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Natural products have long been a rich source of diverse and
clinically effective drug candidates. Non-ribosomal peptides
(NRPs), polyketides (PKs), and NRP-PK hybrids are three
classes of natural products that display a broad range of bioac-
tivities, including antibiotic, antifungal, anticancer, and im-
munosuppressant activities. However, discovering these com-
pounds through traditional bioactivity-guided techniques is
costly and time-consuming, often resulting in the rediscovery of
known molecules. Consequently, genome mining has emerged
as a high-throughput strategy to screen hundreds of thousands
of microbial genomes to identify their potential to produce novel
natural products. Adenylation domains play a key role in the
biosynthesis of NRPs and NRP-PKs by recruiting substrates to
incrementally build the final structure. We propose MASPR, a
machine learning method that leverages protein language mod-
els for accurate and interpretable predictions of A-domain sub-
strate specificitiecs. MASPR demonstrates superior accuracy
and generalization over existing methods and is capable of pre-
dicting substrates not present in its training data, or zero-shot
classification. We use MASPR to develop Seq2Hybrid, an effi-
cient algorithm to predict the structure of hybrid NRP-PK nat-
ural products from microbial genomes. Using Seq2Hybrid, we
propose putative biosynthetic gene clusters for the orphan nat-
ural products Octaminomycin A, Dityromycin, SW-163B, and
JBIR-39.
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Introduction

More than half of all drugs approved by the Food and Drug
Administration (FDA) are derived from bioactive natural
products (1, 2). Refined through millions of years of natu-
ral selection, bioactive natural products are a valuable source
of drug candidates with potentially novel mechanisms of ac-
tion. For example, non-ribosomal peptides (NRPs) are a class
of peptidic natural products that contain many of the drug
molecules from the World Health Organization (WHO) list of
essential medicines (3). Polyketides (PKs) are another well-
studied class of natural products that comprise 20% of the
top-selling pharmaceuticals (4) and also display a wide spec-
trum of bioactivities (5, 6). Despite their structural differ-
ences, NRPs and PKs are both assembled via similar mecha-
nisms in bacteria and fungi, enabling the synthesis of diverse

NRP-PK hybrid molecules (7, 8), such as the immunosup-
pressant rapamycin (9) and the anticancer bleomycin (10).
Together, NRPs, PKs, and hybrid molecules represent a valu-
able source of therapeutically relevant drugs (Fig. 1a).

In the past two decades, thousands of NRPs, PKs, and
hybrid molecules have been linked to their biosynthetic gene
clusters (BGCs), or co-located genes that synthesize natural
products (11). However, an analysis of publicly available
genome sequencing data revealed hundreds of thousands of
BGC:s that are not linked to any known compounds (12, 13),
representing the enormous potential for novel discovery.
Accordingly, several genome mining approaches have been
proposed for identifying BGCs (14), predicting the bioactiv-
ities of the encoded natural products (15), linking putative
BGCs to known natural products (16), and predicting the
structure of natural products encoded by putative BGCs
(17-19). As paired tandem mass spectrometry and genome
sequencing data are now readily obtainable for microbial
isolates and communities (20, 21), recent methods adopt a
multi-omics approach by predicting a large set of putative
natural products for a given BGC and filtering the predictions
using paired tandem mass spectrometry data (22, 23). De-
spite these advances, a survey of current literature revealed
that existing genome mining tools are significantly better
at mining NRPs or PKs from BGCs than NRP-PK hybrid
molecules (24), which remain underrepresented and difficult
to predict due to their structural and biosynthetic complexity
(7,25-27).

NRPs, PKs, and their hybrids are synthesized through
the coordinated action of enzymes arranged in an assembly-
line fashion within BGCs (Fig. 1b). In NRPs, adenylation
(A-) domains within the BGC are responsible for incre-
mentally adding specific amino acids or hydroxy acids to a
growing peptide (26). Analogously in PKs, acyltransferase
(AT-) domains sequentially add specific alpha-carboxyacyl
(ketide) subunits to the final structure (26, 28). Therefore,
computational approaches for predicting NRP, PK, or NRP-
PK hybrid structures encoded by a given BGC are limited by
the accuracy of A-domain and AT-domain substrate speci-
ficity prediction from their amino acid sequences. Yadav et
al. identified a 24 amino acid motif of specificity-conferring
residues within the AT-domain binding pocket and achieved
an impressive 95% accuracy in substrate prediction (29).
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Fig. 1. Assembly line enzymology produces diverse and therapeutically valuable natural products. a) NRPs, PKs, and NRP-
PK molecules have diverse structures and activities. b) Biosynthetic enzymes act in a coordinated assembly-line fashion to produce
NRP-PK hybrids. Adenylation (A-) domains load specific monomers onto PCP domains. Condensation (C-) domains are responsible
for linking monomers across adjacent PCP domains to incrementally build the molecule. The process repeats until a thioesterase
(TE) domain facilitates the release of the final product. c) A close-up view of the Stachelhaus residues within the binding pocket of
an example A-domain. These residues are specificity-conferring and enable different A-domains to recruit different amino acids as

needed.

Similarly, for A-domains, Stachelhaus et al. reported a 10
amino acid specificity-conferring motif, or “Stachelhaus
code”, in the A-domain binding pocket (Fig. 1c), which
achieved 86% accuracy in classifying substrate specificity
for 160 A-domains (30). As the amount of training data
for A-domain binding specificity increased, researchers
observed an increasing number of A-domains that share
identical Stachelhaus codes yet display different substrate
specificities (31).
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To better differentiate between A-domains with identi-
cal Stachelhaus codes, Rottig et al. expanded the code to
34 residues within 8A of the binding pocket to capture the
context around the Stachelhaus code (32), enabling machine
learning methods to predict the specificity based on the 8A
signature (32, 33). However, while this approach improved
prediction accuracy for some A-domains, it did not fully
resolve the challenges posed by inherently promiscuous
A-domains, which can recruit multiple substrates despite
having identical amino acid sequences (34, 35).

Adduri etal. | MASPR


https://doi.org/10.1101/2025.01.13.632878
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.13.632878; this version posted January 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Furthermore, later work revealed that methods for A-
domain specificity prediction were severely overfitted to
their training data, with validation accuracy on out-of-
distribution test data as low as 22%, resulting in poor
overall performance on novel BGCs (35). This suggests that
A-domain specificity prediction is a weak link in novel NRP
and NRP-PK structure prediction (22). Our results show
that A-domain specificity prediction is especially poor for
NRP-PK hybrids, which can incorporate rare, non-standard
amino acids.

To more systematically capture the context of amino
acids in the binding pocket, in this work we explore the use
of protein language models to featurize the A-domain. Pro-
tein language models have proven to be effective foundation
models in biology, as they learn characteristics of amino
acid sequences over millions of protein sequences (36-39).
Despite learning these characteristics in an unsupervised
fashion with no structural information, these models can
capture dependencies between amino acids that are close
in three-dimensional space but far apart in sequence space
(40). As such, protein language models have been used to
guide protein design and generation (41-43) and predict
drug-target interactions (44—46).

We propose MASPR (modeling A-domain specificity
using unsupervised pretrained representations), which lever-
ages a protein language model to generate embeddings for
A-domains. Building on recent deep learning methods that
predict molecular fingerprints (47-49), MASPR employs
two neural networks for interpretable A-domain specificity
prediction. The first neural network is trained to generate an
interpretable molecular fingerprint of the substrate recruited
by a given A-domain. To accommodate promiscuous A-
domains that may interact with multiple substrates, a second
neural network is trained on the predicted fingerprints from
the first neural network and the target fingerprints to learn
a latent substrate embedding that represents potential A-
domain binding partners. The latent substrate embedding is
a data-driven, compact representation learned by the model
that encodes the most likely substrates for a given A-domain.

MASPR predicts specificity via nearest substrate search
through a precomputed database of these latent substrate
embeddings. MASPR is further trained to compute latent
embeddings for substrates not present in the training data,
meaning this database can include novel substrates as
specified by the user. This enables MASPR to perform
interpretable predictions of substrate specificities not found
in the training data, or zero-shot classification. MASPR
achieves state-of-the-art accuracy, improving top-5 accuracy
from 47.5% to 63.1% in out-of-distribution generalization
and from 67.8% to 72.2% on promiscuous A-domains. In a
leave-one-substrate-out cross-validation designed to measure
zero-shot predictive performance, MASPR achieved over
50% top-5 accuracy for more than half of the held-out
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substrates.

We then used MASPR to develop Seq2Hybrid, a genome
mining method for predicting mature modular type 1
NRP-PK hybrid structures directly from microbial genomes.
Seq2Hybrid uses MASPR to annotate A-domain specificities
in hybrid BGCs and accounts for biosynthetic uncertainties
such as A-domain promiscuities, variable gene assembly
orders, and post-assembly enzymatic modifications by
outputting a database of potential encoded natural products.
Seq2Hybrid can subsequently filter the database to retain
only molecules with sufficient spectral evidence if paired
mass spectrometry (MS) data is available. We demonstrate
that even in the absence of paired MS data, Seq2Hybrid with
MASPR outperforms existing methods at recovering en-
coded natural products. Together, MASPR and Seq2Hybrid
enable state-of-the-art A-domain specificity prediction and
genome mining for NRP-PK hybrid molecules encoded by
microbial BGCs.

Results

Overview of MASPR algorithm. MASPR utilizes protein
language models for interpretable and accurate prediction
of A-domain specificities (Fig. 2). Rather than performing
classification over a fixed set of substrates, MASPR converts
substrates to their fingerprint representations, which are
used as regression targets during training. The molecular
fingerprint used for a given substrate is a concatenation of
the MACCS key (50), the ECFP4 fingerprint calculated
as the Morgan fingerprint with length 128 and radius 2 in
RDK:it (51, 52), and the average partial charge of atoms in
the substrate (Fig. 2a). For a given A-domain sequence with
length n, MASPR inputs the amino acid sequence to an
ESM-2 language model (53) to generate an n x 1280 dimen-
sional representation. MASPR extracts the embeddings for
the Stachelhaus residues to obtain a 10 x 1280 dimensional
representation for each A-domain sequence.

MASPR trains the first neural network (fingerprint pre-
dictor) to recover molecular fingerprints by minimizing the
cosine distance between the predicted and actual fingerprints
(Fig. 2b). Then, MASPR trains a second neural network
(classifier head) to predict the substrate labels from the
predicted fingerprints (Fig. 2c). Because the gradients
from the classifier head do not flow back to the fingerprint
predictor, the classifier head can also be trained on the target
fingerprints, as well as chemical fingerprints for substrates
not found in the training data.

At test time, MASPR computes the latent embedding
for an input A-domain and retrieves the top-k nearest sub-
strates from an embedding database, where substrate distance
is calculated as the cosine distance of their embeddings (Fig.
2d). MASPR can compute embeddings for substrates not
present in the training data using their chemical fingerprints,
enabling zero-shot prediction of novel substrates. MASPR
can additionally use the predicted molecular fingerprint to
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Fig. 2. Overview of MASPR. a) Using RDKit, substrates are converted from their SMILES representation to a substructure-based
fingerprint, and are augmented with contextual connectivity information by concatenating an ECFP (Morgan) fingerprint. b) An A-
domain sequence is inputted to a protein language model (PLM) to obtain embeddings for the Stachelhaus residues, resulting in a
10 x 1280 dimensional representation for each input sequence. These representations are used as inputs to the first neural network
(fingerprint predictor), which is trained to predict the substructure-based fingerprint. ¢) Since nearest neighbor search in fingerprint
space cannot account for promiscuous A-domains, which may recruit substrates with dissimilar fingerprints, a second neural network
(classifier head) is trained to recover the substrate labels from the predicted fingerprints and target fingerprints. The classifier head may
also be trained on fingerprints for substrates not found in the training data, as these gradients do not flow back through the fingerprint
predictor (stop-gradient, or sg, in the figure). d) At test time, the hidden representation of the classifier head is used for nearest neighbor
search for classification, enabling zero-shot classification of substrates not in the training data. The fingerprint predictor neural network
output is used to highlight substructural features relevant to the final prediction.

identify the substructural features that were most relevant in
its predictions.

MASPR outperforms existing methods in A-domain
specificity prediction. Previous work on A-domain sub-
strate prediction accuracy showed that accuracy is often
overestimated due to A-domains in the test set that are very
similar to A-domains in the training set (35). Therefore, we
stratify the test set into buckets, where a test A-domain is
in bucket B; if its 8A signature has a Hamming distance
of at least i residues from any 8A signature in the training
set, where the Hamming distance measures the number
of positions at which two 8A signatures differ. MASPR
was benchmarked using ESM-2 and AlphaFold2 (AF2)
featurizations of the Stachelhaus residues (36, 54) and a
one-hot encoding of the 8A signature (Fig. 3). AlphaFold2
(AF2) features were obtained using ColabFold (55) for
input A-domain sequences by extracting the hidden layer
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single representation before the AF2 structure modules (54),
resulting in 256-dimensional embeddings per residue. PDB
entries for A-domains in their adenylating conformations
(1AMU, 4D57, 4D56, 3VNS, 3DHYV, 4ZXI, 5N9X) were
used as templates for ColabFold. ESM-2 features were
extracted using the esm2_t33_650M_UR50D model,
which provides 1280-dimensional embeddings per residue
without templates.

Accuracies are reported after averaging across 12 splits
of the training and test data (Fig. 3). MASPR with ESM-2
featurization outperforms AdenPredictor, the previous
state-of-the-art, across all test buckets (Fig. 3a), and achieves
higher top-k accuracy for all values of k (Fig. 3b) despite
the relatively small amount of training data (2294 training
data points). Furthermore, the performance gap between
MASPR and AdenPredictor widens as the bucket distance
increases, with MASPR outperforming by up to 7% on test
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Fig. 3. Accuracy of MASPR vs other methods. a) Top-1 accu-
racy across different Hamming buckets, representing increasing
dissimilarity to the training data. Bucket B; corresponds to the
portion of test data with Hamming distance of ¢ or higher from
all training data points, where the Hamming distance measures
the number of positions at which two 8A signatures differ. On av-
erage across all train/test splits, the Hamming buckets represent
459, 191, 105, 64, and 30 data points, respectively. b) Top-£ ac-
curacy for different values of k. MASPR with ESM-2 featurization
is the best-performing method for all values of k.

points in B4, demonstrating that MASPR can generalize
better to out-of-distribution test data. Despite using the
same architecture, MASPR performance drops significantly
when using a one-hot encoding (where each amino acid is
represented by a binary vector with a 1 in a unique position
and 0 elsewhere) of the 8A signature. This demonstrates
that the ESM-2 featurization contains a signal relevant to
A-domain substrate specificity and enables high sample
efficiency. We also tested larger ESM models which output
higher dimensional embeddings per residue, but noticed
worse overall performance, possibly due to the scarcity of
training data relative to the embedding size.

MASPR improves generalization and accuracy. One
drawback of the neural network for predicting fingerprints is
its tendency to generate averaged fingerprints for promiscu-
ous A-domains that recruit diverse substrates with dissimilar
fingerprints. At test time, this leads to reduced accuracy

Adduri etal. | MASPR

when performing the nearest substrate search in fingerprint
space. MASPR addresses this by training a second neural
network, the classifier head, that predicts substrate labels
from the predicted fingerprints and the correct fingerprints
(computed by RDKit). While the output of the classifier
head is discarded after training, the learned hidden repre-
sentation serves as a substrate embedding whose metric
properties are more suitable for representing A-domain
specificity and promiscuity. Indeed, removing the classifier
head and directly using the molecular fingerprint for the
nearest substrate search leads to a significant drop in top-k
accuracy (Fig. 4a). To further evaluate the impact of the
classifier head for promiscuous A-domains, we stratified the
dataset by training on all non-promiscuous sequences. Then,
for each promiscuous A-domain sequence with observed
specificity for n substrates, we randomly selected one
sequence-substrate pair to add to the training set and used
the remaining n — 1 sequence-substrate pairs for the test
set. Our results demonstrate that MASPR with the classifier
head consistently outperforms both MASPR without the
classifier head and AdenPredictor across all Hamming
bucket distances and top-k accuracy metrics (Fig. 8).

To explore the role of fingerprint prediction and the
classifier head on accuracy and generalization, we train
models on bacterial A-domain sequences and test them on
fungal A-domain sequences, under the hypothesis that a
model that captures true binding dynamics of A-domains
should be able to generalize despite evolutionary differences.
MASPR achieved 15% higher top-5 accuracy than Aden-
Predictor in this benchmark. MASPR models that integrate
fingerprint prediction with a classifier head for latent space
nearest substrate search outperformed models that solely
relied on nearest fingerprint search, as well as models that
replaced nearest neighbor search with direct classification
over a fixed set of substrates (Fig. 4b). Our results suggest
that predicting fingerprints and using the learned latent
space of the classifier head for the nearest substrate search
synergistically enhance generalization.

MASPR classifies unseen substrate specificities. Be-
cause the classifier head is trained on fingerprints (generated
by RDKit from SMILES representations), MASPR can
compute embeddings for substrates not included in the
training data from their SMILES representations, enabling
zero-shot prediction of novel substrates. To evaluate
MASPR’s zero-shot predictive accuracy, we use a leave-one-
substrate-out strategy, in which the model is trained on all
substrate labels except one and tested solely on A-domains
that recruit the omitted substrate label. MASPR achieves
a top-5 prediction accuracy of at least 75% for 34% of
substrates, and a top-5 prediction accuracy of at least 50%
for over half of the left-out substrates (Fig. 4c). None of
the other methods have the capacity for zero-shot predictions.

Incorporating knowledge about binding-pocket residues
enhances predictive accuracy. Previous methods have used
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Fig. 4. Regression and classification objectives synergistically improve MASPR generalization and accuracy. a) MASPR models
that use predicted molecular fingerprints for nearest substrate search have poor top-k performance compared to models that use latent
embeddings from the classifier head. b) When trained on bacterial A-domain data and tested on fungal data, MASPR models that
predict fingerprints can generalize better than models that do not. ¢) In a leave-one-substrate-out cross-validation, MASPR with ESM-2
achieves over a top-5 prediction accuracy of at least 75% for 34% of substrates.

averaging to combine per-residue features across the whole
protein for binding prediction (44). We observe that MASPR
performance drops significantly when averaging across the
whole protein (Fig. 9). Interestingly, averaging across only
the Stachelhaus residues recovers much of the performance
lost by whole protein averaging, which suggests that the
embeddings for individual Stachelhaus residues carry sig-
nals relevant to A-domain specificity. Although previous
approaches exclude the tenth Stachelhaus residue due to its
invariant Lysine identity, including it led to slightly better
performance in our experiments, likely due to the context-
dependent nature of protein language model embeddings.
Maintaining a separate channel for each Stachelhaus residue
(10 x 1280) results in the best performance, suggesting that,
when possible, the incorporation of known binding pocket
information can significantly improve substrate specificity
prediction, especially when the size of the training data is
small.
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MASPR enables more accurate NRP-PK structure
predictions. Seq2Hybrid is an end-to-end tool that leverages
MASPR for the prediction of mature NRP-PK hybrid
molecules (Fig. 5). Starting with a microbial genome
as input (Fig. 5a), Seq2Hybrid searches for BGCs in the
genome that potentially encode NRP-PK hybrids (Fig. 5b).
These are identified as BGCs that contain active domains
(A-domains or AT-domains), which recruit monomers
into the natural product. In the case of NRP-PK hybrids,
these monomers are usually either amino acids, hydroxy
acids, or «-carboxyacyl-CoA extender units (ketides).
Seq2Hybrid uses MASPR to predict the top three most likely
monomers that each A-domain might add and uses existing
approaches (17) to predict the most likely monomer that
each AT-domain might add (Fig. 5b). Then, Seq2Hybrid
computes biosynthetic assembly lines, which are defined as
a particular ordering of biosynthetic genes in the product
assembly (Fig. 5c). For each assembly line, Seq2Hybrid
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Fig. 5. Overview of Seq2Hybrid. a) Genomic DNA and paired mass spectrometry data are collected from microbial strains. b)
Given a microbial genome as input, Seq2Hybrid searches for NRP-PK hybrid BGCs and for enzymes that perform post-assembly
modifications. Each A-domain is annotated with the most likely set of monomers it will incorporate using MASPR. AT-domains are
annotated using Minowa et al. (17). c) Different assembly orders are calculated from the BGC. d) For each assembly order and each
monomer assignment for an active domain, Seq2Hybrid generates core molecules. e) The core molecules are modified post-assembly
by enzymes in the BGC to generate a database of hypothetical natural products. f) Hypothetical natural products are further searched
against mass spectra, if provided, and high-scoring matches are retained (56).

uses the predicted active domain specificity to produce a list
of precursor hybrid molecules (Fig. 5d). Finally, for each
precursor hybrid molecule, Seq2Hybrid combinatorically
applies various post-assembly modifications to generate a
database of mature NRP-PK hybrid predictions (Fig. Se). If
paired mass spectrometry data is also provided, Seq2Hybrid
further searches NRP-PK hybrid predictions against mass
spectra and retains the high-scoring matches (Fig. 5f).

Benchmarking Seq2Hybrid. Seq2Hybrid was bench-
marked on 286 NRP-PK hybrid molecules in MIBiG (11)
for which PRISM 4 (24) and antiSMASH 7.0 (14) structural
predictions were available using only the genome mining
module (no paired mass spectrometry data was provided for
fair comparison). We further focused only on molecules
with a type-1 polyketide component. To ensure no leakage
between train and test sets in our data collection for tailoring
modifications, we used 65 hybrid BGCs added in MIBiG 3.0
that were not present in MIBiG 2.0 as test BGCs to measure
the out-of-distribution performance of each method. These
BGC:s are also not present in the PRISM 4 training data.

For each BGC, the best Seq2Hybrid prediction was

Adduri etal. | MASPR

compared to the best PRISM prediction and the best anti-
SMASH prediction, where the best prediction for a given
method was computed using Tanimoto similarity against the
ground truth NRP-PK. Tanimoto similarity was calculated
using Morgan fingerprints with 1024 bits and a radius of 3.
For each method, we calculated the number of hybrid BGCs
for which the Tanimoto similarity of the ground truth and the
best-predicted molecule was at or above a given threshold.
Seq2Hybrid outperforms PRISM and antiSMASH across
all Tanimoto thresholds (Fig. 6). At a Tanimoto similarity
threshold of 0.7, Seq2Hybrid identifies 25 molecules, while
PRISM 4 identifies two molecules and antiSMASH does not
identify any molecules (Supplementary Table S1). Though
the performance of both methods suffers on the test set,
which contains several unseen chemical modifications,
Seq2Hybrid maintains a similar relative performance im-
provement over PRISM 4.

It should be emphasized that the main contribution of
antiSMASH is genome mining and core structure pre-
diction; therefore it is unfair to compare its performance
to Seq2Hybrid and PRISM at predicting mature hybrid
compounds. Nevertheless, it is included as a baseline to
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Fig. 6. Tanimoto Comparison of Seq2Hybrid, PRISM and anti-
SMASH. Seqg2Hybrid can accurately recover more NRP-PK hy-
brids than PRISM across all measured Tanimoto thresholds, and
using Seg2Hybrid with MASPR further improves performance
over using AdenPredictor (35). AntiSMASH only reports core
structure but is included as a baseline to show the importance
of accounting for tailoring modifications. The Tanimoto similarity
of the best prediction for each method against the ground truth
is reported in the legend, averaged across all BGCs in a) the
training set, and b) the test set.

illustrate the importance of accounting for assembly order
and modifications in predicting mature natural product
structures. MASPR enables Seq2Hybrid to make predictions
with high Tanimoto similarity to the ground truth even when
BGCs contain A-domains that recruit substrates not present
in the training data, such as 2-amino-6-hydroxy-4-methyl-8-
oxodecanoic acid in Leucinostatin (Fig. 10).

Seq2Hybrid identifies known hybrid molecules. We
used Seq2Hybrid to search mass spectra of eight Strepto-
myces strains against the molecules predicted from their
genomes (Supplementary Table S2). Seq2Hybrid correctly
identified the structure of known hybrids ilamycin G and
rufomycin NBZ8 from Streptomyces atratus NBRC 3897
(Fig. 11), pyridomycin from Streptomyces pyridomyceticus
NRRL B-2517 (Fig. 12), neoantimycin from Streptomyces
orinoci NBRC 13466 (Fig. 13), and rakicidin B from
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Micromonospora chalcea NRRL B-2672 (Fig. 14) at a
Tanimoto threshold of 1.0. Seq2Hybrid also identified
a putative BGC for lydiamycin A (57) in Streptomyces
alboflavus strain MDJK44 (Fig. 15).

Seq2Hybrid identifies novel BGCs of known hybrid
molecules. Seq2Hybrid identified putative BGCs for di-
tyromycin (Fig. 7), an orphan cyclic antibiotic (58), and
octaminomycin A (Fig. 16), an orphan NRP-PK hybrid with
reported anti-angiogenesis effects (59), from Streptomyces
kasugaensis NBRC 13851 and Streptomyces hygroscopicus
NRRL B-1477 respectively. Seq2Hybrid also identified a pu-
tative BGC of origin for the immunosuppressant SW-163B,
from Streptomyces orinoci NBRC 13466 (Fig. 17), and a
putative BGC for JBIR-39 (60) in Streptomyces violascens
NRRL B-2700 (Fig. 18).

Discussion

Natural products represent a goldmine of potential bioac-
tive compounds and drug leads. Given the costly and
time-consuming nature of bioactivity-based natural product
discovery, in silico genome mining approaches are needed
to fully elucidate structures encoded in hundreds of thou-
sands of cryptic BGCs. However, existing methods that
predict NRP and NRP-PK hybrid structures are affected by
inaccuracies in A-domain specificity prediction and post-
assembly modifications. In this work, we present MASPR,
an interpretable A-domain substrate specificity predictor that
achieves state-of-the-art accuracy and generalization.

By reformulating substrate classification as a regression
task to predict fingerprints, MASPR improves on the accu-
racy of existing methods by up to 15%. Since MASPR is
trained to generate A-domain-specific substrate embeddings
from molecular fingerprints which are computable from
SMILES representations, it can create substrate embedding
databases that include substrates not present in the training
data. This enables MASPR to perform zero-shot prediction
of novel substrates by computing an embedding for a
given A-domain and searching for the nearest substrates
in the embedding database. In a leave-one-substrate-out
cross-validation study designed to benchmark zero-shot
performance, MASPR achieved higher than 50% top-5
accuracy for over half of the held-out substrates. Because
MASPR is trained to predict substructure-based molecular
fingerprints, its predictions are interpretable, as we can
annotate substructures in a given substrate that are the most
relevant in prediction. MASPR performance significantly
drops when using a one-hot featurization, showing that the
per-residue ESM-2 embeddings encode signal relevant to
A-domain specificity. Our results further indicate that aver-
aging per-residue embeddings across the entire A-domain
can dampen this signal, and the highest accuracy is achieved
when maintaining a separate channel for each Stachelhaus
residue.

We used MASPR to develop Seq2Hybrid, a genome
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mining pipeline for discovering novel NRP-PK hybrid
structures encoded in microbial genomes. NRP-PK hybrids
are a class of natural products with promising therapeutic
value, yet they remain underrepresented in genome mining
approaches due to their complex biosynthesis and structure.
Seq2Hybrid recovered known hybrid molecules from BGCs
with much higher accuracy than existing approaches and
connected orphan compounds octaminomycin A, dity-
romycin, JBIR-39, and SW-163B to their respective BGCs
of origin. Seq2Hybrid predictions are further filtered with
paired mass spectrometry data and error corrected using
variable mass spectral database search methods.

At present, MASPR’s substrate specificity predictions
are based solely on A-domain sequences. Future enhance-
ments could incorporate NRP-specific biosynthetic logic
into the prediction model. For example, an A-domain
followed by a KR-domain is likely to recruit a keto-acid,
and an A-domain preceded by a heterocyclization domain
is more likely to incorporate Serine, Threonine, or Cys-
teine. Integrating three-dimensional substrate information
is another potential avenue for improvement, as the current
training data and fingerprint encodings cannot differentiate
between stereoisomers. Finally, Seq2Hybrid is currently
limited to predicting modular NRP-PK hybrids, and it cannot
process the iterative synthesis often observed in type 2 PK
hybrids. Addressing this limitation would make MASPR
and Seq2Hybrid applicable to a wider variety of microbial
BGCs.

Code Availability

Training data and code for MASPR are available here:
https://github.com/abhinadduri/MASPR.
MASPR is also available on the web via Colab notebook:
https://bit.ly/colab-maspr.

Seq2Hybrid is supported as a web service at
https://run.npanalysis.org. Train and test BGCs
and their corresponding Seq2Hybrid predictions are avail-
able as supplementary files and on Google Drive: https:
//bit.ly/seg2hybrid-bgc-predictions.
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Methods and Supplementary Info

Curating training data for MASPR. Training data for
MASPR was obtained from MIBiG 3.0, which contains sub-
strate specificity annotations for A-domains. For promiscu-
ous A-domains that recruit multiple monomers, each pair be-
tween the A-domain and monomers was treated as a training
data point, resulting in 2294 data points. For each A-domain,
we used the ESM-2 model esm2_t33_650M_UR50D
(53) to extract 1280-dimensional per-residue embeddings
from the entire sequence. Then, we performed a sequence
alignment to a reference A-domain (PDBID:/AMU) and
extracted the embeddings corresponding to the Stachelhaus
residues to obtain a 10 x 1280 embedding for each A-domain
sequence in the training data.

Training procedure for MASPR. MASPR was imple-
mented and trained in PyTorch 2.0 using frozen A-domain
embeddings as input. To train the fingerprint predictor neural
network, each substrate in the training data was converted to
a 296-dimensional fingerprint representation, where the first
167 entries correspond to the MACCS key of the substrate,
the next 128 entries correspond to a Morgan fingerprint with
a radius of 2, and the last entry corresponds to an average
partial charge of the atoms in the substrate. Although this
fingerprint was chosen as the combination of RDKit descrip-
tors that led to the best performance, clustering the substrates
in the training data using L2-distance between fingerprints
(Fig. 19) recovers previously reported A-domain-specific
clustering of amino acids (22, 32).

The fingerprint representation is used as a regression
target during the training. The architecture of the neural
network includes several layers: Linear (1280 x 480), Linear
(480 x 240), Flatten (across the 10 Stachelhaus residues),
Linear (2400 x 240), Linear (240 x 240), and Linear
(240,296). Each Linear layer, except the last, is followed
by an ELU activation and a LayerNorm to facilitate training
stability and performance. The network was trained for 80
epochs using cosine distance as the loss function, with Adam
optimizer and weight decay (AdamW optimizer in PyTorch),
a learning rate of 0.0001, and exponential decay of 0.8 every
ten epochs. Cosine distance loss was implemented as (1 -
CosineSimilarity (predicted_fingerprint,
target_fingerprint) ), averaged across all bits of the
fingerprint.

The classifier head neural network is trained concur-
rently with the fingerprint predictor network. Each forward
pass of the fingerprint predictor is followed by the classifier
head being trained to predict the substrate label from both
the predicted and target fingerprints, meaning the classifier
network parameters are updated twice during each forward
pass of the fingerprint predictor network. The classifier
head’s architecture comprises two linear layers: the first
maps 296 inputs to 296 outputs. This is followed by a ReLU
activation function, whose output is used as the A-domain-
specific embedding for the nearest substrate search. The
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second linear layer maps 296 to 41 outputs, corresponding
to the number of unique substrates in the data. The model
is trained with CrossEntropylLoss with a learning rate of
0.0001. The weights for the first linear layer are initialized
to the 296 x 296 identity matrix. For benchmark models that
replaced the nearest substrate search by directly classifying
a substrate label, the classifier head network is omitted,
and the final output dimension for the fingerprint predictor
network is changed from 296 to 41. We used a batch size of
128 for all models.

To perform top-k substrate specificity classification for
a given A-domain, MASPR first computes the predicted
embedding using the fingerprint predictor network. Then,
MASPR feeds the predicted fingerprint into the classifier
head and extracts the hidden layer embedding. The hidden
embedding is compared against a database of substrate
embeddings and the k closest substrates are returned, where
the distance between substrates is computed as the cosine
distance between their embeddings.

NRP-PK Hybrid BGC detection. Seq2Hybrid identifies
BGCs by searching for both NRP-specific and PKS-specific
domains. The NRP-specific domains include adenylation
(A-) domains, which are responsible for incorporating either
an amino acid or hydroxy acid into the growing natural
product, condensation (C-) domains, which are involved
in peptide bond formation, and peptidyl carrier protein
(PCP-) domains, which are responsible for transporting
the intermediate natural product to downstream domains.
The PKS-specific domains include the acyltransferase (AT-)
domain, which recruits an a-carboxyacyl-CoA extender unit
(or ketide unit), the acyl carrier protein (ACP-) domain,
which accepts the ketide unit from the AT-domain, and
the ketoacyl synthase (KS-) domain, which catalyzes the
carbon-carbon bond between the growing natural product
and the new ketide-ACP intermediate (61). We created a
database of 278 A-, C-, and PCP-domains and 183 AT-, KS-,
and ACP-domains stored as profile HMMs (62). Seq2Hybrid
searches for these domains in six-frame translations of
each contig in the input genome. Each identified domain
is extended upstream and downstream by a user-specified
threshold (10KB by default), and the overlapping genome
segments are merged. Seq2Hybrid reports the resulting
segments as the BGC regions.

Annotating active domains with monomer specificity. In
NRP-PK hybrid synthesis, A-domains incorporate amino
acids or hydroxy acids and AT-domains introduce ketide
units into the growing molecule. Seq2Hybrid predicts the
monomers that are most likely to be recruited by each
active domain in the hybrid BGC. Since A-domains can be
promiscuous in their substrate selection (22), we annotate
each A-domain with its top three MASPR predictions. To
predict AT-domain specificity, Seq2Hybrid uses a strategy
similar to Minowa et al. (17) to extract a 24 amino acid
signature of the active site of AT-domains. Seq2Hybrid
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forms a single HMM profile with all reference AT-domains,
and extracts the signature via alignment against this HMM
profile. Then, Seq2Hybrid uses a random forest to predict
substrate specificity given the one-hot encoded signature of
the AT-domain.

Biosynthetic gene graph. Although certain genes may
be inactive in the biosynthetic pathway of NRPs, the se-
quential arrangement of amino acids in the NRP matches
the order in which they appear in the BGC (i.e. co-linearity)
(63). Taking n as the total number of biosynthetic genes, and
allowing for the possibility of k inactive genes, this yields
an upper limit of Zle (Z) potential gene assembly orders.
This number is higher in PKs, typically due to non-linearity
in gene-to-gene interactions. With a total of n genes and up
to k inactive genes, up to Zle(n —k)! (7) assemblies are
possible for PKs. This number escalates rapidly for large
values of n. To address this, Seq2Hybrid uses a biosynthetic
gene graph, constructed on the genes within the BGC. In
this graph, nodes represent genes, and an edge between two
nodes s and ¢ signifies that gene ¢ can follow gene s in the
final biosynthesis.

First, Seq2Hybrid adds an edge from s to ¢ if gene s
ends in a C-terminal communication-mediating (COM)
domain and gene ¢ begins with an N-terminal COM domain,
as these domains enable gene-to-gene interactions (64, 65)
(Rule 1). Second, Seq2Hybrid adds an edge from s to ¢ if
gene s ends with a C-domain (A-domain) and ¢ starts with an
A-domain (PCP-domain) (Rule 2). Third, Seq2hybrid adds
an edge from s to ¢ if gene ¢ is downstream of s on the same
strand (Rule 3). Fourth, Seq2Hybrid adds an edge from any
gene s to gene t if ¢ contains a thioesterase or thioreductase
domain (Rule 4). Fifth, if gene s is a singleton domain (i.e.
contains only a single active domain), then Seq2hybrid adds
an edge from s to all genes ¢ (Rule 5). Finally, Seq2Hybrid
trims the graph by removing outgoing edges starting from
release domains. Furthermore, if a gene ¢ starts with an
N-terminal COM domain and a gene s does not end with
a C-terminal COM domain, then Seq2Hybrid removes the
edge from s to ¢ unless this would leave ¢ with no incoming
edges (Fig. 20).

Traversing the biosynthetic gene graph. Upon con-
structing the biosynthetic gene graph, Seq2Hybrid performs
traversals through the graph to recover different biosynthetic
assemblies. First, Seq2Hybrid identifies a sink node within
the graph, which is defined as the node with the minimal
number of outgoing edges (Fig. 20c). Let n denote the
total number of nodes in the graph. Since certain genes
can be inactive in the final biosynthesis (22), let k£ denote
the user-specified number of allowed inactive genes. By
default, k is set to the count of singleton domains within the
BGC. Then, Seq2Hybrid reports all paths in the graph that
terminate at this sink node and contain at least n — & nodes.
The resulting paths are referred to as assembly lines.
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Generating hybrid cores from assembly lines. Given
an assembly line, Seq2Hybrid considers various assignments
of monomers to each active domain to yield final molecular
structures. Seq2Hybrid considers the top three predictions
for each A-domain and the top one prediction for each AT-
domain. With n A-domains in an assembly line, this results
in 3" different monomer assignments per assembly line. To
limit the computational complexity for large values of n,
Seq2Hybrid adopts a dynamic programming scheme (22) to
only consider the top s highest scoring monomer assignments
(by default s = 1000). The score of a monomer assignment is
calculated as the sum of the scores of individual monomers at
each A-domain in the assembly, predicted by AdenPredictor.
In practice, n is typically smaller than eight, making it feasi-
ble to consider all combinations. For each unique monomer
assignment, we construct a core molecule by connecting
the respective monomers chosen in that assignment (Fig. 21).

After the construction of the hybrid cores, various modifi-
cations are applied based on the presence of modification
domains. These modifications include formylation (via
N-terminal F-domain), N-methylation (via methylation
domain after A-domain), C-methylation or O-methylation
(via methylation domain after AT-domain), thiazoline or
oxazoline ring formation (via heterocyclization domain
after A-domain) (66), further ring oxidation or reduction
(via oxidation domain or reduction domain after heterocy-
clization domain), and successive reductions of ketides to
hydroxyl, alkene, and methylene groups (via ketoreductase,
dehydratase, and enoylreductase domains, respectfully) (67).

Applying pre-assembly modifications.  Certain non-
standard amino acids are synthesized via enzymes or other
biosynthetic genes present in the BGC. For example, the
biosynthesis of Ilamycins G (Fig. 11) relies on the production
of 2-aminohex-4-enoic acid from a set of PK biosynthetic
genes in the same BGC. Such modifications of monomers
on the assembly line are referred to as pre-assembly mod-
ifications. Seq2Hybrid considers monomers with known
pre-assembly modifications if the specific enzymes required
for those modifications are present in the BGC. Seq2Hybrid
accounts for 41 monomers collected using a literature review
(Supplementary Table S3), and uses the zero-shot capability
of MASPR to predict specificity outside of these monomers.

Applying post-assembly modifications.  After the as-
sembly of core hybrid molecules, enzymes present in the
BGC apply various post-assembly modifications to the core
molecular structures. To account for common modifica-
tions in hybrid biosynthesis, Seq2Hybrid accounts for 170
NRP-specific modifications, 93 PKS-specific modifications,
and 41 NRP-PK-specific modifications mined from the
natural product literature (Fig. 22). Seq2Hybrid also collects
information on the enzymes that perform these modifications
and stores them as profile HMMs. For a given hybrid
BGC, Seq2NRP only considers a modification if all of its
required enzymes are present in the BGC. This dramatically
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reduces the number of required modifications to consider
when predicting the structure of the mature natural product.
For each considered modification, Seq2Hybrid uses the
Ullman algorithm (68) to compute a subgraph isomorphism
between the core and the motif of the modification. This is
computationally tractable as the graph sizes for the cores and
motifs are small. To compute the set of mature natural prod-
ucts, Seq2Hybrid combinatorially applies non-overlapping
modifications to each core molecule (Fig. 23).
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Name BGC SquHybrid Pri§m 4
Tanimoto | Tanimoto
Rakicidin B BGC0001327 1 0.211
Micromonolactam NA 1 0.747
Hapalosin BGC0001467 1 0.744
JBIR-06 BGC0001918 1 0.693
Neoantimycin BGC0001695 1 0.678
Cystothiazole A | BGC0000982 1 0.614
Kasumigamide BGC0001630 1 0.472
Incednine BGC0000078 1 0.306
Pyridomycin BGC0001039 1 0.384
Rufomycin BGC0001763 1 0.27
Ilamycins BGC0001620 1 0.27
Splenocin C BGC0001216 1 0.532
Eponemycin BGC0000345 1 0.185
Nostopeptolide BGC0001028 0.924 0.752
Skyllamycin BGC0000429 0.852 0.56
Leucinostatin A | BGC0001358 0.802 0.12
Paenilipoheptin | BGC0001728 0.796 0.463
Althiomycin BGC0000955 0.791 0.252
Tubulysin BGC0001344 0.762 0.364
Cryptomaldamide | BGC0001560 0.758 0.393
Bacillomycin D | BGC0001090 0.757 0.238
Salinilactam BGC0000142 0.753 0.51
Lobosamide BGC0001303 0.747 0.505
Myxochromide A | BGC0001425 0.739 0.41
Myxochromide C | BGC0001423 0.736 0.48

Supplementary Table Si.

Seqg2Hybrid vs PRISM 4 perfor-

mance at recovering NRP-PK hybrid molecules at or above a
Tanimoto similarity threshold of 0.7 in either the training or test

set.

Strains

Streptomyces atratus NBRC 3897

Streptomyces pyridomyceticus NRRL B-2517

Streptomyces orinoci NBRC 13466

Micromonospora chalcea NRRL B-2672

Streptomyces alboflavus strain MDJK44

Streptomyces hygroscopicus NRRL B-1477

Streptomyces kasugaensis NBRC 13851

Streptomyces violascens NRRL B-2700

Supplementary Table S2. Strains used in this study for which
mass spectrometry data was obtained.
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Fig. 8. MASPR with a classifier head offers improved accuracy on promiscuous A-domains. a) Top-1 accuracy across Hamming
bucket distances for MASPR (with and without classifier head) and AdenPredictor. Higher Hamming bucket distances indicate greater
dissimilarity from training data. b) Top-k accuracy for k=1 to 5, comparing the performance of MASPR variants and AdenPredictor. In
both metrics, MASPR with the classifier head consistently outperforms the other methods.

Adduri etal. | MASPR bioRxiv | 15


https://doi.org/10.1101/2025.01.13.632878
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.13.632878; this version posted January 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1.0
—=— MASPR Binding Pocket (10 x 1280)
MASPR Binding Pocket Average (1 x 1280)
—=— MASPR Whole Protein Average (1 x 1280)
0.8 —=— AdenPredictor
306
g
=]
Q
(@]
<
a
L 04
0.2
0.0

Bo+ B3+ Bg + B + Bi2+
Hamming Bucket Distance

Fig. 9. Accuracy of MASPR with different featurizations. Averaging the ESM embeddings across all residues in the proteins results
in significantly worse predictive accuracy. Averaging across only the Stachelhaus residues recovers most of the lost accuracy, but still
falls short of the accuracy achieved by maintaining a separate channel for each Stachelhaus residue. On average across all train/test
splits, the Hamming buckets By, B3+, Bs+, Bo4, and B1o4 represent 459, 191, 105, 64, and 30 data points, respectively.
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Fig. 11. Seq2Hybrid recovers llamycin G BGC. a) The predicted biosynthetic pathway for llamycin G. b) Paired mass spectrometry
data for this molecule was obtained from Streptomyces atratus NBRC 3897. c) Annotated mass fragments providing evidence that this
molecule, or an isomer, is present in the biological sample.
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Fig. 12. Seq2Hybrid recovers Pyridomycin BGC. a) The predicted biosynthetic pathway for Pyridomycin. b) Paired mass spectrom-
etry data for this molecule was obtained from Streptomyces pyridomyceticus NRRL B-2517. c) Annotated mass fragments providing
evidence that this molecule, or an isomer, is present in the biological sample.
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Fig. 13. Seq2Hybrid recovers Neoantimycin BGC. a) The predicted biosynthetic pathway for Neoantimycin. b) Paired mass spec-
trometry data for this molecule was obtained from Streptomyces orinoci NBRC 13466. c) Annotated mass fragments providing evidence

that this molecule, or an isomer, is present in the biological sample.
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Fig. 14. Seq2Hybrid recovers Rakicidin B BGC. a) The predicted biosynthetic pathway for Rakicidin B. b) Paired mass spectrometry
data for this molecule was obtained from Micromonospora chalcea NRRL B-2672. c) Annotated mass fragments providing evidence
that this molecule, or an isomer, is present in the biological sample.
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Fig. 15. Seq2Hybrid predicts Lydiamycin BGC. The predicted biosynthetic pathway for Lydiamycin. LydE contains PKS-specific
domains and is likely responsible for the attachment of the fatty acid tail at the N-terminus. LydD is a cytochrome p450 enzyme that is
likely responsible for the oxidation of piperazic acid (Piz) to 2,3,4,5-tetrahydropyridazine-3-carboxylic acid.
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Fig. 16. Seq2Hybrid predicts Octaminomycin A BGC. a) The predicted biosynthetic pathway for Octaminomycin A. For each residue,
the top MASPR prediction matches the expected residue in Octaminomycin A. b) Paired mass spectrometry data for this molecule was
obtained from Streptomyces hygroscopicus NRRL B-1477. ¢) Annotated mass fragments providing evidence that this molecule, or an
isomer, is present in the biological sample.
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Fig. 17. Seq2Hybrid predicts SW-163B BGC. a) The predicted biosynthetic pathway for SW-163B. b) Paired mass spectrometry data
for this molecule was obtained from Streptomyces orinoci NBRC 13466. c) Annotated mass fragments providing evidence that this
molecule, or an isomer, is present in the biological sample.
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Fig. 18. Seq2Hybrid predicts JBIR-39 BGC. a) The predicted biosynthetic pathway for JBIR-39. JbiE contains PKS-specific domains
and is likely responsible for the attachment of the fatty acid tail at the N-terminus. Although the predicted biosynthetic pathway does
not explain the C-methylation of the terminal Serine or the extra Thioesterase domain, identifying this BGC showcases the potential of
MASPR for genome mining. b) Paired mass spectrometry data for this molecule was obtained from Streptomyces violascens NRRL
B-2700. c) Annotated mass fragments providing evidence that this molecule, or an isomer, is present in the biological sample.
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Fig. 19. tSNE visualization of substrate fingerprints in the training data. Points in the visualization are semantically well separated

and recapture previously reported A-domain-binding specific similarities across ligands (22, 32).
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Fig. 21. Connections between different types of monomers in hybrid assembly. The connections formed between amino acids
and ketides that have been successively reduced. Hydroxy acids are connected to other monomers in the same way as amino acids,

with the exception that the nitrogen is replaced by oxygen.

28 | bioRxyiv Adduri etal. | MASPR


https://doi.org/10.1101/2025.01.13.632878
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.13.632878; this version posted January 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

cl
HO, HO,
OH OH H.C H.G R3 R3

R 2 R 2 = — 0, - 0, H

_otap o R1 o R1 " priM, priN, Pri CH. ot HO

ne— \ /" e g 3 on . O ° L

3 3 Y d 7 SNH Hi [}

a — \ N R1 R1

T

3
o
o
=4

R1 R1
CH,
o, OH R4

ﬁ)\r S I s Hctf
R2  R1RF A R2 RL O RL R2 R1 R2

]

CH,
v 1
N HO, 0__0 _TgaE HO. RO~
OH o Y _Tg3f Y
R R: 1
R2 OH R1

2=
Y@g
[
2
2=
.
Y%
g (=}
o
j‘n
2
o
.
=z
X
%
o
éﬁ
z
Z
g
o
3;0
.
2
Z
=
z
(]
;<: gw
2
g
=
a
=
Pz
z

»
[
=

CH, CH,

HO,

3
£
%

o
I
o
I
o

,
2
.
2
Z
%
S
3
;
=2
.
;
3
g
/
/
:
;
ﬁ
.
N
-
g/

fof
x
d
z

o
S
=
S
X
o

o
ES
oo
J 2
E3 o
IS 2
)
T
>y o
N
2
e
d
z s
2
2
2
o
T
o
T
o
I
I+
l:
2
»
2
2
1§
o
T
o
S
o
2
Lj';/
S =
f°)
o
E
o
)
]
<)
)
z
o
T
]

o o

R1 R1 H oH
N _O )
OH OH OH OH OH PR p—Cchs | Fumps |
AL, e L N =, == NN L
R 2 RY 2 R d H 1 o] 1 R
R2 \ 0 R wd Yo ré OH Rl OH Rl
CH
R1 R1
OH R2 R2 A2 o o
0 —0 N /4 R OH Ry HO, HO, zZ HiC
ing
-LyB cH Tena, Tens [ Y © FumoA {
N N Y | R P R [ dw N~
= N=
RE T R RS Rl H Vo L o, N 0
o Rl OH o o
OH
K)(L R4 CH, CH,
R4 R S,.Rl RH/\SH N
. " 0 X [¢] H,C, H,
N o Seif R2 Spi g SN | -lig. NN aals Ml
3 R o A Hs s R z CH,  RI CH, on
H N H R2 P _
H B R R
R2 R
N R2 A A
j) ' i ¢ ~
HO, CH, .
o o ) cl CH, c . o oH KirQl OH
A He o RI/VYYY\]Z W”El)\/wz 5
N7 s
__ NZ s OH OH OH OH OH OH 5 , N 3 R2. R2. oH
\—=/ _ CH, CH,
R )
[E
. al
RL o RL o ) ©
HO R1 ° 1 OH OH OH OH O OH , R1- )
Bam}593( H,MC\ MQS%’%&\M/‘\(Q RY MaggT
o
el —
ci
R2  OH R1 R2  OH R1 3 3
CH, CH
R1 ¢ Rl o
R CH R2 R R \ R2 R R2 = 2 qd
Rl)\/N\rH\rOH MRIJ\/NWOTNH CbrgB LIS Mgell, MGV o
R 1 R R1
o Ch 0O CH O A 3
0O, 0
CH,

Fig. 22. A subset of the modifications collected from the literature. Modifications were collected by searching the literature for
common enzymatic reactions in NRP, PK, and NRP-PK hybrid natural product synthesis.
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Fig. 23. Post-assembly modification of core molecules to mature NRP-PK hybrids. (a) Starting with an initial set of three
modifications, (b) modifications are mapped to a core molecule via subgraph isomorphism. The blue modification is discarded as
it does not map to the core. The orange and green modifications map to a single site in the molecule. (c) Seq2Hybrid combinatorically
applies the modifications that are not overlapping.

30 | bioRxyiv Adduri etal. | MASPR


https://doi.org/10.1101/2025.01.13.632878
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.13.632878; this version posted January 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Substrate SMILES
Arg C(CC(C(=0)O)N)CN=C(N)N
His C1=C(NC=N1)CC(C(=0)O)N
Lys C(CCN)CC(C(=0)O)N
Asp C(C(C(=0)O)N)C(=0)0O
Glu C(CC(=0)0)C(C(=0)O)N
Ser C(C(C(=0)O)N)O
Thr CC(C(C(=0)O)N)O
Asn C(C(C(=0)O)N)C(=O)N
Gln C(CC(=0)N)C(C(=0)O)N
Cys C(C(C(=0)O)N)S
Gly C(C(=0O)O)N
Pro CICC(NC1)C(=0)O
Ala CC(C(=0)O)N
Val CC(C)C(C(=O)O)N
Ile CCC(O)C(C(=0)O)N
Leu CC(C)CC(C(=0)O)N
Met CSCCC(C(=0O)O)N
Phe C1=CC=C(C=C1)CC(C(=0)O)N
Tyr C1=CC(=CC=CICC(C(=0)O)N)O
Trp C1=CC=C2C(=C1)C(=CN2)CC(C(=0)O)N
Orn C(CC(C(=0)O)N)CN
5hfOrn C(CC(C(=0)O)N)CN(C=0)0O
5hOrn C(CC(C(=0)O)N)CNO
4-MePro CCICC(NC1HC(=0)O
Bht C1=CC(=CC=C1C(C(C(=0)O)N)O)O
Hty C1=CC(=CC=CICCC(C(=0)O)N)O
MeDap CC(C(C(=0)O)N)N
MeAsp CC(C(C(=0)O)N)C(=0)O
HyAsp OC(C(C(=0)O)N)C(=0)O
CAM OC(=0)C(N)CICCNC(=N)N1
hEnd CIC(NC(N1)=N)C(C(C(=0)O)N)O
Dab OC(=0)C(N)CCN
1-2,3-DAP OC(=0)C(N)CN
Aad C(CC(C(=0)O)N)CC(=0)0O
Dhpg C1=C(C=C(C=C10)0)C(C(=O0)O)N
Hpg C1=CC(=CC=CI1C(C(=0)O)N)O
Dhb C1=CC(=C(C(=C1)0)0)C(=0)0O
Beta-ala C(CN)C(=0)0O
Hyv-d CC(CO)C(C(=0)O)N
Pip CICCNC(CHC(=0)O
Dht CC(=C(C(=0)O)N)O

Supplementary Table S3. Substrates used in this study to train
MASPR and their corresponding SMILES representations.
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