, on the order of
20000 (Supplementary Figure 13).

TERMs

The metal-binding motifs are from Figure S9 of Mackenzie et al.15. The formula used to compute
the RMSD threshold for each motif is given by Equation 1 of Mackenzie et al.:

c(t) = σmax

√√√√(
1− 2

N(N − 1)

∑
k

nk−1∑
i=1

nk∑
j=i+1

e(i−j)/L
)

where N is the number of residues, k indexes the segment, such that the n’th segment has
length nk, L is a correlation length set to 20 as recommended. Here, σmax = 2.0 which is double
the recommended value as the recommended value of 1.0 gave zero matches for most models
for most motifs. σmax = 1.0 for Calcium 130482 and σmax = 1.5 for Copper 034863 as more than
5000 matches were found with σmax = 2.0.
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Data and code availability

• All original code has been deposited at the GitHub repository https://github.com/Prote

inDesignLab/protein_shapes and data generated has been deposited at Zenodo under
the DOI 10.5281/zenodo.14166398.
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