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Abstract: Background/Objectives: Artificial intelligence and large language models like
ChatGPT and Google’s Gemini are promising tools with remarkable potential to assist
healthcare professionals. This study explores ChatGPT and Gemini’s potential utility in
assisting clinicians during the first evaluation of patients with suspected neurogenetic
disorders. Methods: By analyzing the model’s performance in identifying relevant clinical
features, suggesting differential diagnoses, and providing insights into possible genetic
testing, this research seeks to determine whether these AI tools could serve as a valuable
adjunct in neurogenetic assessments. Ninety questions were posed to ChatGPT (Versions
4o, 4, and 3.5) and Gemini: four questions about clinical diagnosis, seven about genetic
inheritance, estimable recurrence risks, and available tests, and four questions about pa-
tient management, each for six different neurogenetic rare disorders (Hereditary Spastic
Paraplegia type 4 and type 7, Huntington Disease, Fragile X-associated Tremor/Ataxia
Syndrome, Becker Muscular Dystrophy, and FacioScapuloHumeral Muscular Dystrophy).
Results: According to the results of this study, GPT chatbots demonstrated significantly
better performance than Gemini. Nonetheless, all AI chatbots showed notable gaps in diag-
nostic accuracy and a concerning level of hallucinations. Conclusions: As expected, these
tools can empower clinicians in assessing neurogenetic disorders, yet their effective use
demands meticulous collaboration and oversight from both neurologists and geneticists.

Keywords: genetic counseling; artificial intelligence; ChatGPT; gemini; neurogenetics

1. Introduction
The advances in genetic knowledge have brought about essential changes in the

healthcare landscape. The etiology of many disorders now recognizes the role of genetics,
and identifying these genetic determinants is becoming increasingly important [1]. If, on
the one hand, many disorders are caused by a complex interaction between a person’s genes
and the environment [2], on the other hand, there are several diseases with a classical model
of inheritance, in which the weight of genes is predominant in the development of the
disease [3]. One of the main problems in clinical practice is distinguishing between complex
and Mendelian disorders. Clinical presentation of Mendelian diseases is sometimes very
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similar to complex disorders (i.e., Alzheimer’s dementia and PSEN2-related dementia),
and it is particularly evident in neurogenetic disorders [4,5].

Neurogenetic diseases present significant challenges in clinical evaluation due to their
complex and heterogeneous nature. Early and accurate diagnosis is crucial for guiding treat-
ment options, identifying eligibility for clinical trials, and providing appropriate genetic
counseling to the patient and family members. The initial clinical evaluation plays a pivotal
role in identifying key phenotypic features that may indicate an underlying genetic disor-
der, necessitating careful consideration of family history, symptomatology, and available
genetic testing options. However, conducting comprehensive evaluations in neurogenetics
often requires specialized knowledge that may not be readily available to all clinicians.
In particular, it is well known that several neurological disorders are caused by highly
penetrant rare mutations segregating in families with a Mendelian transmission pattern [6].
Neurology guidelines recommend genetic evaluation in all cases suspected of a genetic
predisposition [7–12]. Unfortunately, in clinical practice, a tiny percentage of patients really
undergo a geneticist evaluation. This is mainly due to the scarcity of geneticists in clinical
centers and the underestimation of the genetic impact of neurologic diseases.

The patient evaluation by a geneticist typically involves the administration of genetic
counseling. Genetic counseling is a medical process in which a genetics expert thoroughly
assesses family history to estimate disease inheritance and evaluate the likelihood of
disease occurrence or recurrence. It involves three main activities: (i) interpreting family
and medical histories to assess the risk of disease occurrence or recurrence; (ii) educating
patients about inheritance, testing, management, prevention, resources, and research; and
(iii) providing counseling to support informed decision-making and adaptation to risk or
diagnosis [13]. While the geneticist is indispensable for the first and third activities, AI
could effectively assist neurologists with the second activity, improving the proper referral
of patients to a geneticist.

In recent years, artificial intelligence (AI) and large language models (LLMs) like
ChatGPT and Google’s Gemini have shown remarkable potential in assisting healthcare
professionals by processing large volumes of data, offering clinical insights, and aiding
decision-making [14]. Behind the well-known support in research activities, i.e., functional
analysis and protein modeling of gene products and interactors [15,16], AI is a promising
tool in knowledge dissemination [17]. ChatGPT, developed by OpenAI, is an AI model
trained on vast amounts of textual data, capable of generating natural language responses
and summarizing complex information. While its applications in various medical fields
have been explored [18–20], its potential role in neurogenetic clinical evaluation remains
largely uncharted. Similarly, Google’s Gemini (or Gemini) is an AI project that integrates
LLMs and advances in AI research. Gemini is an evolution of Google’s Bard. It aims to
combine language understanding with other AI technologies such as image and video
analysis. AI and machine learning could be applied through two approaches: supervised
learning and unsupervised learning. The first uses labeled data to help predict outcomes,
while the former does not. Gemini’s responses are generated using a combination of
supervised and unsupervised learning approaches. It is trained on a massive dataset of
text and code. These data are labeled, meaning humans categorize and annotate them
(supervised learning). Gemini used these data to learn patterns and relationships between
words, phrases, and concepts. Gemini also used unsupervised learning techniques to
discover hidden patterns and structures in the data. It groups similar words and ideas
together to understand the underlying meaning of the text.

Furthermore, it used unsupervised learning to create new text like the one it was
trained on. On the other side, GPT is based on a pre-trained transformer model. In
this scenario, it is pre-trained on a diverse range of texts with unsupervised learning
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techniques. This pre-trained transformer model is successfully fine-tuned to teach the
model-specific behaviors, such as answering questions, following instructions, or solving
particular problems. This study explores ChatGPT and Gemini’s potential utility in assisting
clinicians during the first evaluation of patients with suspected neurogenetic disorders.
By analyzing the model’s performance in identifying relevant clinical features, suggesting
differential diagnoses, and providing insights on possible genetic testing, this research
seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic
assessments. In an era where personalized medicine and precision diagnostics are becoming
increasingly important, understanding the capabilities of AI tools in neurogenetics could
contribute to improved patient care and more efficient clinical workflows. Furthermore,
the proper referral of patients to a geneticist will optimize the diagnostic process, reduce
the time needed to diagnose, and improve the administration of genetic tests.

2. Materials and Methods
This was an experimental observational study conducted in June and September

2024 evaluating responses provided by ChatGPT (Versions 4o, 4, and 3.5 OpenAI Inc,
San Francisco, CA, USA) and by Gemini (Google AI, Googleplex, Mountain View, CA,
USA) to structured medical questions about six different neurogenetic rare disorders
(Hereditary Spastic Paraplegia type 4 and type 7, Huntington Disease, Fragile X-associated
Tremor/Ataxia Syndrome, Becker Muscular Dystrophy, and FacioScapuloHumeral Mus-
cular Dystrophy). A series of 15 questions were posed to the chatbots, and answers were
recorded and evaluated. The medical questions were developed according to our clinical
experience. In particular, diagnostic and management moments were investigated to eluci-
date primary needs in clinical practice. For each disease developed, four questions were
about clinical diagnosis (phenotype of the patient was proposed as manifesting the three
most frequent/rare signs/symptoms), seven questions about genetic inheritance, estimable
recurrence risks, and available tests, and four questions about the patient’s management.
Details about questions are available in Appendix A. Chatbot answers provided by three
GPT versions (GPT-4o, GPT-4, and GPT-3.5) and by Google’s Gemini are available in Sup-
plementary Documents S1–S6. The date of questioning and word count are available in
Supplementary Table S1.

A second series of questions about three neurological non-genetic rare disorders
(Myasthenia Gravis, Dermatomyositis, Amyotrophic Lateral Sclerosis) have been created.
For each disease developed, four questions about clinical diagnosis (clinical presentation of
the patient was proposed as manifesting the three most frequent/rare signs/symptoms).
Chatbot answers provided by GPT-4o and by Google’s Gemini are available in Supplemen-
tary Document S7. The date of questioning and word count are available in Supplementary
Table S1.

Answers were evaluated by a team of neurogeneticists, to define the accuracy and
reliability of chatbot answers on inheritance, testing, and management for neurogenetic dis-
orders. In particular, each answer was assigned 1 point for the following criteria: presence
of a summary of supplied data, point-by-point presentation, explanation, suggestion for fur-
ther clinical and/or instrumental evaluations, suggestion for genetic test, correctness, and
completeness of the answer. Scores were then calculated to define the general appearance
of answers (presence of a summary of supplied data, point-by-point answer, and explained
answer), accuracy (presence of the correct answer), correctness, and completeness (presence
of the correct answer, correctness, and need for further clinical and/or instrumental evalua-
tions). Detailed scores were calculated by answer category (diagnosis, genetic data, and
patient’s management) and by disease type (Hereditary Spastic Paraplegia type 4 and type
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7, Huntington Disease, Fragile X-associated Tremor/Ataxia Syndrome, Becker Muscular
Dystrophy, and FacioScapuloHumeral Muscular Dystrophy).

3. Results
The overall quality of responses provided by ChatGPT and Gemini was high: all AI

chatbots gave easy-to-understand answers and they were, in many cases, well suited for
quick evaluation. ChatGPT’s versions generally outperformed Gemini, which often gave
more concise answers. Specifically, the average word count was higher in the latest GPT
models (GPT-4o and GPT-4) compared to GPT-3.5 and Gemini (Supplementary Table S1).
When analyzing by category, responses for clinical diagnosis revealed a trend reversal:
Gemini’s answers were longer on average than those from GPT. In fundamental genetics
and patient management; however, GPT continued to offer more detailed and structured
answers than Gemini (Supplementary Documents S1–S6).

Accuracy, correctness, and completeness varied across topics. Diagnostic definition
proved to be the least effective area for all chatbots, with results barely covering 50%
of diseases (Table 1). As expected, the lowest scores were recorded in the diagnostic
category. In particular, many chatbots did not identify the correct diagnosis even when
given common signs or symptoms of a disease. When provided with frequent signs and
symptoms, GPT correctly identified the diagnosis in 66.7% to 75% of cases (8 out of 12 for
GPT-4o and GPT-3.5, and 9 out of 12 for GPT-4), while Gemini achieved 41.7% (5 out of 12).
Unsurprisingly, cases with atypical presentations, characterized by rare signs or symptoms,
were recognized even less frequently. With rare signs or symptoms, GPT identified the
correct diagnosis in 25% of cases (3 out of 12 for all GPT versions) and Gemini in 16.7% (2
out of 12) (Table 2). To compare these results with rare non-genetic neurologic disorders, a
second series of diagnostic questions were posed to the chatbots. Due to the unavailability
of GPT-3.5 and GPT-4 versions, questions were posed only to GPT4o and Gemini. As
expected, GPT and Gemini correctly identified the diagnosis in all cases when frequent
signs and symptoms were provided. Atypical presentations were correctly recognized in
fewer cases (three out of six for GPT-4o and four out of six for Gemini). Unsurprisingly,
questions about non-genetic neurologic disorders retrieved better results when compared
with neurogenetic disorders (Table 2 and Supplementary Table S2).

Interestingly, when the exact diagnosis was given in questions (related to fundamen-
tal genetics and patient management), all chatbots performed well. Comparisons across
GPT versions showed that the latest models (GPT-4o and GPT-4) provided more com-
plete and accurate answers than GPT-3.5. Additionally, all ChatGPT versions consistently
outperformed Gemini (Table 1).

When analyzed by disease type, GPT performed best on Becker Muscular Dystrophy,
Huntington’s Disease, and Facioscapulohumeral Muscular Dystrophy (score above 90%).
However, Gemini excelled in Hereditary Spastic Paraplegia type 7, with scores exceeding
80%. The overall structure and length of responses were consistent across different diseases
and remained similar within each chatbot (Table 3).

As expected, better diagnostic performances were recorded according to the number
of scientific publications on the disease and not to their incidence [21–29]. Table 2 reported
the count of answers in which the diagnosis was correctly identified. Incidence and number
of publications recorded in PubMed were reported for each disease. Regardless of the
frequency of signs/symptoms, all chatbots revealed better results for diseases with many
scientific papers available online. This correlation was confirmed with rare non-genetic
neurologic disorders (Supplementary Table S2). No correlation has been recorded with the
incidence of diseases.



Genes 2025, 16, 29 5 of 15

Table 1. Performances of chatbots by category of questions.

GPT4o GPT4 GPT3.5 Gemini

Diagnosis

Accuracy 11/24 45.83% 12/24 50.00% 11/24 45.83% 7/24 29.17%

Correctness 11/24 45.83% 12/24 50.00% 11/24 45.83% 7/24 29.17%

Completeness 44/72 61.11% 47/72 65.28% 46/72 63.89% 34/72 47.22%

General Appearance 72/72 100.00% 72/72 100.00% 72/72 100.00% 72/72 100.00%

Genetic data

Accuracy 44/44 100.00% 44/44 100.00% 44/44 100.00% 39/44 88.64%

Correctness 44/44 100.00% 44/44 100.00% 44/44 100.00% 39/44 88.64%

Completeness 118/132 89.39% 122/132 92.42% 117/132 88.64% 92/132 69.70%

General Appearance 132/132 100.00% 129/132 97.73% 128/132 96.97% 108/132 81.82%

Patient management

Accuracy 24/24 100.00% 24/24 100.00% 24/24 100.00% 24/24 100.00%

Correctness 24/24 100.00% 24/24 100.00% 23/24 95.83% 24/24 100.00%

Completeness 71/72 98.61% 71/72 98.61% 71/72 98.61% 64/72 88.89%

General Appearance 72/72 100.00% 72/72 100.00% 72/72 100.00% 65/72 90.28%

Table 2. Diagnostic performance by disease. Prevalence and publication no. in PubMed [21] are
reported. HSP4: Hereditary Spastic Paraplegia type 4. HSP7: Hereditary Spastic Paraplegia type 7.
HD: Huntington’s Disease. FXTAS: Fragile X-associated Tremor/Ataxia Syndrome. BMD: Becker
Muscular Dystrophy. FSHD: Facioscapulohumeral Muscular Dystrophy.

GPT4o GPT4 GPT3.5 Gemini Prevalence
[22–25]

Publications
[21]

HSP4
signs and symptoms—3 common 1/2 1/2 0/2 0/2

1–5:100,000 369
signs and symptoms—3 rare 0/2 0/2 0/2 0/2

HSP7
signs and symptoms—3 common 1/2 1/2 2/2 1/2

1–9:100,000 310
signs and symptoms—3 rare 0/2 0/2 0/2 0/2

HTT
signs and symptoms—3 common 2/2 2/2 2/2 2/2

2.7:100,000 15,505
signs and symptoms—3 rare 1/2 1/2 1/2 1/2

FXTAS
signs and symptoms—3 common 0/2 1/2 0/2 0/2 1:4848

(in males) 761
signs and symptoms—3 rare 0/2 0/2 0/2 0/2

BMD
signs and symptoms—3 common 2/2 2/2 2/2 1/2

2:100,000 1838
signs and symptoms—3 rare 1/2 1/2 1/2 1/2

FSHD
signs and symptoms—3 common 2/2 2/2 2/2 0/2

4.5:100,000 1257
signs and symptoms—3 rare 1/2 1/2 1/2 0/2
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Table 3. Performances of chatbots by disease. HSP4: Hereditary Spastic Paraplegia type 4. HSP7:
Hereditary Spastic Paraplegia type 7. HD: Huntington’s Disease. FXTAS: Fragile X-associated
Tremor/Ataxia Syndrome. BMD: Becker Muscular Dystrophy. FSHD: Facioscapulohumeral
Muscular Dystrophy.

GPT4o GPT4 GPT3.5 Gemini

HSP4

Accuracy 14/17 82.35% 14/17 82.35% 13/17 76.47% 13/17 76.47%

Correctness 14/17 82.35% 14/17 82.35% 13/17 76.47% 13/17 76.47%

Completeness 40/51 78.43% 38/51 74.51% 35/51 68.63% 30/51 58.82%

General Appearance 51/51 100.00% 50/51 98.04% 47/51 92.16% 43/51 84.31%

HSP7

Accuracy 12/15 80.00% 12/15 80.00% 13/15 86.67% 13/15 86.67%

Correctness 12/15 80.00% 12/15 80.00% 13/15 86.67% 13/15 86.67%

Completeness 33/45 73.33% 38/45 84.44% 40/45 88.89% 38/45 84.44%

General Appearance 45/45 100.00% 45/45 100.00% 45/45 100.00% 38/45 84.44%

HD

Accuracy 14/15 93.33% 14/15 93.33% 14/15 93.33% 14/15 93.33%

Correctness 14/15 93.33% 14/15 93.33% 14/15 93.33% 14/15 93.33%

Completeness 41/45 91.11% 42/45 93.33% 41/45 91.11% 34/45 75.56%

General Appearance 45/45 100.00% 43/45 95.56% 43/45 95.56% 40/45 88.89%

FXTAS

Accuracy 11/15 73.33% 12/15 80.00% 11/15 73.33% 11/15 73.33%

Correctness 11/15 73.33% 12/15 80.00% 10/15 66.67% 11/15 73.33%

Completeness 35/45 77.78% 38/45 84.44% 35/45 77.78% 33/45 73.33%

General Appearance 45/45 100.00% 45/45 100.00% 45/45 100.00% 42/45 93.33%

BMD

Accuracy 14/15 93.33% 14/15 93.33% 14/15 93.33% 8/15 53.33%

Correctness 14/15 93.33% 14/15 93.33% 14/15 93.33% 8/15 53.33%

Completeness 42/45 93.33% 41/45 91.11% 42/45 93.33% 27/45 60.00%

General Appearance 45/45 100.00% 45/45 100.00% 45/45 100.00% 42/45 93.33%

FSHD

Accuracy 14/15 93.33% 14/15 93.33% 14/15 93.33% 11/15 73.33%

Correctness 14/15 93.33% 14/15 93.33% 14/15 93.33% 11/15 73.33%

Completeness 42/45 93.33% 43/45 95.56% 41/45 91.11% 28/45 62.22%

General Appearance 45/45 100.00% 45/45 100.00% 45/45 100.00% 40/45 88.89%

4. Discussion
The rapid advancements in genetic research have revolutionized the diagnosis and

treatment of neurogenetic conditions, ushering in a new era of precision medicine. The
actual approach to diagnosis and management of neurogenetic disorders is also based
on a patient’s genetic profile. In this scenario, as the understanding of the genetic basis
of disorders deepens, the ability to offer personalized therapeutic interventions becomes
increasingly critical. In several conditions, identifying a patient’s genotype is essential for
optimizing treatment strategies preventing the use of contraindicated medications, and
assessing eligibility for emerging clinical trials [30–32]. For example, gene-specific therapies,
such as those for spinal muscular atrophy (SMA) or Duchenne muscular dystrophy [33,34],
have shown that molecularly targeted treatments can drastically alter disease outcomes.
This aligns with the overarching goals of precision medicine, which aims to deliver the
proper treatment to the right patient at the right time.

However, the implications of genetic testing go beyond the individual patient. Since
many neurogenetic conditions are inherited, genetic information can significantly impact
entire families, making it essential to consider both the patient and their relatives when
conducting genetic assessments. For instance, identifying a genetic mutation in one family
member is critical to promote correct information on recurrence risks and to apply preven-
tion strategies for at-risk relatives, enabling early intervention or monitoring. This brings a
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new dimension to family-centered care in neurology, highlighting the interconnectedness
of genetics and family health dynamics.

Given genetic diagnoses’ complexity and far-reaching implications, a collaboration
between neurologists and genetic specialists, such as genetic counselors and clinical ge-
neticists, is critical. Neurologists may not always have the expertise or time to provide
comprehensive genetic counseling, which includes discussions of the potential psychosocial,
ethical, and reproductive implications of genetic testing. By working closely with genetics
professionals, neurologists can ensure that patients and their families receive accurate
genetic diagnoses and appropriate counseling to help them navigate genetic information’s
emotional and ethical aspects. Unfortunately, this synergy among neurologists and geneti-
cists is very rare in clinical practice. Generally, the patient is referred to the neurologist, who
is responsible for evaluating the possible diagnoses and assessing management strategies.
The development of an AI-powered chatbot specialized in neurogenetic disorders has the
potential to revolutionize neurological diagnostics by spotlighting genetic insights and
partially bridging the gap in the absence of an on-site geneticist. While these chatbots
cannot replace genetic counseling, they can serve as powerful aids in estimating the likeli-
hood of genetic conditions in neurology clinics. Our evaluation of advanced chatbots (GPT
and Gemini) for neurogenetic disorders reveals them as promising innovations—not yet
fully prepared for immediate clinical application, but requiring only minimal refinement to
emerge as highly effective tools for genetic guidance in clinical neurology.

Interestingly, although all chatbots showed lower scores for neurogenetic disorders
in the diagnostic category when compared with non-genetic disorders, they frequently
suggested the presence of a genetic etiology. This is particularly important in a clinical
scenario, as it correctly suggests to the neurologist the potential need for a geneticist’s
involvement. In detail, when provided with frequent signs and symptoms, GPT correctly
identified the diagnosis in 66.7% to 75% of cases (8 out of 12 for GPT-4o and GPT-3.5,
and 9 out of 12 for GPT-4), while Gemini achieved 41.7% (5 out of 12). Instead, for cases
presenting with rare signs or symptoms, GPT identified the correct diagnosis in 25% of cases
(3 out of 12 for all GPT versions) and Gemini in 16.7% (2 out of 12) (Table 2). The various
clinical scenarios presented to the chatbot were designed based on common and rare
signs/symptoms of selected diseases. These virtual cases were created to reflect the wide
variability in patients’ phenotypic presentation and evaluate the chatbot’s performance.
In clinical practice, atypical presentations of a patient are often associated with longer
diagnostic timelines and the need for additional instrumental evaluations.

It is surprising that, although not always correct, in most cases, GPT suggests a genetic
disorder. When provided with frequent signs and symptoms, GPT suggested a genetic
disorder as a possible diagnosis in 91.7% to 83.3% of cases (11 out of 12 for GPT-4o and
GPT-4, and 10 out of 12 for GPT-3.5), while Gemini achieved 75% (9 out of 12). In cases
presenting with rare signs or symptoms, GPT suggested a genetic diagnosis in 66.7%
to 58.3% of cases (8 out of 12 for GPT-4o and GPT-4, and 7 out of 12 for GPT-3.5) and
Gemini in 33.3% (4 out of 12). Several studies have compared the diagnostic performance
of chatbots with that of medical students, doctors, and experts [17,35–37], showing that
diagnostic accuracy improves with the level of physician experience. Similarly, the ability
of these LLMs to extract ICD-10-CM (International Classification of Diseases Codes—Tenth
Revision Clinical Modification) codes from patient notes remains poorer when compared
with human performance [38]. In this paper, an unexpected advantage of the chatbot
was its ability to suggest a potential genetic etiology. While the diagnostic capabilities of
these non-trained chatbots need to be further enhanced before their integration into clinical
practice, it is essential to note that their accurate suggestion of a possible genetic etiology
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in most presented genetic disorders represents a significant feature. This capability could
make chatbots a valuable tool for clinical practice in the future.

A key limitation of this study lies in the narrow scope of disorders evaluated. Specifi-
cally, six of the most common disorders encountered in genetic counseling were selected
based on our experience. As highlighted, the chatbot’s performance varied significantly
across disorders, often mirroring disparities in the availability of the scientific literature.
While the selection of diseases limits the generalizability of the findings, the observed
correlation between the extent of scientific documentation and the accuracy of the chatbot’s
responses presents an intriguing scenario. This underscores the importance of leveraging
comprehensive scientific data as part of strategies to train more accurate AI diagnostic tools.
Although the performances for other categories of questions (genetic data and patient man-
agement) were higher, it is essential to watch out for hallucinations. It is well known that
AI chatbots can provide hallucinations, including in their responses to wrong information
or data that seems realistic [39,40]. In this study, the frequency of hallucinations is very
low, but they are present, and their potential implications impose a specialistic evaluation
of answers.

In particular, GPT3.5 provided two hallucinations in its answers. (I) In question n.12 of
FXTAS (There are available prenatal/preimplantation genetic testing?), GPT3.5 answered
with a wrong sentence about NIPT: “- **Non-Invasive Prenatal Testing (NIPT)**: NIPT
is a blood test that analyzes cell-free fetal DNA circulating in the maternal bloodstream.
NIPT can screen for certain genetic conditions, including Fragile X syndrome, but it cannot
diagnose FXTAS specifically. If NIPT results suggest an increased risk, further diagnostic
testing such as CVS or amniocentesis may be recommended.” No molecular analyses can
detect FMR1 expansion on cell-free fetal DNA to date. (II) In question n.5 of FSHD (What
mode of inheritance is expected for Facioscapulohumeral Muscular Dystrophy?), GPT3.5
gave an answer that includes a wrong sentence about anticipation: “Furthermore, FSHD
can exhibit genetic anticipation, where the symptoms tend to become more severe and
manifest at an earlier age in successive generations. This phenomenon is often observed
in FSHD families due to the instability of the D4Z4 repeat array and further complicates
the inheritance pattern of the condition.” It is well known that the apparent anticipation
described so far in FSHD families was confuted, because it was an expression of a genotype-
phenotype relationship among the number of D4Z4 repeats and clinical presentation (more
severe and with earlier onset for lower D4Z4 repeats) [41–43].

Furthermore, a partial hallucination was recorded among GPT4o answers. In question
n.6 of FSHD (What genetic tests are available to confirm or exclude the diagnosis?), GPT4o
gave an answer that includes an imprecise definition of technology: “**Array Comparative
Genomic Hybridization (aCGH)**:—aCGH is another technique that can detect changes in
the number of D4Z4 repeats on chromosome 4. This method can provide high-resolution
mapping of genomic alterations and is useful for identifying deletions or duplications
associated with FSHD”. While historically used to detect chromosomal microdeletion and
microduplication, arrayCGH cannot quantify D4Z4 repeats. However, optical genome
mapping, a next generation cytogenomic technique [44], can detect chromosomal rearrange-
ments like aCGH, and repeat expansions/contractions like D4Z4 repeats [45–47].

Finally, while Gemini reached overall good scores, some critical missed information
was recorded in some answers. In detail, in questions n.6 and 7 of BMD (What genetic tests
are available to confirm or exclude the diagnosis? What family members can be consid-
ered at risk for Becker Muscular Dystrophy?), Gemini fails to report gender differences.
Furthermore, question n. six concludes the answer with “Other genetic tests that may
be used in some cases include the following: Whole exome sequencing: this technique
sequences all of the genome’s protein-coding regions, which can identify mutations in



Genes 2025, 16, 29 9 of 15

genes other than dystrophin that may be associated with BMD. Whole genome sequencing
is the most comprehensive genetic test, sequencing the entire genome. It can be used to
identify mutations in any gene, including those that may not have been previously linked
to BMD.” Although correct, this statement does not seem relevant to the question. BMD
is a dystrophinopathy, typically due to a mutation in the DMD gene. The evaluation of
genes other than DMD, through whole exome/genome sequencing, can support a dif-
ferential diagnosis, but cannot confirm BMD. Traditionally, hallucinations are prevalent
in references. In this study, no references were requested from the chatbots. However,
Gemini occasionally provided web-based references, linking directly to a Google search.
This feature can be a double-edged sword: while online verification offers the potential
for up-to-date answers, the lack of quality control in the data used could undermine the
accuracy of these responses.

To date, several AI diagnostics tools have been developed [48] to evaluate im-
ages [49,50], large datasets such as NGS (Next-Generation Sequencing) data [51,52], and
medical reports. Various pre-trained AI diagnostic tools have been created in medical ge-
netics to assist with genetic diagnostics, including supporting dysmorphology evaluation
in patients [49,50] and filtering exome variants [51,52]. These tools have demonstrated
strong performances; however, they require geneticist interpretation. While they are easily
applicable in clinical and laboratory practice, their adoption by specialists outside the field
of genetics remains limited. Advanced generative AI models, such as large language mod-
els (LLMs), are ready-to-use tools that can be easily trained for healthcare purposes. While
the ability of non-trained LLMs remains limited, accurate training and specific creation of
AI diagnostic tools lead to good results in most fields. For example, while the ability of
LLMs to extract ICD-10-CM codes from patient reports is very scarce when compared with
human performance, the natural language processing-driven AI-assisted coding system
specifically trained on patient discharge summaries and ICD-10-CM revealed intriguing
results in supporting certified coding specialists in ICD-10-CM coding [53].

Many authors have evaluated chatbot performance in healthcare [17,54–56]. The LLM
chatbot is a simple system because it can respond to articulate questions. In this scenario,
they are tools potentially ready for application in clinical practice. To our knowledge,
ChatGPT and Gemini are the most widespread systems, but they are not trained for neuro-
genetic purposes. Considering the rarity of neurogenetic disorders in the neurology practice
and the scarcity of neurogenetic specialists, we evaluate the potential of these widespread
chatbots to help neurologists identify potential neurogenetic disorders. Other pre-trained
AI diagnostics tools have been developed to support genetic diagnostics, supporting the
dysmorphology evaluation of patients [49,50] or the exome variant philtring [51,52]. Our
work evaluated ChatGPT and Gemini’s ability to bridge the gap between neurologists and
geneticists. According to the results of this study, GPT chatbots demonstrated significantly
better performance than Gemini. Nonetheless, all AI chatbots showed notable gaps in
diagnostic accuracy and a concerning level of hallucinations. Overall, one key observation
is that, in most cases, the chatbots correctly suggested the potential presence of a genetic
disorder. This is particularly relevant in a clinical setting, as while chatbots cannot replace
human judgment in neurology, they may assist in considering the appropriateness of a
geneticist’s evaluation. Nevertheless, besides the potential support that the Chatbot can
offer in neurology clinics, the overall geneticist contribution will never be replaced. As is
well known, the geneticist’s contribution to multidisciplinary patient management does
not end with the diagnostic process but continues with genetic counseling. In particular, a
geneticist is responsible for the correct choice and administration of genetic tests to interpret
analysis results that can confirm or question the diagnosis.
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Furthermore, genetic counseling is a crucial moment in which characteristics of the
disease are explained to the patient and their family members, including the chance of
occurrence or recurrence of genetic disorders and, if available, prevention strategies. More-
over, due to the frequently late onset of neurogenetic conditions, it is important to include
also ethical considerations, which should be correctly addressed in genetic counseling.
When a genetic test is performed on a patient, implications or potential harms can be
recognized for the patient and their family members. The discovery of a genetic mutation
can raise difficult questions regarding reproductive choices, the potential for discrimination,
and the psychological burden of knowing one’s genetic risks. Furthermore, the possibility
of discovering variants of unknown significance (VUS) or incidental findings adds another
layer of complexity. These findings may not have clear clinical implications, leading to
uncertainty and anxiety for patients and their families. Ethical concerns also extend to
privacy, consent, and the potential misuse of genetic information by third parties, such as
insurance companies or employers [13,57]. Thus, it is imperative that genetic testing is
performed carefully considering these factors and that patients are fully informed of the
testing process’s risks, benefits, and limitations.

5. Conclusions
The preliminary evaluation of AI chatbots conducted in this study revealed good

accuracy in their responses. Both GPT and Gemini can potentially improve the assessment
of neurogenetic disorders for neurology clinics. As expected, these tools can assist the
clinician in the evaluation of neurogenetic disorders, but they require careful overseeing
by both neurologists and geneticists. Moreover, while chatbots may suggest the need for
geneticist involvement, they cannot replace the detailed patient evaluation and genetic
counseling a geneticist provides. Genetic counseling encompasses unique considerations of
inheritance and psychological and ethical factors. In clinical practice, there are two central
moments in which the genetic impact of diseases can be underestimated: in the prenatal or
preconceptional evaluation of a couple, and in the diagnostic process of an affected patient.
Enhancing chatbot capabilities with appropriate training in neurology and genetics could
potentially help reduce the “diagnostic odyssey” by suggesting a geneticist involvement
when appropriate. Furthermore, with targeted training and validation, chatbots could be-
come valuable tools in supporting medical assessments for neurogenetic and rare disorders,
offering timely recommendations and insights.

AI-based chatbots in the medical field represent a promising tool to empower patients
with accessible and accurate information about their health concerns. To date, several AI
diagnostics tools have been developed [17,48–52,54–56] to analyze images, large datasets
such as NGS (Next-Generation Sequencing) data, and medical reports. As expected, specific
training on data and images, along with human supervision, is required for the effective
integration of these tools into medical practice. For example, AI has revolutionized diag-
nostic imaging. AI-powered image analysis significantly reduces errors and accelerates
diagnostic workflows, enabling faster patient diagnoses and lowering healthcare costs [58].

However, these technologies are not designed to replace healthcare professionals but
rather to complement their expertise. Chatbots can enhance patient awareness, provide
useful preliminary information, and encourage informed decision-making, thus bridging
gaps in accessibility to specialized care.

The findings of this study highlight the potential of chatbots to assist clinicians by
identifying the likelihood of genetic or rare disorders, enabling neurologists and other
specialists to optimize their time for tasks that require critical human touch. This efficiency
gain aligns with the principles of Jevons’ Paradox, emphasizing that technological ad-
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vancements do not aim to reduce the workforce but to allocate professional resources more
strategically, focusing on areas where human interaction is irreplaceable.

To further enhance the utility of chatbots, their training must be grounded in a rigorous
selection of up-to-date and validated scientific literature. Over the past decade, numerous
networks have been established among scientific institutes for research and healthcare
purposes [59]. Collaboration among these centers of excellence often results in the creation
of extensive databases for sharing clinical and scientific data. These databases are invaluable
for training AI diagnostic tools, as they accurately reflect the real-world occurrence of
human diseases, encompassing nearly all possible clinical presentations. The careful
integration of such trained tools into clinical workflows can save significant time for
healthcare providers, allowing them to dedicate more attention to patient-centric activities,
including complex diagnostics, counseling, and care planning.

Advances in genetics knowledge and the development of AI-driven healthcare tools
allow the vision of a future healthcare system where almost all physicians will address
neurogenetic patients through geneticist evaluation. It is expected that integrating these
AI-driven tools will revolutionize the time for diagnosis, management, and treatment of
neurological disorders with a genetic basis. Furthermore, AI-powered tools can analyze
complex datasets with unprecedented speed and accuracy, such as whole-genome sequenc-
ing and transcriptomic data. By integrating these data with clinical phenotypes, AI can
help identify pathogenic variants and novel gene-disease associations, enabling earlier
and more precise diagnoses. Moreover, machine learning algorithms can improve the
classification of rare neurogenetic disorders by identifying subtle patterns in imaging data,
such as brain MRI, or correlating genotype with phenotype in ways that are difficult for
humans to discern. Virtual chatbots and decision-support systems could enhance clinical
workflows by aiding non-geneticists in recognizing rare neurogenetic syndromes. As AI
continues to evolve, its integration into neurogenetics promises to bridge the gap between
neurologists and geneticists, supporting the evaluation of phenotypes, data analysis, and
risk prediction, allowing accurate addressing of patients in genetic counseling.

The future of medicine will rely on optimizing the interplay between technology and
human expertise. While AI chatbots can provide preliminary insights and recommenda-
tions, they must operate under the supervision of trained professionals to ensure accuracy
and mitigate risks associated with errors or misinterpretations. The ultimate goal is to
leverage technology to support—not substitute—the irreplaceable value of personalized,
compassionate healthcare. This vision aligns with the broader implications of scientific
innovation, exemplified by Jevon’s Paradox: increased efficiency in resource use often
leads to greater overall demand, rather than reduction. Similarly, advancements like AI in
healthcare are not intended to reduce the role of human expertise but to amplify its scope
and impact, ultimately making high-quality, personalized care more accessible.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes16010029/s1, Document S1: List of Queries and An-
swers provided by GPT4o, GPT4, GPT3.5, and Gemini for Hereditary Spastic Paraplegia type 4;
Document S2: List of Queries and Answers provided by GPT4o, GPT4, GPT3.5, and Gemini for
Hereditary Spastic Paraplegia type 7; Document S3: List of Queries and Answers provided by GPT4o,
GPT4, GPT3.5, and Gemini for Huntington Disease; Document S4: List of Queries and Answers
provided by GPT4o, GPT4, GPT3.5, and Gemini for Fragile X-associated Tremor/Ataxia Syndrome;
Document S5: List of Queries and Answers provided by GPT4o, GPT4, GPT3.5, and Gemini for
Becker Muscular Dystrophy; Document S6: List of Queries and Answers provided by GPT4o, GPT4,
GPT3.5, and Gemini for Facioscapulohumeral Muscular Dystrophy; Document S7: List of Queries
and Answers provided by GPT4o, and Gemini for Myasthenia Gravis, Dermatomyositis, and Amy-
otrophic Lateral Sclerosis. Table S1: Date of questioning and word count for answers provided by
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Gravis; DM: Dermatomyositis; ALS: Amyotrophic Lateral Sclerosis).
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Appendix A
List of questions:

a. A patient has—3 most frequent symptoms-. What are the 5 most probable diagnoses?
b. A patient has—3 most frequent signs-. What are the 5 most probable diagnoses?
c. A patient has—3 most rare symptoms-. What are the 5 most probable diagnoses?
d. A patient has—3 most rare signs-. What are the 5 most probable diagnoses?
e. What mode of inheritance is expected for—disease name-?
f. What genetic tests are available to confirm or exclude the diagnosis of—disease name-?
g. What family members can be considered at risk for—disease name-?
h. Predictive testing for—disease name- is possible for at-risk family members?
i. Predictive testing for—disease name- in minors is possible?
j. Is it possible to determine genetic risks for—disease name-?
k. What is the optimal time for determination of genetic risks?
l. There are available prenatal/preimplantation genetic testing?
m. What are the suggested evaluations following initial diagnosis of—disease name-?
n. There are available curative or disease-modifying treatment for—disease name-?
o. What are symptomatic treatments available for—disease name-?

Answers provided by three GPT versions (GPT-4o, GPT-4, and GPT-3.5) and Google’s
Gemini are available in Supplementary Documents S1–S7.
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