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Abstract: The sensitive detection of inflammatory biomarkers in gingival crevicular fluid
(GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based elec-
trochemiluminescence (ECL) immunosensors offer a promising approach for the fast and
convenient detection of biomarkers. However, luminol’s low ECL efficiency under neutral
conditions remains a challenge. This study developed an immunosensor by engineering
an immunorecognition interface on the outer surface of mesoporous silica nanochannel
film (SNF) and confining a Co3O4 nanocatalyst within the SNF nanochannels to improve
the luminol ECL efficiency. The SNF was grown on an indium tin oxide (ITO) electrode
using the simple Stöber solution growth method. A Co3O4 nanocatalyst was successfully
confined within the SNF nanochannels through in situ electrodeposition, confirmed by
X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The confined
Co3O4 demonstrated excellent electrocatalytic activity, effectively enhancing luminol and
H2O2 oxidation and boosting the ECL signal under neutral conditions. Using interleukin-6
(IL-6) as a proof-of-concept demonstration, the epoxy functionalization of the SNF outer
surface enabled the covalent immobilization of capture antibodies, forming a specific
immunorecognition interface. IL-6 binding induced immunocomplex formation, which
reduced the ECL signal and allowed for quantitative detection. The immunosensor showed
a linear detection range for IL-6 from 1 fg mL−1 to 10 ng mL−1, with a limit of detec-
tion (LOD) of 0.64 fg mL−1. It also demonstrated good selectivity and anti-interference
capabilities, enabling the successful detection of IL-6 in artificial GCF samples.

Keywords: electrochemiluminescence; immunosensor; nanochannel-confined; Co3O4; luminol

1. Introduction
Periodontal disease is a common chronic non-specific condition with a high prevalence,

and it is one of the leading causes of tooth loss in middle-aged and elderly individuals [1].
However, the diagnosis and treatment of periodontal disease still face many challenges.
Periodontal disease typically has a long course, with subtle early symptoms, and clinical
diagnosis mainly relies on periodontal indices and X-ray digital subtraction techniques [2].
However, these methods have limitations, making it difficult to achieve an early assessment
of periodontal disease and to assess its activity in a timely manner. In recent years, with the
continuous advancement of molecular biology and biosensing technologies, research on
biomarkers has gained widespread attention [3–5]. Gingival crevicular fluid (GCF) is the
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only bodily fluid that directly exudes from tissues, and its composition and concentration
changes are closely related to the health status of periodontal tissues [6]. When inflam-
mation occurs and progresses in the periodontium, the content of GCF increases, and its
composition changes significantly, releasing a large number of inflammatory molecules. For
example, inflammatory cells secrete cytokines such as interleukin-6 (IL-6) and IL-8, which
are closely related to immune inflammation [7]. It has been proven that the levels of IL-6 in
GCF and saliva are elevated in patients with periodontal disease and are correlated with
the severity of the disease [8]. Additionally, GCF can be repeatedly collected and is non-
invasive, minimizing patient discomfort. Therefore, the sensitive detection of inflammatory
biomarkers in GCF is highly desirable for the quantitative evaluation of periodontal health.

Currently, common techniques for detecting inflammatory biomarkers in GCF in-
clude enzyme-linked immunosorbent assays (ELISAs), Western blotting, spectroscopy, and
radioimmunoassays [9]. However, ELISA has limited sensitivity and Western blotting
has low efficiency and requires larger sample volumes, while spectroscopy and radioim-
munoassays are more restricted in their application due to the technical complexity and
limitations in detectable targets [9]. Therefore, the development of novel, highly sensitive,
and rapid detection technologies is crucial for the early diagnosis and precise treatment of
periodontal disease. Electrochemiluminescence (ECL) detection combines the advantages
of both electrochemistry and luminescence, offering unique benefits, and has garnered
widespread attention [10–12]. Compared to traditional optical detection [13–17], ECL does
not rely on external light sources, avoiding background interference and providing a higher
signal-to-noise ratio [18–21]. Additionally, ECL offers excellent controllability, with the
ability to precisely control the initiation and termination of the luminescent reaction by ad-
justing the potential, enabling highly selective and quantitative analysis [22]. ECL systems
are typically simple in structure, easy to operate, and can be integrated with miniatur-
ized devices, making them suitable for portable, real-time detection applications [23–25].
Moreover, ECL exhibits good versatility and scalability, as different electroactive materials
and luminescent reagents can be selected to flexibly adjust the detection range and target
species, making it widely applicable in clinical diagnostics, environmental monitoring,
and food safety [26]. Thus, ECL detection is a highly promising technique for detecting
inflammatory biomarkers in gingival crevicular fluid.

Luminol is a classic ECL emitter favored for its low cost, simple synthesis method, and
ease of commercial supply, making it suitable for large-scale applications [27]. Luminol-
based ECL immunosensors hold promise for the fast and convenient detection of biomark-
ers. However, luminol has a relatively low quantum yield, and its luminescence intensity
under neutral conditions is much lower than that under alkaline conditions [28]. Recent
studies have shown that combining luminol with nanomaterials can enhance its ECL in-
tensity under neutral conditions, providing an effective approach for developing highly
sensitive ECL analytical platforms [29]. Nanomaterials possess a high surface area, excellent
catalytic activity, and good optical and electrical properties, which can significantly increase
the ECL efficiency of luminol [30–32]. For instance, nanomaterials such as nanocatalysts or
transition metal nanomaterials can catalyze the oxidation reaction of luminol, increasing
the reaction rate and enhancing the ECL signal [33]. On the other hand, nanomaterials
can catalyze the generation of reactive oxygen species [34–36]. However, the stability of
nanomaterials on electrodes remains challenging.

Confining nanomaterials within porous materials is an effective strategy for enhancing
their stability [37–39]. The confinement effect of porous materials physically encapsulates
or embeds nanomaterials, reducing aggregation and thus improving their stability [40]. In
recent years, the confinement of nanomaterials within silica nanochannel film (SNF) has
garnered significant attentions [41–43]. SNF is a functional film based on silica materials,
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featuring precisely controlled mesoporous nanostructures (typically 2–3 nm in pore size)
and broad applications in catalysis, separation, sensing, and energy storage [44–48]. Their
unique physicochemical properties offer distinct advantages, including highly ordered
nanostructures, high surface area, chemical stability, optical transparency, and biocom-
patibility [49–51]. SNF is typically synthesized using a templating method, enabling
controllable pore sizes (2–20 nm) with uniform pore distribution. As a result, SNF can
selectively filter and transport specific molecules [52,53]. For example, the size-exclusion
properties of SNF nanochannels allow for the removal of macromolecules and particulates
from complex samples [54–56], while the negatively charged surface created by silanol
ionization can repel common negatively charged electroactive substances such as uric acid
(UA) and ascorbic acid (AA) [57]. The nanochannels also significantly increase the surface
area, providing more active sites for chemical reactions, and the external surface can be
further functionalized biologically [58–61]. Thus, utilizing SNF to confine functional nano-
materials with luminol as an enhanced ECL offers a promising approach for developing
highly sensitive biosensors for biomarker detection.

In this work, mesoporous silica nanochannel film (SNF) with dual functional domains
was used to modify the cheap electrode, enabling the construction of an immunosensor
interface and the stable confinement of nanocatalysts. An SNF-modified electrode was pre-
pared using a straightforward method, with an immunorecognition interface constructed
on its outer surface and stable Co3O4 nanocatalysts confined within the nanochannels to
enhance the luminol ECL signal under near-neutral conditions. Using interleukin-6 (IL-6)
as a proof-of-concept demonstration, the constructed immunosensor successfully displayed
its effectiveness as a biomarker. Upon the presence of IL-6, the specific immunorecogni-
tion increased the interfacial resistance, and the formation of the immunocomplex hin-
dered luminol diffusion, subsequently reducing the ECL signal. Based on this mechanism,
the sensitive detection of IL-6 was successfully achieved. The fabricated immunosensor
demonstrated good selectivity and anti-interference properties, making it suitable for IL-6
detection in complex biological matrices.

2. Materials and Methods
2.1. Chemicals and Materials

Cetyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS) were
purchased from Sigma-Aldrich (Shanghai, China). Luminol, hydrogen peroxide (H2O2),
disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium dihydrogen
phosphate dihydrate (NaH2PO4·2H2O), potassium ferricyanide (K3[Fe(CN)6]), potas-
sium ferrocyanide (K4[Fe(CN)6]), ruthenium(III) hexammine chloride (Ru(NH3)6Cl3), fer-
rocenemethanol (FcMeOH), potassium chloride (KCl), potassium hydrogen phthalate
(KHP), cobalt(II) sulfate heptahydrate (CoSO4·7H2O), (3-glycidyloxypropyl)trimethoxysilane
(GPTMS), sodium hydroxide (NaOH), and bovine serum albumin (BSA) were obtained
from Aladdin Reagent Co., Ltd. (Shanghai, China). Interleukin-6 antigen (IL-6) and IL-6
monoclonal antibody (Ab) were purchased from Keyuezhongkai Biotech Co., Ltd. (Beijing,
China). Artificial gingival crevicular fluid (GCF) was purchased from Chemazone Inc.
(Nashville, TN, USA). All solutions used in the experiments were prepared with ultrapure
water (18.2 MΩ·cm) obtained from a Mill-Q system (Millipore, IL, USA). Indium tin oxide
(ITO) conductive glass was purchased from Zhuhai Kaiyue Electronic Components Co.,
Ltd. (Zhuhai, China). Prior to use, ITO glass was immersed in an aqueous NaOH solution
(1 M) for 12 h to remove organic residues. It was then sonicated in acetone and ethanol
for 30 min each, followed by sonication in ultrapure water for 10 min. After drying with
nitrogen gas, the ITO glass was then cut into electrode pieces of 0.5 cm × 5 cm using a glass
cutter with an active area of 0.5 cm × 1 cm defined by insulating tape.
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2.2. Measurements and Instrumentations

The morphology and thickness of SNF were characterized using transmission electron
microscopy (TEM) and scanning electron microscopy (SEM). To prepare the TEM sample,
the SNF layer was carefully scraped from the electrode with a scalpel and then dispersed
in anhydrous ethanol followed by ultrasonic treatment. The resulting dispersion was
drop-cast onto a copper grid and air-dried. Then, the sample was observed with the
TEM instrument (JEOL JEM-2100Plus, JEOL Ltd., Tokyo, Japan). For SEM analysis, the
sample required gold coating prior to observation. To examine the cross-section of the
sample, a glass cutter was used to gently score the back of the SNF/ITO, then a fresh
cross-section was created by breaking it, followed by gold coating and SEM observation
(SU8010, Hitachi, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) was performed
using a PHI5300 spectrometer (PE Ltd., Boston, MA, USA), with a Mg Kα radiation source
(250 W, 14 kV). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)
measurements were conducted on a PGSTAT302N electrochemical workstation (Autolab,
Metrohm, Heilissau, Switzerland), using a conventional three-electrode system. Specifically,
ITO or modified ITO was used as the working electrode, a platinum wire or platinum foil
was used as the counter electrode, and an Ag/AgCl electrode (saturated KCl) was used as
the reference electrode. Parameters for differential pulse voltammetry (DPV) tests included
a step potential of 0.005 V, a pulse amplitude of 0.025 V, a pulse time of 0.05 s, and an
interval time of 0.2 s. Electrochemiluminescence (ECL) tests were conducted on an MPI-E
II instrument (Remex Analytical Instrument Co., Ltd., Xi’an, China).

2.3. Preparation of the Immunosensor

Using the Stöber solution growth method, SNF was grown on the ITO surface [62,63].
Specifically, 0.160 g of CTAB was dissolved in a mixed solution of 70 mL ultrapure water
and 30 mL anhydrous ethanol. Under stirring, 100 µL of 10% ammonia solution and 80 µL
of TEOS were rapidly added, and the solution was stirred for an additional 5 min until
it was bubble-free, obtaining the precursor solution. A clean ITO glass was immersed in
the precursor solution and reacted in a 60 ◦C water bath for 24 h. Afterward, the electrode
was removed, rinsed with ultrapure water, dried with nitrogen, and aged overnight at
100 ◦C, resulting in an electrode containing surfactant micelles (SMs) in nanochannels
(SM@SNF/ITO).

To achieve the covalent binding of recognition antibodies, the outer surface of the
SNF was functionalized with silanes containing epoxy groups, introducing the epoxy
groups. Subsequently, the covalent immobilization of antibodies was achieved through the
ring-opening reaction between the epoxy groups and the amine groups on the antibodies.
Specifically, the SM@SNF/ITO electrode was immersed in 50 mL of 2.26 mM GPTMS
ethanol solution and reacted at 25 ◦C for 1 h to achieve epoxy group modification. After the
reaction, the electrode was rinsed with ultrapure water to obtain an electrode with epoxy-
modified outer surface SNF (SM@O-SNF/ITO). The SM@O-SNF/ITO was then immersed
in an HCl-ethanol solution to remove micelles within the nanochannels, producing an
electrode with open nanochannels (O-SNF/ITO).

Subsequently, in situ deposition of Co3O4 nanocatalyst was achieved in the nanochan-
nels via electrodeposition. Specifically, the O-SNF/ITO was immersed in 10 mL of 0.2 M
CoSO4 solution, and electrodeposition was conducted at 1.5 V for 15 s, resulting in an
electrode with nanochannel-confined Co3O4 (Co3O4@O-SNF/ITO).

To prepare the immunorecognition interface, the Co3O4@O-SNF/ITO electrode was
immersed in an amino-modified IL-6 antibody solution and incubated at 4 ◦C for 1 h.
The electrode was then thoroughly washed with 0.01 M PBS (pH 7.4), and the antibody
covalently immobilized electrode was denoted as Ab/Co3O4@O-SNF/ITO. Next, the



Biosensors 2025, 15, 63 5 of 18

Ab/Co3O4@O-SNF/ITO was immersed in a 1% BSA solution (0.01 M PBS, pH 7.4) and
incubated at room temperature for 15 min to block non-specific binding sites, yielding the
immunosensor (BSA/Ab/Co3O4@O-SNF/ITO). The immunosensor was stored at 4 ◦C
until use.

2.4. ECL Detection of IL-6

The immunosensor was incubated with various concentrations of IL-6 for 60 min.
The ECL signal on the electrode after IL-6 binding was measured in an electrochemical
support solution containing 100 µM H2O2 and 100 µM luminol in PBS (0.01 M, pH = 7.4). To
investigate the reproducibility of the electrode detection, five electrodes were prepared in
parallel and used to measure 10 ng mL−1 of IL-6. The relative standard deviation (RSD) was
measured. The ECL process was triggered by a continuous CV program, with a potential
scan range of 0–0.8 V and a scan rate of 0.1 V/s. The photomultiplier tube (PMT) voltage
was set to 750 V.

2.5. Detection of IL-6 in GCF

The concentration of IL-6 in artificial GCF was determined using the standard addition
method. After adding standard IL-6 solutions of varying concentrations to GCF, the samples
were diluted 50-fold with PBS, and the IL-6 content was measured to evaluate the recovery
and relative standard deviation (RSD) of the assay.

3. Results and Discussion
3.1. Strategy for Immunosensor Construction and ECL Sensing

As shown in Figure 1, this work involved the modification of both the outer surface
and nanochannels of SNF to fabricate an immunosensor for highly sensitive ECL detection
of IL-6. To reduce costs, inexpensive and readily available indium tin oxide (ITO) con-
ductive glass was used as the base electrode, and the Stöber solution growth method was
applied to grow SNF on its surface. This Stöber method utilized cationic surfactant micelles
(SMs) as a template, where the SM-templated siloxane self-assembly enabled the efficient,
one-step synthesis of SNF-modified electrodes [62,63]. The resulting SNF-modified elec-
trode contained two functional regions. First, the outer surface was functionalized with
reactive epoxy groups, facilitating the covalent immobilization of the recognition antibody
(Ab). After antibody immobilization, non-specific sites were blocked with BSA to create a
specific immunorecognition interface. Second, the nanochannels served as confined spaces
for the in situ growth of the cobalt oxide (Co3O4) nanocatalyst. To ensure that epoxy group
derivatization occurred on the outer surface of the SNF, derivatization was performed on
the electrodes containing SM within the nanochannels. The SM blocked the nanochannels,
allowing epoxy group derivatization to occur only on the outer surface of the SNF. The SM
template was then removed by immersing the electrode in a 0.1 M HCl-ethanol solution
with stirring, resulting in an SNF-modified electrode with open nanochannel arrays and
epoxy-functionalized surfaces. Thus, this immunosensor design integrated both a specific
recognition interface and a nanocatalytic region. Using luminol as the ECL emitter, hy-
drogen peroxide (H2O2) as a co-reactant, and Co3O4 confined within the nanochannels
as a co-reaction accelerator, the sensor possessed an enhanced ECL signal. When the im-
munorecognition interface selectively captured IL-6, the formation of an immunocomplex
hindered the diffusion of luminol and H2O2, reducing the ECL signal on the electrode. This
mechanism enabled the sensitive detection of IL-6.
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Figure 1. Schematic illustration for immunosensor construction and ECL detection of IL-6 through
integrating both a specific recognition interface on the outer surface of SNF and Co3O4 nanocatalyst
confined in SNF nanochannels.

3.2. Characterization of SNF-Modified Electrodes

Figure 2A shows a cross-sectional SEM image of the SNF-modified electrode
(SNF/ITO). As shown, the electrode exhibits a three-layer structure, with the SNF layer on
top, followed by the ITO conductive layer and glass substrate of the conduction ITO glass.
In addition, the SNF layer has a smooth surface, with a measured film thickness of ~99 nm.
Figure 2B displays a top-view TEM image of the SNF, in which each bright pot represents a
nanochannel. It is revealed that the SNF layer is an intact, crack-free layer with worm-like
nanochannels. The cross-sectional TEM image of the SNF (Figure 2C) indicates a thickness
of approximately 96 nm, consistent with the SEM measurement.
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SNF/ITO electrodes in 0.05 M KHP (pH 4) containing 0.5 mM of K3Fe(CN)6 (D), Ru(NH3)6Cl3, (E) or
FcMeOH (F). The scan rate was 50 mV/s.
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The completeness and charge-selective permeability of the SNF were evaluated by
measuring the signals of electrochemical probes on different electrodes using cyclic voltam-
metry (CV) (Figure 2D–F). Three standard redox probes were selected including anionic
Fe(CN)6

3−, cationic Ru(NH3)6
3+, and neutral ferrocene methanol (FcMeOH). As shown in

Figure 2D,E, the bare ITO electrode exhibited clear redox peaks in solutions of Fe(CN)6
3−

and Ru(NH3)6
3+. However, with SNF added onto the electrode and surfactant micelles

(SMs) retained within the channels (SM@SNF/ITO), ion transport was blocked by the
presence of SMs within the channels, resulting in an almost complete absence of redox
signals for both probes. This indicated the intactness of the SNF. Following the removal
of the SMs, the open-nanochannel-modified electrode (SNF/ITO) showed a significant
suppression of the Faradaic current for the anionic probe and an enhancement for the
cationic probe compared to ITO alone, indicating the selective repulsion of anions and
the attraction of cations. This behavior was attributed to the negative surface charge on
the SNF, originating from the ionization of silanol groups, which repelled anionic species
and attracted cationic ones. Figure 2F displays the CV curves of the FcMeOH solution
for various electrodes. With the SMs retained, FcMeOH reached the electrode surface via
SM-facilitated enrichment, producing a redox signal. However, this process consumed
additional energy, causing the redox peak potential to shift positively. Furthermore, as the
oxidation product of FcMeOH carried a positive charge, it was enriched by the negatively
charged SNF channels, resulting in a reduction peak current higher than the oxidation peak
current for SNF/ITO. These results confirmed the successful growth of the SNF on the ITO
electrode, which displayed structural integrity and ion-selective permeability.

3.3. Characterization of Co3O4-Confined Electrode

To confirm the successful confinement of Co3O4 within the SNF nanochannels, the
Co3O4@SNF/ITO electrode was characterized. Figure 3A shows the CV curves obtained
on the SNF/ITO and Co3O4@SNF/ITO electrodes in 1 M NaOH solution before and after
Co3O4 confinement. It was observed that the Co3O4@SNF/ITO electrode displayed two
characteristic redox peaks associated with cobalt. During CV scanning, Co3O4 underwent
oxidation to form CoOOH, which was further oxidized to CoO2. X-ray photoelectron
spectroscopy (XPS) was used to analyze the elemental composition of the Co3O4@SNF/ITO
electrode. Figure 3B shows the XPS survey spectrum for the Co3O4@SNF/ITO electrode,
where a Co 2p peak appeared near 779 eV, confirming Co3O4 confinement compared to
the SNF/ITO electrode. Figure 3C presents the high-resolution Co 2p spectrum, showing a
peak at 779.4 eV as a characteristics of the Co3O4 material. Additionally, a 14.6 eV energy
band gap between the Co 2p1/2 and Co 2p3/2 peaks was observed, which was another
characteristic feature of Co3O4.

SEM was used to verify the deposition of Co3O4 within the nanochannels. After
dissolving the SNF on the Co3O4@SNF/ITO surface with NaOH, SEM characterization
was performed, as shown in Figure 3D. A large number of nanoparticles appeared on the
ITO electrode surface, and the signals of Co and O in the element mapping confirmed that
the material was Co3O4. In comparison, the SEM image of the Co3O4/ITO electrode, which
was directly electrodeposited on the ITO electrode (Figure 3E), revealed nanoparticles of
varying sizes and larger particles. Element mapping confirmed that the structure was
composed of Co3O4 nanoparticles. Compared to the Co3O4 on the electrode surface after
SNF dissolution, the Co3O4 on the Co3O4/ITO electrode was larger in size and tended to
aggregate. It was speculated that during the direct electrodeposition of Co3O4 on the ITO
surface, aggregation occurred due to the absence of protective agents or confinement spaces.
In contrast, the 2D rigid structure of the nanochannel array could limit the growth of the
nanomaterials, stabilizing them within the nanochannels. After the SNF on the surface was
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dissolved, Co3O4 aggregated in the absence of the protective nanochannels. The above
results indirectly confirmed that the electrodeposited Co3O4 was successfully confined
within the nanochannels.

Biosensors 2025, 15, x FOR PEER REVIEW 8 of 18 
 

 

Figure 3. (A) CV curves obtained on SNF/ITO or Co3O4@SNF/ITO in 1 M NaOH. The scanning rate 
was 100 mV/s, and the scanning potential ranged from –0.1 V to 0.6 V. (B) XPS spectra obtained on 
the fabricated SNF/ITO or Co3O4@SNF/ITO electrode. (C) High-resolution Co 2p spectrum obtained 
on Co3O4@SNF/ITO electrode. (D) SEM image (left image) of Co3O4@SNF/ITO electrode after re-
moval of SNF through immersion into a 0.5 M NaOH solution for 3 min and the corresponding O 
(right and above image) and Co (right and bottom image) element mapping image. (E) Top-view 
SEM image (left image) of Co3O4@/ITO electrode and the corresponding O (right and above image) 
and Co (right and bottom image) element mapping image. 

3.4. Enhanced ECL Signal of the Luminol-H2O2 System by Confined Co3O4 

Figure 4A presents the ECL signals measured from the ITO, SNF/ITO, Co3O4@ITO, 
and Co3O4@SNF/ITO electrodes in PBS solution (0.01 M, pH 7.4) containing luminol and 
the co-reactant H2O2. Compared to the ITO electrode, the ECL signal recorded on the 
SNF/ITO electrode was significantly reduced, which was likely attributed to the repulsive 
interaction between the negatively charged SNF surface and the active luminol anions. In 
contrast, the presence of Co3O4 significantly enhanced the ECL signals for both the 
Co3O4@ITO and Co3O4@SNF/ITO electrodes, demonstrating the catalytic role of Co3O4 in 
boosting the ECL signal. Moreover, the Co3O4 confined in the SNF exhibited a more pro-
nounced enhancement effect on the ECL signal. Specifically, the ECL signal recorded on 
the Co3O4@SNF/ITO electrode was twice as high as that on the Co3O4@ITO electrode, 
where Co3O4 was directly grown on the ITO surface. This enhancement was likely due to 
the vertically ordered nanochannel array structure, which effectively suppressed the ag-
gregation of Co3O4 nanomaterials and facilitated the formation of more catalytically active 
Co3O4. 

Additionally, the stability of Co3O4 confined within the SNF or directly grown on ITO 
was investigated. As shown in Figure 4B, the Co3O4@SNF/ITO electrode exhibited a rela-
tive standard deviation (RSD) of only 1.8% for ECL intensity during continuous CV scans, 
demonstrating the stability of confined Co3O4 within the nanochannels. In contrast, the 
RSD of the ECL intensity for the Co3O4 deposited on the ITO electrode (Co3O4/ITO) was 
7.2% under the same conditions (Figure 4C). Therefore, confining Co3O4 within the na-
nochannel array of the SNF not only significantly enhanced the ECL intensity of the elec-
trode but also ensured the high stability of Co3O4. On one hand, the presence of nanochan-
nels effectively limited the growth of the nanomaterials, resulting in smaller-sized Co3O4 
with a larger specific surface area. On the other hand, the stable nanochannels on the elec-
trode surface confined the generated Co3O4, reducing its detachment and thereby improv-
ing stability. In contrast, Co3O4 directly deposited on the bare ITO electrode tended to 

Figure 3. (A) CV curves obtained on SNF/ITO or Co3O4@SNF/ITO in 1 M NaOH. The scanning rate
was 100 mV/s, and the scanning potential ranged from –0.1 V to 0.6 V. (B) XPS spectra obtained on
the fabricated SNF/ITO or Co3O4@SNF/ITO electrode. (C) High-resolution Co 2p spectrum obtained
on Co3O4@SNF/ITO electrode. (D) SEM image (left image) of Co3O4@SNF/ITO electrode after
removal of SNF through immersion into a 0.5 M NaOH solution for 3 min and the corresponding O
(right and above image) and Co (right and bottom image) element mapping image. (E) Top-view
SEM image (left image) of Co3O4@/ITO electrode and the corresponding O (right and above image)
and Co (right and bottom image) element mapping image.

3.4. Enhanced ECL Signal of the Luminol-H2O2 System by Confined Co3O4

Figure 4A presents the ECL signals measured from the ITO, SNF/ITO, Co3O4@ITO,
and Co3O4@SNF/ITO electrodes in PBS solution (0.01 M, pH 7.4) containing luminol and
the co-reactant H2O2. Compared to the ITO electrode, the ECL signal recorded on the
SNF/ITO electrode was significantly reduced, which was likely attributed to the repulsive
interaction between the negatively charged SNF surface and the active luminol anions.
In contrast, the presence of Co3O4 significantly enhanced the ECL signals for both the
Co3O4@ITO and Co3O4@SNF/ITO electrodes, demonstrating the catalytic role of Co3O4

in boosting the ECL signal. Moreover, the Co3O4 confined in the SNF exhibited a more
pronounced enhancement effect on the ECL signal. Specifically, the ECL signal recorded
on the Co3O4@SNF/ITO electrode was twice as high as that on the Co3O4@ITO electrode,
where Co3O4 was directly grown on the ITO surface. This enhancement was likely due
to the vertically ordered nanochannel array structure, which effectively suppressed the
aggregation of Co3O4 nanomaterials and facilitated the formation of more catalytically
active Co3O4.

Additionally, the stability of Co3O4 confined within the SNF or directly grown on
ITO was investigated. As shown in Figure 4B, the Co3O4@SNF/ITO electrode exhibited a
relative standard deviation (RSD) of only 1.8% for ECL intensity during continuous CV
scans, demonstrating the stability of confined Co3O4 within the nanochannels. In contrast,
the RSD of the ECL intensity for the Co3O4 deposited on the ITO electrode (Co3O4/ITO)
was 7.2% under the same conditions (Figure 4C). Therefore, confining Co3O4 within the
nanochannel array of the SNF not only significantly enhanced the ECL intensity of the
electrode but also ensured the high stability of Co3O4. On one hand, the presence of
nanochannels effectively limited the growth of the nanomaterials, resulting in smaller-sized



Biosensors 2025, 15, 63 9 of 18

Co3O4 with a larger specific surface area. On the other hand, the stable nanochannels
on the electrode surface confined the generated Co3O4, reducing its detachment and
thereby improving stability. In contrast, Co3O4 directly deposited on the bare ITO electrode
tended to form larger-sized or aggregated nanomaterials, and Co3O4 was more likely to
detach from the electrode surface during measurements, leading to a lower signal and
decreased stability.
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3.5. Mechanism of Co3O4-Enhanced ECL Signal

To further investigate the catalytic role of Co3O4 in enhancing the ECL signal of
the luminol-H2O2 system, CV tests were conducted on confined and unconfined Co3O4

nanomaterial-modified electrodes in the electrolyte (PBS, 0.01 M, pH 7.4) or electrolyte
containing luminol or H2O2. As shown in Figure 5A,B, the SNF/ITO electrode exhibited
no faradaic current response in PBS. However, the Co3O4@SNF/ITO electrode showed a
current response of 3.78 µA at 0.8 V, indicating that the Co3O4 nanomaterials promoted
the oxygen evolution reaction (OER). Upon the addition of luminol, the current signal in-
creased to 8.42 µA, confirming that the Co3O4 nanomaterials catalyzed the electrochemical
oxidation of luminol. Similarly, in the presence of H2O2, the Co3O4@SNF/ITO electrode
exhibited a current response of 5.64 µA at 0.8 V, of which 1.86 µA was attributed to the
electrocatalytic oxidation of H2O2 after subtracting the OER contribution (3.78 µA). Thus,
the confined Co3O4 nanomaterials possess electrocatalytic oxidation capabilities for both
luminol and H2O2, leading to the generation of more reactive species and, consequently,
enhancing the ECL signal.

The catalytic oxidation of H2O2 by Co3O4 nanomaterials generated reactive oxygen
species (ROS), which amplified the luminol ECL signal. To identify the types of radicals
involved, radical scavenging experiments were conducted using hydroxyl radical scavenger
tert-butanol (TBA) and superoxide radical scavenger benzoquinone (BQ). As shown in
Figure 5C, the ECL signal remained unchanged after adding TBA, indicating that ·OH
was not the main radical in the reaction. However, the ECL signal dropped to nearly zero
upon the addition of BQ, confirming that the ROS produced by Co3O4 during the catalytic
oxidation of H2O2 was a superoxide radical (O2

−·).
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Based on the experimental results, the proposed mechanism for the ECL signal en-
hancement by confined Co3O4 nanomaterials in the luminol-H2O2 system is illustrated in
Figure 5D. In a weakly alkaline solution, luminol (LH2) loses a proton to form luminol−

(LH−). Under the catalysis of confined Co3O4 nanomaterials, LH− undergoes electron and
proton loss to generate the luminol radical (L•−). Simultaneously, H2O2 is catalyzed by
Co3O4 to produce O2

−·. The L•− reacts with O2
−· on the electrode surface to form an

excited state (AP2−*), which returns to the ground state with light emission, generating the
ECL signal.

3.6. Characterization of Immunosensor Construction and Feasibility for IL-6 Detection

Figure 6A shows the cyclic voltammetry (CV) curve obtained on Co3O4@O-SNF/ITO
in Fe(CN)6

3−/4− solution, which was derived with epoxy groups before the confinement
of Co3O4 in the SNF nanochannels. For comparison, the Co3O4@SNF/ITO electrode
without epoxy functionalization was also investigated. As observed, both electrodes
exhibited consistent CV signals. This was attributed to the selective epoxy functionalization
conducted on the SNF external surface in the presence of SMs during the immunosensor
construction process. The SMs effectively blocked the SNF nanochannels, ensuring that
the functionalization occurred only on the external surface, thereby avoiding any adverse
effects on the nanochannel structure.
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The feasibility of immunosensor construction was further investigated by examining
the ECL signals measured on the electrodes modified stepwise. As shown in Figure 6B,
confining Co3O4 within the nanochannels significantly enhanced the ECL signal due to
the catalytic activity of Co3O4. However, when Ab was covalently immobilized on the
external surface of the SNF and the non-specific sites were blocked with BSA, the ECL
signal decreased. This reduction was attributed to the protein characteristics of Ab and
BSA, which increased the interfacial resistance of the electrode. When IL-6 specifically
bound to Ab, forming an immunocomplex, the ECL signal further decreased significantly.
This can be explained by two factors. On the one hand, the immunocomplex increased the
interfacial resistance of the electrode. On the other hand, the immunocomplex decreased
the diffusion of luminol and H2O2 to the electrode surface. These dual effects contributed
to the reduction in the ECL signal.

The above process was further characterized by electrochemical impedance spec-
troscopy (EIS), as shown in Figure 6C. The charge transfer resistance (Rct) of the SNF/ITO
electrode was 424 Ω, which increased to 733 Ω after confining Co3O4 within the nanochan-
nels (Co3O4@SNF/ITO). After constructing the immunorecognition interface and blocking
non-specific sites with BSA, the Rct of the BSA/Ab/Co3O4@SNF/ITO electrode further
increased to 1170 Ω. This increase was also due to the higher interfacial resistance caused
by Ab and BSA. Finally, when IL-6 specifically bound to the recognition antibody, the
Rct increased significantly to 3540 Ω. These results demonstrate the feasibility of the
immunosensor construction and the potential for IL-6 detection.

3.7. Optimization of Immunosensor Construction and IL-6 Detection Conditions

To achieve optimal detection performance, key parameters of the constructed im-
munosensor were optimized, including the Co3O4 deposition time, antibody incubation
concentration and incubation time for immobilization, and IL-6 binding time. Figure 7A
shows the ECL signals of electrodes prepared with different Co3O4 deposition times. As
illustrated, the ECL intensity of the electrode initially increased with longer deposition
times but then began to decrease. This trend can be attributed to the increasing amount
of deposited Co3O4 with extended deposition time, which enhanced the catalytic activ-
ity. However, excessive deposition may lead to the blockage of nanochannels, hindering
mass transfer, ultimately reducing the ECL signal. Thus, the optimal deposition time
was determined to be 15 s. Considering both the experimental cost and time efficiency,
the antibody concentration and its incubation time were optimized in the fabrication of
the immuonrecognition interface. As shown in Figure 7B,C, the ECL signal gradually
decreased with increasing antibody concentration and incubation time. When the antibody
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concentration reached 30 µg mL−1 and the incubation time was 75 min, the ECL signal
stabilized. Further increases in the antibody concentration or incubation time had minimal
effects on the ECL signals, indicating that antibody immobilization had reached saturation
under these conditions. Thus, an antibody concentration of 30 µg mL−1 and an incubation
time of 75 min were selected for the subsequent studies. To optimize the binding time of
the IL-6, the ECL signal was measured at various binding times. As shown in Figure 7D,
the ECL signal reached its maximum when the binding time was 60 min. This was chosen
for further investigation.
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3.8. Electrochemiluminescence Detection of IL-6

Under the optimized conditions, the constructed immunosensor was incubated with
various concentrations of IL-6, and the ECL signals of the electrode were measured in
the luminol-H2O2 system (Figure 8A). It was observed that the ECL signal decreased
with increasing IL-6 concentration. This phenomenon was attributed to the formation
of immunocomplexes, which increased the interfacial resistance of the electrode and
reduced the diffusion of luminol and H2O2. In the concentration range of 1 fg mL−1

to 10 ng mL−1, the ECL intensity (IECL) exhibited a linear relationship with the loga-
rithm of the IL-6 concentration (logC). The limit of detection (LOD) was calculated to
be 0.64 fg mL−1 based on a signal-to-noise ratio of 3 (S/N = 3). The analytical perfor-
mance of the different modified electrodes for the detection of IL-6 by ECL or electro-
chemical (EC) methods is summarized in Table S1 (in Supporting Information-SI) [64–70].
The LOD obtained on the fabricated immunosensor was lower than that obtained on an
EC aptasensor based on a gold nanoparticle/polypyrrole-modified screen-printed gold
electrode (AuNPs/PPyNPs/SPGE) [64], an EC immunosensor using a gold nanoparti-
cle/reduced graphene oxide-modified Au electrode (AuNPs/rGO/Au) [65], an electro-
chemically reduced graphene oxide/gold palladium nanoparticle-modified heated car-
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bon paste electrode (ErGO/AuPdNPs/HCPE) [66], a sandwich-type EC immunoassay
based on ferrocene-porous polyelectrolyte nanoparticle-antibody 2/IL-6/antibody 1 on a
graphene oxide modified glassy carbon electrode (FC-PPN-Ab2/IL-6/Ab1/GO/GCE) [67],
an ECL immunosensor based on a reduced graphene oxide/Fe3O4/polydimethyl diallyl
ammonium chloride/cadmium selenide nanoparticle-modified glassy carbon electrode
(rGO/Fe3O4/PDDA/CdSe/GCE) [68], and a graphene oxide/polyaniline/cadmium se-
lenide nanoparticle-modified glassy carbon electrode (BSA/Ab/GO/PANi/CdSe/GCE) [69].
The LOD was higher than that obtained using a sandwich-type ECL immunoassay using
horseradish peroxidase-labeled antibody on acid phosphatase and octahedral anatase
mesocrystals and a carboxyl-terminated ionic liquid-tris(2,2‘-bipyridyl)ruthenium(II)
chloride-loaded TiO2 (anatase)mesocage-modified glassy carbon electrode (Ab2-HRP/
ACP/OAMs/IL-6/BSA/Ab1/CTIL/Ru(bpy)3

2+@AMCs/GCE) [70]. Thus, the fabricated
immunosensor has advantages of simple construction and high detection performance.
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Figure 8. (A) ECL responses of the fabricated immunosensor in presence of various concentrations of
IL-6 in PBS (0.01 M, pH 7.4) containing luminol (100 µM) and H2O2 (100 µM). (B) The corresponding
calibration curves between ECL intensity and the logarithmic concentration of IL-6. (C) Reproducibil-
ity of five immunosensors fabricated in parallel for IL-6 detection (10 ng mL−1). (D) The selectivity
and anti-interference of ECL immunosensor for the detection of IL-6. The concentration of Na+, Cl−

was 1 µM, the concentration of K+, NO3− was 100 nM, the concentration of glucose was 10 µM, and
the concentration of IL-1β, MMP-9, TNF-α was 10 ng mL−1.

3.9. Reproducibility, Selectivity, and Anti-Interference Capability of the ECL Sensor

To evaluate the performance of the sensor, its reproducibility, selectivity, and anti-
interference capability were assessed. Five immunosensors fabricated in parallel were
incubated with IL-6 solutions of the same concentration followed by the measurement of
the ECL signal. The results demonstrated an RSD of 0.5% of the ECL response, indicating
the good reproducibility of the fabricated immunosensors (Figure 8C).

Pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-α) are potential biomarkers associated with periodontal inflammation. In addition,
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periodontal inflammation can produce various cytokines, including interferon-γ (IFN-
γ) and matrix metalloproteinases (MMPs). Thus, IL-1β, TNF-α, and MMP-9, as well
as common inorganic salts such as sodium, potassium, and glucose found in the oral
cavity, are selected as potential interferents to examine the selectivity and resistance to
interference of the fabricated immunosensor. The results showed that significant changes in
the ECL signal were observed only when the target analyte IL-6 or IL-6-containing mixtures
were introduced (Figure 8D). The presence of other interfering substances had negligible
effects on the signal. These results confirmed that the immunosensor possessed excellent
selectivity and displayed a good anti-interference performance.

3.10. Real Sample Analysis

The performance of the prepared immunosensor for detecting IL-6 in real samples
was evaluated using the standard addition method. Artificial GCF containing different
concentrations of IL-6 were incubated with the constructed immunosensor, and the ECL
signals of the electrodes were measured. As shown in Table 1, the recovery rates ranged
from 99.5% to 107%, with an RSD of less than 1.2% for the three parallel measurements.
These results demonstrated the high reliability and accuracy of the immunosensor in
detecting IL-6 in real samples.

Table 1. Determination of IL-6 using the fabricated immunosensor in gingival crevicular fluid.

Sample Added
(pg mL−1)

Found
(pg mL−1)

RSD
(%, n = 3)

Recovery
(%)

Gingival crevicular
fluid a

0.100 0.107 0.7 107
10.0 10.4 1.2 104
1000 995 0.4 99.5

a The gingival crevicular fluid was diluted by a factor of 100 using PBS (0.01 M, pH = 7.4).

4. Conclusions
In summary, this study constructed an immunosensor for detecting IL-6 by integrat-

ing SNF with an immunorecognition interface on its outer surface and confining Co3O4

nanomaterials within its nanochannels. The SNF was grown on an indium tin oxide (ITO)
electrode using the Stöber solution growth method, and Co3O4 nanocatalysts were confined
within the SNF channels via in situ electrodeposition. Co3O4 exhibits electrocatalytic oxi-
dation capabilities toward luminol and hydrogen peroxide, enhancing the concentrations
of luminol anion radicals and reactive oxygen species, thereby amplifying the ECL signal
of luminol. In the presence of IL-6, the specific recognition between the capture antibody
and IL-6 leads to the formation of immunocomplexes. This immunocomplex formation
significantly decreases the ECL signal, demonstrating a signal “gating” effect triggered by
the analyte and bio-specific recognition, which enables the sensitive detection of IL-6. The
constructed immunosensor exhibits excellent selectivity and anti-interference capabilities,
allowing for the detection of IL-6 in complex GCF samples. This immunosensing platform
offers advantages such as simple fabrication and good detection performance, demonstrat-
ing potential for the detection of inflammatory factors in gingival crevicular fluid.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios15010063/s1, Table S1: Comparison of IL-6 detection perfor-
mance using different sensors.
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