Abstract
1. Beat-by-beat changes in cardiac performance in response to arterial baroreceptor stimulation induced by phenylephrine were evaluated by pulsed-wave aortic Doppler ultrasound in eighteen subjects. Stroke distance was used as an index of stroke volume and minute distance as an index of cardiac output; peak velocity was also measured. 2. The sensitivity of the baroreceptor-cardiac reflex was assessed by calculating the slope of the regression lines relating the changes in heart period (R-R interval), peak velocity and stroke distance in response to the rise in systolic blood pressure (SBP) induced by phenylephrine. In ten subjects the experiment was repeated after vagal blockade by atropine. Since the tachycardia induced by vagal blockade could alter the sensitivity of the baroreflex, we compared the results obtained after atropine with those obtained during pacing at similar rates in six subjects with cardiac pacemakers. 3. As R-R interval lengthened in response to the rise in SBP, stroke distance and peak velocity fell sharply. The subjects with a highly sensitive baroreceptor-heart rate reflex showed the greatest fall in peak velocity and stroke distance. The slope of the relationship between R-R interval and SBP for each subject correlated closely with that of peak velocity/SBP (correlation coefficient, r = 0.88) and stroke distance/SBP (r = 0.93) relationships. 4. Atropine virtually abolished all the cardiac reflex changes, despite a considerable increase in SBP induced by phenylephrine. At comparable heart rates achieved by pacing the sensitivity of the baroreceptor-cardiac reflex (calculated from the slopes of the regression lines relating changes in stroke distance and in peak velocity to the rise in SBP) was maintained and was significantly greater when compared to that obtained after vagal blockade. 5. These results show that the stimulation of arterial baroreceptors is accompanied by a fall in the Doppler-derived indices of stroke volume and cardiac output. This response is neural and is abolished by atropine, which indicates that it is mediated through the efferent vagus.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abboud F. M., Chapleau M. W. Effects of pulse frequency on single-unit baroreceptor activity during sine-wave and natural pulses in dogs. J Physiol. 1988 Jul;401:295–308. doi: 10.1113/jphysiol.1988.sp017163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aylward P. E., McRitchie R. J., Chalmers J. P., West M. J. Baroreflex control of myocardial contractility in conscious normotensive and renal hypertensive rabbits. Hypertension. 1983 Nov-Dec;5(6):916–926. doi: 10.1161/01.hyp.5.6.916. [DOI] [PubMed] [Google Scholar]
- Baskerville A. L., Eckberg D. L., Thompson M. A. Arterial pressure and pulse interval responses to repetitive carotid baroreceptor stimuli in man. J Physiol. 1979 Dec;297(0):61–71. doi: 10.1113/jphysiol.1979.sp013027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bevegård B. S., Shepherd J. T. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J Clin Invest. 1966 Jan;45(1):132–142. doi: 10.1172/JCI105317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjurstedt H., Rosenhamer G., Tydén G. Cardiovascular responses to changes in carotid sinus transmural pressure in man. Acta Physiol Scand. 1975 Aug;94(4):497–505. doi: 10.1111/j.1748-1716.1975.tb05909.x. [DOI] [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
- Brunner M. J., Greene A. S., Frankle A. E., Shoukas A. A. Carotid sinus baroreceptor control of splanchnic resistance and capacity. Am J Physiol. 1988 Dec;255(6 Pt 2):H1305–H1310. doi: 10.1152/ajpheart.1988.255.6.H1305. [DOI] [PubMed] [Google Scholar]
- Buccino R. A., Sonnenblick E. H., Cooper T., Braunwald E. Direct positive inotropic effect of acetylcholine on myocardium. Evidence for multiple cholinergic receptors in the heart. Circ Res. 1966 Dec;19(6):1097–1108. doi: 10.1161/01.res.19.6.1097. [DOI] [PubMed] [Google Scholar]
- Coats A. J. Doppler ultrasonic measurement of cardiac output: reproducibility and validation. Eur Heart J. 1990 Dec;11 (Suppl 1):49–61. doi: 10.1093/eurheartj/11.suppl_i.49. [DOI] [PubMed] [Google Scholar]
- Epstein S. E., Beiser G. D., Goldstein R. E., Stampfer M., Wechsler A. S., Glick G., Braunwald E. Circulatory effects of electrical stimulation of the carotid sinus nerves in man. Circulation. 1969 Sep;40(3):269–276. doi: 10.1161/01.cir.40.3.269. [DOI] [PubMed] [Google Scholar]
- Epstein S. E., Beiser G. D., Stampfer M., Braunwald E. Role of the venous system in baroreceptor-mediated reflexes in man. J Clin Invest. 1968 Jan;47(1):139–152. doi: 10.1172/JCI105704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fritsch J. M., Rea R. F., Eckberg D. L. Carotid baroreflex resetting during drug-induced arterial pressure changes in humans. Am J Physiol. 1989 Feb;256(2 Pt 2):R549–R553. doi: 10.1152/ajpregu.1989.256.2.R549. [DOI] [PubMed] [Google Scholar]
- Glick G. Importance of the carotid sinus baroreceptors in the regulation of myocardial performance. J Clin Invest. 1971 May;50(5):1116–1123. doi: 10.1172/JCI106583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henning R. J., Cheng J., Levy M. N. Vagal stimulation decreases rate of left ventricular relaxation. Am J Physiol. 1989 Feb;256(2 Pt 2):H428–H433. doi: 10.1152/ajpheart.1989.256.2.H428. [DOI] [PubMed] [Google Scholar]
- Ihlen H., Amlie J. P., Dale J., Forfang K., Nitter-Hauge S., Otterstad J. E., Simonsen S., Myhre E. Determination of cardiac output by Doppler echocardiography. Br Heart J. 1984 Jan;51(1):54–60. doi: 10.1136/hrt.51.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jose A. D., Taylor R. R. Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J Clin Invest. 1969 Nov;48(11):2019–2031. doi: 10.1172/JCI106167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchheim H. R. Systemic arterial baroreceptor reflexes. Physiol Rev. 1976 Jan;56(1):100–177. doi: 10.1152/physrev.1976.56.1.100. [DOI] [PubMed] [Google Scholar]
- Kirchheim H., Gross R. Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog. Effect of - or -adrenergic blockade on the reflex response. Pflugers Arch. 1971;327(3):203–224. doi: 10.1007/BF00586859. [DOI] [PubMed] [Google Scholar]
- Lindblad L. E. Influence of age on sensitivity and effector mechanisms of the carotid baroreflex. Acta Physiol Scand. 1977 Sep;101(1):43–49. doi: 10.1111/j.1748-1716.1977.tb05981.x. [DOI] [PubMed] [Google Scholar]
- Mancia G., Ferrari A., Gregorini L., Parati G., Ferrari M. C., Pomidossi G., Zanchetti A. Control of blood pressure by carotid sinus baroreceptors in human beings. Am J Cardiol. 1979 Oct 22;44(5):895–902. doi: 10.1016/0002-9149(79)90220-0. [DOI] [PubMed] [Google Scholar]
- Murphy C., Coats A., Conway J., Colditz P., Rolfe P. Doppler ultrasound signal analysis based on the TMS320 signal processor. J Biomed Eng. 1988 Apr;10(2):127–129. doi: 10.1016/0141-5425(88)90087-8. [DOI] [PubMed] [Google Scholar]
- Parati G., Casadei R., Groppelli A., Di Rienzo M., Mancia G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension. 1989 Jun;13(6 Pt 1):647–655. doi: 10.1161/01.hyp.13.6.647. [DOI] [PubMed] [Google Scholar]
- Pickering T. G., Gribbin B., Petersen E. S., Cunningham D. J., Sleight P. Effects of autonomic blockade on the baroreflex in man at rest and during exercise. Circ Res. 1972 Feb;30(2):177–185. doi: 10.1161/01.res.30.2.177. [DOI] [PubMed] [Google Scholar]
- Rassi A., Jr, Crawford M. H., Richards K. L., Miller J. F. Differing mechanisms of exercise flow augmentation at the mitral and aortic valves. Circulation. 1988 Mar;77(3):543–551. doi: 10.1161/01.cir.77.3.543. [DOI] [PubMed] [Google Scholar]
- SARNOFF S. J., GILMORE J. P., BROCKMAN S. K., MITCHELL J. H., LINDEN R. J. Regulation of ventricular contraction by the carotid sinus. Its effect on atrial and ventricular dynamics. Circ Res. 1960 Sep;8:1123–1136. doi: 10.1161/01.res.8.5.1123. [DOI] [PubMed] [Google Scholar]
- Shoukas A. A. Carotid sinus baroreceptor reflex control and epinephrine. Influence on capacitive and resistive properties of the total pulmonary vascular bed of the dog. Circ Res. 1982 Jul;51(1):95–101. doi: 10.1161/01.res.51.1.95. [DOI] [PubMed] [Google Scholar]
- Smyth H. S., Sleight P., Pickering G. W. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969 Jan;24(1):109–121. doi: 10.1161/01.res.24.1.109. [DOI] [PubMed] [Google Scholar]
- Stewart W. J., Jiang L., Mich R., Pandian N., Guerrero J. L., Weyman A. E. Variable effects of changes in flow rate through the aortic, pulmonary and mitral valves on valve area and flow velocity: impact on quantitative Doppler flow calculations. J Am Coll Cardiol. 1985 Sep;6(3):653–662. doi: 10.1016/s0735-1097(85)80127-3. [DOI] [PubMed] [Google Scholar]
- Syrota A., Comar D., Paillotin G., Davy J. M., Aumont M. C., Stulzaft O., Maziere B. Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci U S A. 1985 Jan;82(2):584–588. doi: 10.1073/pnas.82.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vatner S. F., Higgins C. B., Franklin D., Braunwald E. Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. J Clin Invest. 1972 Apr;51(4):995–1008. doi: 10.1172/JCI106893. [DOI] [PMC free article] [PubMed] [Google Scholar]
