
npj | health systems Article

https://doi.org/10.1038/s44401-024-00009-w

Environment scan of generative AI
infrastructure for clinical and translational
science

Check for updates

Betina Idnay1, Zihan Xu2, William G. Adams3, Mohammad Adibuzzaman4, Nicholas R. Anderson5,
Neil Bahroos6, Douglas S. Bell7, Cody Bumgardner8, Thomas Campion2,9, Mario Castro10,
James J. Cimino11, I. Glenn Cohen12, David Dorr4, Peter L. Elkin13, Jungwei W. Fan14, Todd Ferris15,
David J. Foran16, David Hanauer17, Mike Hogarth18, Kun Huang19, Jayashree Kalpathy-Cramer20,
Manoj Kandpal21, Niranjan S. Karnik22, Avnish Katoch23,24, Albert M. Lai25, Christophe G. Lambert26,
Lang Li27, Christopher Lindsell28, Jinze Liu29, Zhiyong Lu30, Yuan Luo31, Peter McGarvey32,
Eneida A. Mendonca33, Parsa Mirhaji34, Shawn Murphy35, John D. Osborne36, Ioannis C. Paschalidis37,
Paul A. Harris38, Fred Prior39, Nicholas J. Shaheen40, Nawar Shara32, Ida Sim41, Umberto Tachinardi42,
Lemuel R. Waitman43, Rosalind J. Wright44, Adrian H. Zai45, Kai Zheng46, Sandra Soo-Jin Lee47,
Bradley A. Malin38, Karthik Natarajan1, W. Nicholson Price II48, Rui Zhang49, Yiye Zhang2, Hua Xu50,55 ,
Jiang Bian51,53,54,55 , Chunhua Weng1,52,55 & Yifan Peng2,9,55

This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in
the national network for clinical and translational scienceacross 36 institutions supportedby theCTSA
Program led by the National Center for Advancing Translational Sciences (NCATS) of the National
Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional
strategies, with most organizations in the experimental phase of GenAI deployment. The results
underscore the need for a more coordinated approach to GenAI governance, emphasizing
collaboration among senior leaders, clinicians, information technology staff, and researchers. Our
analysis reveals that 53%of institutions identified data security as a primary concern, followed by lack
of clinician trust (50%) and AI bias (44%), whichmust be addressed to ensure the ethical and effective
implementation of GenAI technologies.

The burgeoning advancement of generative AI (GenAI) provides trans-
formative potential for healthcare systems globally. GenAI employs com-
putational models to generate new content based on patterns learned from
existing data. These models, exemplified by large language models (LLMs),
can produce content across various modalities such as text, images, video,
and audio1–5. Its ability to generate human-comprehensible text enabled the
explorationof diverse applications inhealthcare that involve the sharing and
dissemination of expert knowledge, ranging from clinical decision support
to patient engagement6,7. Integrating GenAI into healthcare can enhance
diagnostic accuracy, personalized treatment plans, and operational effi-
ciencies. For instance, GenAI-driven diagnostic tools can analyze medical
images and electronic health records (EHRs) to detect diseases, often sur-
passing the accuracy of human experts8–13. GenAI applications can
streamline administrative processes, reduce clinicians’ documentation
burden, and enable them to spend more time on direct patient care14,15.

However, implementing GenAI technologies in healthcare has several
challenges. Issues such as trustworthiness, data privacy, algorithmic bias,
and the need for robust regulatory frameworks are critical considerations
that must be addressed to ensure the responsible and effective use of
GenAI16,17.

Given these promising advancements and associated challenges,
understanding the current institutional infrastructure for implementing
GenAI in healthcare is crucial. Various stakeholders (e.g., clinicians,
patients, researchers, regulators, industry professionals) have different roles
and responsibilities in GenAI implementation, ranging from ensuring
patient safety and data security to driving innovation and regulatory com-
pliance, and may hold varying attitudes toward GenAI applications that
influence their acceptance and utilization of these technologies. Failure to
consider these diverse perspectives may hinder the widespread adoption
and effectiveness of GenAI technologies.
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Previous studies have examined stakeholder perspectives on AI
adoption to some extent. For example, Scott et al.18 found that while
various stakeholders generally had positive attitudes towards AI in
healthcare, especially those with direct experience, significant concerns
persisted regarding privacy breaches, personal liability, clinician over-
sight, and the trustworthiness of AI-generated advice. These concerns are
reflective of AI technologies in general. Specific to GenAI, Spotnitz et al.
surveyed healthcare providers and found that while clinicians were gen-
erally positive about using LLMs for assistive roles in clinical tasks, they
had concerns about generating false information andpropagating training
data bias19.

Despite these insights, there remains a gap in understanding the
infrastructure required for GenAI integration in healthcare institutions,
particularly from the perspective of institutional leadership. The Clinical
andTranslational ScienceAwards (CTSA)Program, fundedby theNational
Center for Advancing Translational Sciences (NCATS) of the National
Institutes of Health (NIH) in the United States (US), supports a nationwide
consortium of medical research institutions at the forefront of clinical and
translational researchandpractice20. By examining theGenAI infrastructure
within CTSA institutions, we can gain valuable insights into how GenAI is
being adopted into cutting-edge research environments and help set
benchmarks for the broader healthcare community. Furthermore, under-
standing the challenges faced by CTSA institutions in this context is crucial
for developing strategies that promote fair and accessible GenAI
implementation8,21.

In this study, we aim to conduct an environmental scan of the infra-
structure forGenAIwithinCTSA institutions by surveyingCTSA leaders to
comprehensively understand its current integration status. We also high-
light opportunities and challenges in achieving equitable GenAI imple-
mentation in healthcare by identifying key stakeholders, governance
structures, and ethical considerations. We acknowledge the dual roles that
respondents may represent, whether in their capacity as leaders within
academic institutions (i.e., CTSA), healthcare systems, or both. Hence, we
use the term “healthcare institutions” to encompass the broad range of
leadership representation and capture a more complete picture of GenAI
integration across research-focused and healthcare-delivery institutions.
The insights gained from this study can inform the development of national
policies and guidelines to ensure the ethical use of GenAI in healthcare;
identifying successful GenAI implementation strategies can serve as best
practices for other institutions; highlighting gaps in the current GenAI
infrastructure can guide future investments and research priorities; and
ultimately, a robust GenAI infrastructure can enhance patient care through
more accurate diagnoses, personalized treatments, and efficient healthcare
delivery.

Results
The US CTSA network contains over 60 hubs. We sent email invitations to
64 CTSA leaders, each responding on behalf of a unique CTSA site, with 42
confirming participation. Ultimately, we received 36 complete responses,
yielding an 85.7% completion rate. Only fully completed responses were
included in the analysis, as the six unfinished responses had 0–65%progress
and were excluded. The survey questions are available in Supplementary
Material A. Of the 36 completed responses, 15 (41.7%) represented only a
CTSA, and 21 (58.3%) represented a CTSA and its affiliated hospital.

Stakeholder identification and roles
Figure 1a shows that senior leaders were the most involved in GenAI
decision-making (94.4%), followed by information technology (IT) staff,
researchers, andphysicians.Cochran’sQ test revealed significant differences
in stakeholder involvement (Q = 165.9, p < 0.0001). Post-hoc McNemar
tests (see Methods) with Bonferroni correction showed senior and depart-
mental leaders were significantly more involved than business unit leaders,
nurses, patients, and community representatives (all corrected p < 0.0001;
SupplementaryTable 1).Nurseswere also less engaged than researchers and
IT staff (corrected p < 0.0001).

We further split our analysis based on whether institutions have
formal committees or task forces overseeingGenAI governance to provide
insights into how governancemodelsmay impact GenAI adoption. 77.8%
(28/36) respondents reported having formal committees or task forces
overseeingGenAI governance, 19.4% (7/36) did not, and 2.8% (1/36) were
unsure. We grouped those without formal committees for analysis to
simplify the comparison and focus on clear distinctions between institu-
tions with and without established governance structures. Institutions
without formal committees did not involve patients and community
representatives as stakeholders in the decision-making and implementa-
tion of GenAI (Fig. 1a).

Further, the decision-making process for implementing GenAI (Fig.
1b) was primarily led by cross-functional committees (80.6%), with clinical
leadership also playing a key role (50.0%). Institutions without formal
committees were led more by clinical leadership. Specific mentions include
the dean, CTSA and innovation teams, researchers, and health AI govern-
ance committees. Cochran’s Q test revealed significant differences in lea-
dership involvement (Q = 46.8, p < 0.0001), especially between cross-
functional committees and both regulatory bodies and other stakeholders
(corrected p < 0.0001; Supplementary Table 2).

Decision-making and governance structure
The decision-making process for adopting GenAI in healthcare institutions
varied (Fig. 1c). A centralized (top-down) approach was used by 61.1%

Fig. 1 | Results on stakeholder identification and roles. a Which stakeholder
groups are involved in your organization’s decision-making and implementation of
GenAI? bWho leads the decision-making process for implementing GenAI

applications in your organization? c How are decisions regarding adopting GenAI
made in your healthcare institution?
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(22/36) of respondents, while 8.3% (3/36) mentioned alternative methods,
such as decisions based on the tool’s nature or a mix of centralized and
decentralized approaches.

Thematic analysis of statements about governance structures in
organizations with formal committees identified twomajor themes (Fig. 2).
“AI Governance and Policy” reflects institutions’ structured approaches to
ensure responsible GenAI implementation. Institutions often establish
multidisciplinary committees to integrate GenAI policies with existing
frameworks, aligning AI deployment with organizational goals and reg-
ulatory requirements and focusing on legal and ethical compliance. “Stra-
tegic Leadership and Decision Making” highlights the crucial role of
leadership in GenAI initiatives. High-level leaders drive GenAI integration
through strategic planning and resource allocation, with integrated teams
from IT, research, and clinical care fostering a culture of innovation and
collaboration. Excerpts on these governance practices are detailed in Sup-
plementary Table 3.

Regulatory and ethical considerations
Regulatory body involvement in GenAI deployment varied widely across
institutions (Fig. 3a). Federal agencies were engaged in 33.3% (12/36) of
organizations. A significant portion (55.6%) identified other bodies,
including institutional reviewboards (IRBs), ethics committees, community
advocates, and state agencies. Internal governance committees and uni-
versity task forces were also explicitly mentioned.

Regarding ethical oversight (Fig. 3b), 36.1% (13/36) of respondents
reported an ethicist’s involvement in GenAI decision-making; 27.8%
(10/36) mentioned an ethics committee, while 19.4% (7/36) reported nei-
ther, and 16.7% (6/36) were unsure. Ethical considerations were ranked
based on importance (Fig. 3c), with “Bias and fairness” (mean rank 2.31)
and “Patient Privacy” (mean rank 2.36) being the top priorities.

Stage of adoption
Institutions were at varying stages of GenAI adoption (Fig. 3d), with 75.0%
(27/36) in the experimentation phase, focusing on exploring AI’s potential,
building skills, and identifying areas for value addition. Integrating existing
systems and workflows wasmet withmixed responses (Fig. 3e), with 50.0%
(18/36) rating it as neutral.

Workforce familiarity with LLMs also varied (Fig. 3f), with 36.1%
(13/36) of respondents reporting slight familiarity and 25.0% (9/36)

reporting moderate familiarity. Workforce training on LLMs was uneven,
with only 36.1% (13/36) having received training, while 44.4% (16/36)
considered but did not receive training, and 19.4% (7/36) neither received
nor considered training. The demand for further training was evident, with
83.3% (30/36) finding it desirable or even more (Fig. 3g). The respondents
who indicated receiving further LLM training for their workforce was
undesirable were from institutions without a formal committee.

Vendor collaboration was crucial, with 69.4% (25/36) of institutions
partneringwithmultiple vendors, ranging fromone to twelve, to implement
GenAI solutions. Notable vendors included major service providers,
established EHR vendors, and various startups. Some respondents noted
that discussions are often confidential or lack comprehensive information
on enterprise-wide vendor engagements. Additionally, 25.0% (9/36) have
considered vendor collaboration but have not engaged, while only 5.6% (2/
36) have neither considered nor pursued such partnerships.

Budget trends
Regarding funds allocation for GenAI projects, 50.0% (18/36) of respon-
dents reported that ad-hoc funding was allocated mostly from institutions
with formal committees (Fig. 3h). Most institutions without formal com-
mittees reported that no funds had been allocated for GenAI projects
(62.5%; 5/8). Since 2021, 36.1% (13/36) of respondents were unsure about
budget changes, 19.4% (7/36) noted the budget remained roughly the same,
and 44.5% reported budget increases ranging from 10% to over 300%
(Fig. 3i).

Current LLM usage
Institutions were adopting LLMswith varied strategies (Fig. 4a), with 61.1%
(22/36) using a combination of both open and proprietary LLMs, 11.1%
(4/36) using open LLMs only, and 25.0% (9/36) using proprietary LLMs
only. Only 2.8% (1/36) reported not using any LLMs. Significant differences
exist (Q = 28.7, p < 0.0001) between the types of LLMs used. Post-hoc tests
revealed significant differences (Supplementary Table 4) between using
open and proprietary LLMs versus open LLMs only (corrected p = 0.0032),
indicating a notable preference for combining different LLM types in some
institutions. No significant differences were found among specific open or
proprietary LLM types (Q = 2.4, p = 0.4936), suggesting that institutions
did not exhibit strong preferences between particular open or proprietary
LLM models. Institutions developing open LLMs prioritized technical

Fig. 2 | Thematic analysis of governance and lea-
dership structures in GenAI deployment across
CTSA institutions with featured responses. This
figure illustrates two primary domains of govern-
ance and leadership structures: AI Governance and
Policy (blue) and Strategic Leadership andDecision-
Making (orange), divided into seven subcategories.
Segment sizes reflect the prevalence of each
approach. Annotated quotes provide qualitative
insights into governance strategies, showcasing the
diversity of institutional practices in GenAI
deployment.
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architecture and deployment (61.1%), followed by customization and
integration features (50.0%, Fig. 4c). Some institutions focused on research
and experimentation, comparing open to proprietary LLMs, with interests
in medical education and cost-effectiveness. Technical architecture and
deployment are prioritized over clinician or patient buy-in (corrected
p = 0.0024; Supplementary Table 5).

RegardingGenAIdeployment (Fig. 4b), private cloud andon-premises
self-hosting were the most common approaches (both 63.9%), suggesting
that most institutions have both approaches but do not take a hybrid
approach. Some institutions specifiedusing local supercomputing resources
or statewidehigh-performance computing infrastructure. Statistical analysis
(Q = 42.6, p < 0.0001) indicated a preference for more controlled environ-
ments, with private cloud and on-premises self-hosting significantly more
favored thanpublic cloud (correctedp = 0.0022 and p = 0.0060, respectively;
Supplementary Table 6).

For institutions adopting proprietary LLMs, the critical factors for
decision-making include technical architecture and deployment (61.1%),
and scalability and performance (Fig. 4c). Respondents noted the impor-
tanceof ease of deployment, especially in partnershipswith establishedEHR
vendors, and the advantage of existing Health Insurance Portability and
Accountability Act (HIPAA) Business Associate Agreements with major
cloud service providers. Statistical analysis (Q = 57.4, p < 0.0001) revealed

significant differences, particularly between technical architecture and
deployment and monitoring and reporting and AI workforce development
(both corrected p = 0.0113; Supplementary Table 7). Scalability and per-
formance were significantly more prioritized than LLM output compliance
and AI monitoring and reporting (corrected p values = 0.0405).

Finally, LLMswere applied across diverse domains, with commonuses
in biomedical research (66.7%), medical text summarization (66.67%), and
data abstraction (63.9%, Fig. 4d). Co-occurrence analysis showed frequent
overlaps in these areas (Supplementary Table 8). Medical imaging analysis
was the most common use case for institutions without formal committees
overseeing GenAI governance. Significant differences (Supplementary
Table 9)were observed inusingLLMs fordata abstraction compared todrug
development,machine translation, and scheduling and between biomedical
research and drug development, machine translation, and scheduling
(corrected p values < 0.05).

LLM evaluation
Respondents prioritized accuracy and reproducible and consistent answers
when evaluating LLMs for healthcare (Fig. 4e; Supplementary Table 10),
each receiving the highest mean rating of 4.5. Healthcare-specific models
and security and privacy risks were also deemed important, though
responses varied.An analysis of variance (ANOVA) test revealed significant

Fig. 3 | Results on regulatory, ethical, and budget considerations. aWhich reg-
ulatory bodies are involved in overseeing the deployment of GenAI in your orga-
nization? bDo you have an ethicist or an ethics committee involved in the decision-
making process for implementingGenAI technologies in your organization? cPlease
rank the following ethical considerations frommost important (1) to least important
(6) when decision-makers are deciding to implement GenAI technologies. dWhat is

the stage ofGenAI adoption in your organization? eHowwell doGenAI applications
integrate with your existing systems and workflows? fHow familiar are members of
theworkforcewith the use of LLMs in your organization? gHowdesirable is it for the
workforce to receive further LLM training? h Have funds been allocated for GenAI
projects? i Compared to 2021, how does the budget allocated to GenAI projects in
your organization change?
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differences among the importance ratings (F = 3.4, p = 0.0031). Post-hoc
Tukey’s honestly significant difference (HSD) tests showed a significant
difference between accuracy, explainability, and transparency (p = 0.0299).

Regarding potential roadblocks to adopting GenAI in healthcare,
regulatory compliance issues were rated as the most significant concern,
with a mean rating of 4.2 (Fig. 4f; Supplementary Table 11). While ‘Too
expensive’ and ‘Not built for healthcare and life science’ were less of a
concern, they still posed challenges for some respondents, though there are
no significant differences among these ratings (F = 2.0, p = 0.0606).

Projected impact
Participants rated the anticipated impact of LLMs on various use cases
over the next 2–3 years (Fig. 5a; Supplementary Table 12), with the
highest mean ratings for natural language query interface, information
extraction, and medical text summarization (4.5 each), followed by
transcribing medical encounters (4.3). Data abstraction (4.3) and
medical image analysis (4.2) were also highly rated, while synthetic data
generation, scheduling (3.5 each), and drug development (3.4) received

lower ratings. Additional use cases, such as medical education and
decentralized clinical trials, suggest an expanding scope for LLM
applications.

Further, respondents reported increased operational efficiency (44.4%)
as themost commonly observed improvement, with faster decision-making
processes noted by 13.9% (Fig. 5b). However, none reported improved
patient outcomes.Other reported improvements included increased patient
satisfaction and enhanced research capacity, although somenoted it was too
early to prove such benefits. Significant differences among these improve-
ments were observed (Q = 38.9, p < 0.0001; Supplementary Table 13), par-
ticularly between better patient engagement and improved patient
outcomes (corrected p = 0.0026).

RegardingGenAI implementation concerns (Fig. 5c), data securitywas
identified as a major issue by 52.78% of respondents, followed by a lack of
clinician trust (50.0%) and AI bias (44.44%). Cochran’s Q Test confirmed
variability in these concerns (Q = 33.3,p < 0.001).Other challenges included
the time required to train models, lack of validation tools, inadequate pro-
vider training, and concerns about organizational trust. Some respondents

Fig. 4 | Results on LLMs usage. aWhich of the LLMs are you currently using?
bWhat AI deployment options does your organization currently use? c You indi-
cated that your organization is using open LLMs (blue) or proprietary LLMs (red).
What factors influenced your decision to develop internally/to go with commercial
solutions? dWhich of the following use cases are you currently using LLMs for? eOn

a scale from 1 to 5, please rate the importance of each of the following criteria when
evaluating LLMs. 1 means “Not at all Important,” and 5 means “Extremely
Important”. fOn a scale of 1 to 5, please rate how significant the following potential
limitations or roadblocks are to your roadmap for current generative AI technology,
with 1 being not important and 5 being very important.
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Fig. 5 | Results on projected impact and enhancement strategies. aOn a scale of 1
to 5, please rate how much you think LLMs will impact each use case over the next
2–3 years. 1 means very negative, and 5means very positive. bWhat improvements,
if any, have you observed since implementing Generative AI (GenAI) solutions in
your healthcare institution? (c) What drawbacks or negative impacts, if any, have

you observed since implementingGenAI solutions?dWhich steps do you take to test
and improve your LLM models? eWhat type(s) of evaluations have your deployed
LLM solutions undergone? fWhat challenges, if any, have you faced in integrating
GenAI with existing systems?
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also noted that their observations were based on internal experiences, with
no implementations yet in production.

Enhancement strategies
Respondents identified several strategies for testing and improving LLMs
in healthcare, with human-in-the-loop being the most common (83.3%,
Fig. 5d). Significant differences (Supplementary Table 14) were noted
between human-in-the-loop and methods like quantization and pruning
and Reinforcement Learning with human feedback22 (corrected
p < 0.0001). Significant differences were found between adversarial
testing23 and human-in-the-loop and guardrails and human-in-the-loop
(corrected p = 0.0067).

In evaluating deployed LLMs (Fig. 5e), the most common assessments
focused on hallucinations or disinformation (50.0%) and robustness
(38.9%). However, 19.4% (7/36) of respondents indicated no evaluations
had been conducted. Cochran’s Q Test revealed significant variation in the
importance of these evaluations (Q = 77.1, p < 0.0001), with post-hoc ana-
lysis (Supplementary Table 15) showing significant differences between
explainability andprompt injection (i.e., a techniquewhere specific prompts
or questions are used to trick the GenAI into bypassing its specified
restrictions, revealing weaknesses in how it understands and responds to
information), and between fairness versus ideological leaning and prompt
injection (corrected p = 0.0040).

Integrating GenAI into healthcare presents several challenges (Fig.
5f), with technical architecture and deployment cited most frequently
(72.2%). Interestingly, AI workforce development is the most common
challenge for institutions without a formal committee. Data lifecycle
management was noted as a critical limitation by 52.8% (19/36) of
respondents. Challenges often overlap, with technical architecture and
deployment closely linked to security, scalability, and regulatory com-
pliance issues. Additional gaps were also highlighted, such as the absence
of a training plan and a limited workforce. Significant variability was
observed (Q = 45.4, p < 0.0001), with post-hoc analysis indicating that
technical architecture and deployment were more prevalent than LLM
output compliance (i.e., the trustworthiness of the LLM output) and
scalability and performance (corrected p = 0.0269; Supplementary
Table 16).

Additional insights into GenAI integration
Nine respondents provided additional insights into the complexities of
integrating GenAI into healthcare. They emphasized the challenges posed
by the rapid pace of technological change, which complicates long-term
investment and integration decisions. Organizational approaches to GenAI
vary; some institutions aggressively pursue it, while others have yet to
implement it on a broader scale despite individual use. The integration of
GenAI has improved collaboration between researchers, physicians, and

administrators, but slow decision-making and a significant gap in AI
workforce skills remain critical issues. The evolving nature of AI initiatives
makes it difficult to fully capture current practices, highlighting the need for
a comprehensive approach that addresses technological, organizational, and
workforce challenges.

Discussion
This study provides a snapshot of GenAI integration within CTSA insti-
tutions, focusing on key stakeholders, governance structures, ethical con-
siderations, and associated challenges and opportunities. Table 1
summarizes the key recommendations from the findings. Senior leaders, IT
staff, and researchers are central to GenAI integration, with significant
involvement from cross-functional committees highlighting the multi-
disciplinary collaboration required for effective implementation. However,
findings suggest minimal involvement of nurses, patients, and community
representatives in the current GenAI implementation decision-making
process, which raises concerns about inclusiveness, which is essential to
aligning technologieswith theneedsof all stakeholders18,24.Most institutions
adopt a centralized, top-down governance structure, streamlining decision-
making but potentially limiting flexibility for departmental needs25. While
formal committees or task forces suggest emerging governance frameworks,
the variability across institutions indicates that best practices are still
evolving.

According to the respondents, ethical and regulatory oversight of
GenAI implementation varies across institutions, with some involvement
from federal agencies, IRBs, and ethics committees. Prioritization of
ethical considerations such as patient privacy, data security, and fairness
in AI algorithms reflects the awareness of the significant challenges in
deploying GenAI in healthcare. Our findings also reveal variability in the
reported involvement of regulatory bodies, with less frequent mentions of
engagement from local health authorities. However, we did not collect
detailed information on the specific roles of these agencies or distinguish
betweendifferent types of regulatory engagement. This limitation suggests
a need for more explicit and consistent oversight frameworks to address
the unique risks associated with GenAI. Despite these gaps, this study
emphasizes the importance of developing comprehensive policies and
guidelines to navigate the ethical landscape of GenAI technologies in
healthcare.

Collaboration with vendors is common among CTSA institutions,
with partnerships reported with major cloud service providers and
established EHR vendors. However, the variability in the extent of these
collaborations and the need for comprehensive information on
enterprise-wide vendor engagements suggest challenges in coordinating
AI implementation efforts across institutions. Further, the ad-hoc
funding allocation forGenAI projects indicates that AI integration is still
in its infancy, with institutions likely testing the waters before

Table 1 | Summary of key findings and recommendations for GenAI implementation in healthcare

Key finding Recommendation

Stakeholder involvement Involve senior leaders, IT staff, researchers, clinicians, and patients to ensure a representative and effective decision-making
process.

Governance structure Establish formal GenAI governance committees to ensure structured oversight.

Decision-making Cross-functional committees should lead decision-making for GenAI adoption, balancing stakeholder involvement.

Popular enhancement strategies Use human-in-the-loop and supervised fine-tuning as primary enhancement strategies for LLM models.

Cloud architecture preferences Prefer private cloud or on-premises hosting to maintain control over security, scalability, and regulatory compliance in GenAI
deployment.

Ethical considerations Prioritize bias and fairness, patient privacy, and data security when integrating GenAI into healthcare institutions.

Budget allocation Encourage institutions to establish systematic funding mechanisms for GenAI projects to support long-term investments.

LLM usage Adopt a combination of open and proprietary LLMs, depending on the technical and scalability requirements of the institution.

Workforce training Implement comprehensive training programs to enhance GenAI literacy and bridge skill gaps within the healthcare workforce.

Projected impact and improvements Focus onoperational efficiency anddecision-making speedwhile addressing the gap in direct improvements to patient outcomes.
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committing to substantial investments. Implementing LLMs in health-
care settings presents significant challenges, particularly in technical
architecture, deployment, customization, and security, requiring a
comprehensive and coordinated approach across departments for suc-
cessful integration26. Additionally, data interoperability challenges,
especially for multi-state or multi-jurisdictional institutions, further
complicate these efforts, emphasizing the need for standardized fra-
meworks to facilitate seamless integration across diverse techinical and
regulatory environments.

To evaluate their GenAI technologies, some institutions are using
strategies like human-in-the-loop oversight, supervised fine-tuning, and
interpretability tools to enhance GenAI transparency and reliability while
also employing de-biasing techniques to mitigate biases, ensuring that
GenAI outputs are continuously monitored and refined by human
experts27,28. Evaluation practices emphasize robustness and accuracy, with
assessments for hallucinations, disinformation, and bias crucial to ascer-
taining GenAI systems function effectively in real-world healthcare
settings29,30. However, some institutions’ lack of comprehensive evaluations
suggests the early stages of LLM adoption and potential shortcomings in
initial adoption, highlighting the need to improve their resources or
expertize before widespread adoption.

The respondents are optimistic about the projected impact of LLMs
on healthcare, particularly in areas like medical text summarization,
query interfaces, and information extraction, which are expected to
streamline workflows, enhance information access, and improve doc-
umentation efficiency31,32. However, the gap between anticipated bene-
fits and actual outcomes, such as the limited direct improvements in
patient outcomes, highlights ongoing challenges. This discrepancy
emphasizes the need for a focused evaluation of how GenAI tools can
directly impact patient health and care quality. Emerging LLM appli-
cations in medical education, decentralized trials, and digital twin
technologies (i.e., virtual replicas of physical systems used for real-time
simulation and analysis in healthcare) suggest an expanding scope for
these tools. While their impact in specialized domains like drug devel-
opment remains uncertain, recent evidence points to promising
advancements that could enhance the utility of LLMs in this area33.
Despite the enthusiasm, significant concerns about data security,

clinician trust, high maintenance costs, AI bias, and lack of patient trust
complicate LLM integration into healthcare institutions.

Integrating LLMs into healthcare institutions is further complicated
by high maintenance costs, AI bias, and lack of patient trust. Evaluations
within institutions prioritize accuracy, reliability, and security, with
respondents emphasizing the critical need for dependable and secure AI
outputs tomaintain trust and patient safety34. Legal and reputational risks,
along with the need for explainability and transparency, are also highly
rated, indicating a significant focus on the ethical and legal implications of
AI deployment. However, the importance of these criteria varies,
reflecting diverse contexts and priorities across institutions. Despite high
expectations for LLMs, the study identified significant roadblocks and
considerations for widespread adoption (Table 2). These challenges
underscore the complex landscape where multiple factors must be man-
aged simultaneously.

Further, the study reveals that most institutions are still in the
experimentation phase of GenAI adoption, exploring the technology’s
potential andbuilding thenecessary skills for its practical adoption.Mixed
levels of familiarity with LLMs among the workforce and stakeholders
indicate a significant need for further AI workforce training and clinician
engagement to enhance GenAI literacy, ensuring that key stakeholders
can manage GenAI effectively. Without proper training, healthcare pro-
fessionals may struggle to fully leverage these tools, potentially leading to
inefficiencies, errors, or privacy or security violations (e.g., inappropriately
uploading data)35,36. Previous work suggests a multifaceted and multi-
sectorial approach to address these gaps and facilitate knowledge sharing,
including implementing structured training programs, offering hands-on
workshops, developing mentorship opportunities, and partnering with
vendors to provide tailored training specific to the healthcare setting37.
This opens the possibility thatNCATS andotherNIH institutesmaywant
to consider collaborative initiatives to address the questions raised in this
research. Additionally, the CTSA network’s emphasis on knowledge
sharing could facilitate smoother GenAI adoption across institutions38,
particularly for late adopters. By encouraging the dissemination of best
practices and lessons learned fromearly adopters39, theCTSAnetwork can
help institutions with fewer resources or those facing governance chal-
lenges navigate the complexities of GenAI implementation more

Table 2 | Summary of key challenges in GenAI implementation across CTSA institutions

Challenge Description

Stakeholder inclusion Nurses, patients, and community representatives have limited involvement in the decision-making processes, particularly in institutions
without formal committees.

Governance structure Variability in governance models, with some institutions lacking formal GenAI oversight committees, may impact structured decision-
making.

Leadership in decision-making Institutionswithout formal committees relymore on clinical leadership rather than cross-functional committees, potentially affecting the
balance of stakeholder input.

Ethical oversight Varying degree of involvement of ethicists and ethics committees can create gaps and disparity in fairness, privacy, and data security in
the broad scientific community for clinical and translational science.

Workforce readiness Variability in workforce familiarity with LLMs, with some institutions having insufficient training and preparedness for GenAI integration.

Training and skill gaps Significant gaps in formal GenAI training plans, with many institutions struggling to build internal capabilities to manage GenAI tools
effectively.

Technical integration Difficulties in integrating GenAI into existing systems, with mixed responses about how well these technologies integrate into current
workflows.

Funding and resources Many institutions rely on ad-hoc funding mechanisms for GenAI projects, creating uncertainty in long-term resource allocation and
support for AI initiatives.

Vendor collaboration Limited transparency and variability in vendor collaborations, with some institutions facing challenges coordinating enterprise-wide AI
implementation.

Data security and trust Major concerns regarding the security of GenAI systems and lack of clinician trust, particularly in institutions without formal governance
structures.

AI bias and mistrust Concerns about bias in GenAI outputs and mistrust from clinicians and patients could affect the adoption and effective use of GenAI
technologies.

Compliance and legal risks Regulatory compliance and accuracy are major concerns, with institutions needing to navigate legal and reputational risks associated
with GenAI deployment.
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efficiently. Furthermore, the insights from this study could inform stra-
tegies for GenAI adoption in non-CTSA institutes and contribute to
shaping the globalGenAI landscape,where diverse institutional structures
and resource availability demand adaptable and scalable approaches.

The study has limitations, including variability in respondents’
knowledge and the evolving nature of GenAI practices, which may not
capture ongoing progress or changes beyond the survey period. Addi-
tionally, the reliance on responses from senior leaders, who may not have
full visibility into all aspects ofGenAI integrationwithin their institutions,
introduces the risk of misreporting or incomplete information. The focus
onCTSA institutionsmay limit the generalizability of thefindings to other
healthcare organizations, particularly for institutionswith fewer resources
where these implementation and governance challengesmay be especially
difficult to address. The survey also did not distinguish between live
GenAI systems and those still in development, which limits our ability to
assess the operational readiness and deployment status of these tools fully
across institutions. Further, we acknowledge that this study did not
address energy costs and sustainability concerns, which are important
considerations for GenAI technologies and should be explored in future
work. Additionally, reliance on self-reported data introduces possible
biases.

In conclusion, the studyhighlights the complex andevolving landscape
of GenAI integration in CTSA institutions. By identifying successful stra-
tegies and highlighting areas for improvement, this research provides an
actionable roadmap for institutions seeking to navigate the complexities of
AI integration in healthcare to ensure ethical, equitable, and effective
implementation, ultimately contributing to advancing patient care and the
broader goals of precision medicine.

Methods
Study design
This study uses an online survey to conduct an environmental scan of
GenAI infrastructure within CTSA institutions through multiple choice,
ranking, rating, and open-ended questions to understand GenAI integra-
tion, including stakeholder roles, governance structures, and ethical
considerations.

Survey instrument development
The survey, administered through the Qualtrics platform (Qualtrics,
Provo, UT), was intended to take ~15 minutes to complete. Initially
developed through a comprehensive review of current literature onAI in
healthcare, the survey covered topics such as stakeholder roles, gov-
ernance structures, ethical considerations, AI adoption stages, budget
trends, and LLM usage. The survey was reviewed by experts (SL, BM,
KN,WP, RZ, YZ) in health informatics, clinical practice, ethics, and law,
who provided feedback that informed revisions to improve clarity and
comprehensiveness. A small group piloted the final version to identify
any remaining issues. The survey questions are available in the Sup-
plementary File.

Participant recruitment
Participants were recruited in July 2024 through targeted outreach to key
stakeholders at CTSA sites using purposive and snowball sampling40. Email
invitations were sent to senior leaders involved in GenAI implementation
and decision-making within the CTSA network (https://ccos-cc.ctsa.io/
resources/hub-directory), with follow-up reminders to maximize
response rates.

Data collection
Datawere collected from July toAugust 2024. CTSA leaderswho responded
to the initial invitation received a follow-up email with the survey link. A
PDF version of the survey was provided to help participants prepare by
reviewing questions offline before completing the survey online. Partici-
pants could return to the survey if necessary.

Data analysis
Quantitative data from the survey were analyzed using various methods.
Multiple-choice and multiple-answer questions were summarized with
frequency distributions and percentages. In addition, multiple-answer
questions were also analyzed using co-occurrence and pattern analysis to
identify common selections and combinations among stakeholder groups.
Cochran’s Q test identified overall differences among response proportions,
with post-hoc analysis using pairwise McNemar tests with Bonferroni
corrections41. Ranking questions were analyzed by calculating mean ranks,
with lower mean ranks indicating higher importance. Likert-scale items
were summarized using measures of central tendency and dispersion, with
an ANOVA test to check for significant differences in ratings across dif-
ferent use cases, followed by Tukey’s HSD test for post-hoc pairwise com-
parisons while controlling for the family-wise error rate42.

Qualitative data fromopen-ended surveyquestionswas analyzedusing
thematic analysis43. This process involved coding the data to identify
common themes and patterns. Two researchers (BI, ZX) independently
coded the data, and a third researcher (YP) resolved disagreements through
consensus.

Data availability
No datasets were generated or analyzed during the current study.

Code availability
All data have been included in themanuscript and supplementarymaterials.
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