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Abstract: Fentanyl is a synthetic opioid widely used for its potent analgesic effects in
chronic pain management and intraoperative anesthesia. However, its high potency, low
cost, and accessibility have also made it a significant drug of abuse, contributing to the
global opioid epidemic. This review aims to provide an in-depth analysis of fentanyl’s
medical applications, pharmacokinetics, metabolism, and pharmacogenetics while ex-
amining its adverse effects and forensic implications. Special attention is given to its
misuse, polydrug interactions, and the challenges in determining the cause of death in
fentanyl-related fatalities. Fentanyl misuse has escalated dramatically, driven by its sub-
stitution for heroin and its availability through online platforms, including the dark web.
Polydrug use, where fentanyl is combined with substances like xylazine, alcohol, benzo-
diazepines, or cocaine, exacerbates its toxicity and increases the risk of fatal outcomes.
Fentanyl undergoes rapid distribution, metabolism by CYP3A4 into inactive metabolites,
and renal excretion. Genetic polymorphisms in CYP3A4, OPRM1, and ABCB1 significantly
influence individual responses to fentanyl, affecting its efficacy and potential for toxicity.
Fentanyl’s side effects include respiratory depression, cardiac arrhythmias, gastrointestinal
dysfunction, and neurocognitive impairments. Chronic misuse disrupts brain function, con-
tributes to mental health disorders, and poses risks for younger and older populations alike.
Fentanyl-related deaths require comprehensive forensic investigations, including judicial
inspections, autopsies, and toxicological analyses. Additionally, the co-administration
of xylazine presents distinct challenges for the scientific community. Histological and
immunohistochemical studies are essential for understanding organ-specific damage, while
pharmacogenetic testing can identify individual susceptibilities. The growing prevalence
of fentanyl abuse highlights the need for robust forensic protocols, advanced research
into its pharmacogenetic variability, and strategies to mitigate its misuse. International
collaboration, public education, and harm reduction measures are critical for addressing
the fentanyl crisis effectively.
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1. Introduction
Fentanyl, a potent synthetic opioid and µ-opioid receptor agonist, was first synthesized

in Belgium in 1960 by Dr. Paul Janssen at Janssen Pharmaceutica [1]. Initially introduced
as an intravenous analgesic in 1963 in Europe and later in 1968 in the United States, it has
become one of the most widely used opioids worldwide [2,3].

Fentanyl’s exceptional potency—approximately 100 to 200 times greater than morphine—
combined with its rapid onset and short duration of action has made it indispensable in medi-
cal settings, particularly for managing severe chronic pain and intraoperative anesthesia [4–7].

The pharmacokinetic properties of fentanyl, including its high lipophilicity and
protein-binding characteristics, have facilitated the development of diverse administration
routes. These include intravenous injections, transmucosal and sublingual formulations,
nasal sprays, and transdermal patches [8–11]. While these attributes enhance its clinical
utility, they also contribute to its high potential for misuse. The methods of illicit con-
sumption range from injecting extracted fentanyl to inhaling vapors from heated patches,
practices that significantly increase overdose risks [12,13].

In recent decades, the misuse of fentanyl has reached epidemic proportions, driven
by its availability on the dark web, low cost, and frequent adulteration with other drugs,
such as xylazine, often without the user’s knowledge [14,15]. This has resulted in a sharp
rise in overdose deaths globally, with the United States and parts of Europe experiencing
particularly severe impacts [16].

This review explores fentanyl’s pharmacokinetics, metabolism, and pharmacogenetics,
highlighting its adverse effects, forensic challenges, and the complexities surrounding
its misuse. A special focus is placed on its forensic implications, including post-mortem
investigations, histopathological findings, and toxicological analyses. The aim is to provide
a comprehensive understanding of fentanyl’s dual role as both a lifesaving medication and
a significant contributor to the opioid epidemic.

2. Fentanyl Abuse
The rise in fentanyl-related deaths underscores a growing opioid epidemic, with increas-

ing abuse of fentanyl and its analogs often occurring alongside heroin use [17,18]. Alarming
epidemiological and forensic reports, particularly from the last two decades, indicate a sig-
nificant rise in the illicit use of fentanyl, especially in North America and Europe [19,20].
Toxicological evidence shows that fentanyl is frequently used in polydrug combinations, often
mixed with substances like heroin to enhance effects and reduce costs [21,22]. Of particular
concern is the co-administration of fentanyl and xylazine, which has emerged as a significant
public health issue due to its synergistic lethality. This combination markedly increases the
toxic effects of each drug, resulting in rapid and severe outcomes [23].

Abuse, defined as the excessive, illegitimate, or inappropriate use of a substance, often
for psychotropic effects, differs from misuse, which refers to the use of a substance in
a manner that does not adhere to medical indications or prescribed dosing [24]. In the
medical setting, misuse by anesthesiologists and surgeons was documented as early as
the 1970s. This misuse was often unintentional and was facilitated by the drug’s easy
availability in hospitals. Fentanyl and sufentanil were among the most misused opioids by
healthcare professionals [25,26]. However, the dramatic increase in fentanyl-related deaths
today is primarily connected to its illicit use [27].

Fentanyl can be administered through various methods (see Table 1), with one of
the most common involving the extraction of the drug from transdermal patches [28].
The extracted fentanyl is then consumed in various ways, such as injection into central
venous catheters, inhalation, rectal administration, or boiling for oral ingestion [29,30].
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These methods have facilitated widespread abuse, underscoring the urgent need for stricter
control and enhanced monitoring.

Table 1. Fentanyl administration methods, effect time, and common users.

Administration Method Effect Time Duration Frequent Users

Intravenous 1–2 min 2–4 h Surgical patients

Transmucosal 10–15 min 2–4 h Illicit users

Sublingual 5–10 min Variable Illicit users

Intranasal Spray 5–10 min 30 min Chronic pain patients, illicit users

Transdermal Patch Variable 8–16 h Chronic pain patients, illicit users

2.1. Increasing Trends: Online Markets and the Dark Web

Several factors contribute to the rising misuse of fentanyl, with one significant driver
being its substitution for heroin. Fentanyl’s greater potency, easier availability, and lower
legal penalties compared to heroin make it particularly appealing to illicit users [31,32].

Online platforms, particularly the “dark web”, have become key hubs for purchasing
illegal drugs anonymously [33]. The dark web, a collection of encrypted websites, pro-
tects user identities through anonymization tools that obscure their activities [34]. These
platforms, often referred to as darknet markets or cryptomarkets, facilitate the sale and dis-
tribution of fentanyl and its analogs while maintaining user anonymity through advanced
encryption techniques [35].

Platforms like Darktrend, a semi-automated system developed to monitor advertise-
ments for fentanyl and other opioids, have tracked the prevalence of these substances [36].
Notable cryptomarkets include Agora, shut down by the FBI in 2015, and Dream Market,
which hosted over 60,000 drug-related ads before its closure. These online spaces have
played a significant role in increasing fentanyl’s availability, contributing to its widespread
abuse [37,38].

2.2. Combination with Xylazine

Xylazine, a non-opioid veterinary sedative primarily used for large animals, has
emerged as a concerning adulterant in the illicit drug supply, particularly when combined
with fentanyl. Known colloquially as “tranq” or “tranq dope”, the mixture of xylazine and
fentanyl poses significant risks to users, amplifying the already severe health consequences
associated with fentanyl abuse. This combination has become increasingly prevalent in the
United States and other regions, complicating public health efforts to address the opioid
epidemic [39,40]. Alarmingly, xylazine has proliferated in the unregulated drug market,
frequently found adulterating the fentanyl supply. Individuals seeking these substances
may turn to the black market or dark web, where such drugs are readily available due to
their illicit nature [41].

The motivation to combine fentanyl with xylazine lies primarily in its ability to enhance
and prolong the effects of fentanyl while reducing the production costs for dealers. Xylazine,
a non-opioid sedative, intensifies fentanyl’s sedative and analgesic effects, creating a longer-
lasting high for users. This combination is appealing to individuals seeking more potent
or sustained experiences. For dealers, xylazine is inexpensive, widely accessible as a
veterinary drug, and not yet classified as a controlled substance in many jurisdictions,
making it an ideal adulterant to stretch fentanyl supplies [42].

When combined, these substances create a unique pharmacological synergy: fentanyl’s
rapid onset and potent analgesia are compounded by xylazine’s profound sedation. This
combination often leaves users in an immobilized, semi-conscious state that has earned the
nickname “zombie-like effect”. However, this practice significantly increases the risk of
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fatal overdoses, as xylazine does not respond to naloxone (a lifesaving opioid antagonist)
and exacerbates respiratory depression and cardiovascular effects [43–47].

2.3. Combination with Other Drugs

Polydrug use involving fentanyl is a well-documented phenomenon. Commonly
co-used substances include nicotine, cannabis, and cocaine, which can exacerbate fentanyl’s
effects and risks. Fentanyl is pharmacologically potent, requiring only small amounts to
produce effects, but its narrow therapeutic window makes it highly dangerous [48–52].

Certain drugs can significantly alter fentanyl’s pharmacokinetics. For instance, riton-
avir and calcium channel blockers like diltiazem inhibit CYP3A4 (cytochrome P450 3A4)
metabolism, increasing plasma fentanyl levels and prolonging its effects. Conversely, fen-
tanyl can inhibit the clearance of sedative drugs, such as midazolam, compounding the
risk of respiratory depression [4].

The combination of fentanyl with cocaine or alcohol has been linked to acute and
chronic myocardial damage. Cocaine exacerbates cardiovascular stress by inducing periph-
eral vasoconstriction, increasing endothelin levels, and disrupting intracellular calcium
regulation [53–56]. These combined effects significantly heighten the risks of arrhythmias,
ischemia, myocardial infarction, and sudden cardiac death [57,58].

Alarmingly, since 2013, illicitly manufactured fentanyl and its analogs have increas-
ingly appeared on the streets, often mixed with or sold as heroin. Many users remain
unaware of these adulterations, dramatically increasing the risk of overdose and fatal
outcomes [59–61].

3. Pharmacokinetics, Metabolism, and Pharmacogenetics of Fentanyl
The pharmacokinetics of fentanyl involve rapid distribution, metabolism, and elimi-

nation, influenced by its high lipophilicity and protein-binding characteristics [62]. Once
administered, fentanyl is quickly distributed to highly perfused tissues such as the brain,
lungs, and heart due to its lipid solubility [63]. It later accumulates in less vascularized
tissues, including muscles and adipose tissue, which act as a drug reservoir, contributing to
prolonged effects even after administration ceases [62,63].

Fentanyl’s plasma protein binding, primarily to albumin and α1-acid glycoprotein, is
influenced by factors such as plasma pH and protein levels. Changes in these parameters
significantly affect the drug’s free concentration and bioavailability, potentially altering its
therapeutic effects and risks of toxicity [62,64].

Fentanyl is primarily metabolized in the liver and gastrointestinal mucosa by cy-
tochrome P450 enzymes, specifically CYP3A4, into norfentanyl, its major inactive metabo-
lite. This biotransformation predominantly involves N-dealkylation of the piperidine ring.
Other metabolic pathways, including hydroxylation and hydrolysis, contribute minimally
to the metabolism process and are less clinically relevant [62]. However, impairment in
these organs can lead to drug accumulation, increasing the risk of toxicity.

Renal excretion is the primary elimination pathway for fentanyl and its metabolites,
with small amounts excreted via the gastrointestinal tract. In individuals with normal
renal and hepatic function, fentanyl clearance is typically efficient. However, renal or
hepatic impairment can significantly affect fentanyl metabolism and accumulation, poten-
tially leading to toxicity [62]. The fentanyl metabolism may be influenced by the xylazine
combination; the xylazine is an α2-adrenergic agonist and may cause central nervous
system depression, respiratory depression, bradycardia, and hypotension in humans [65].
Its relatively short half-life (25–30 min) suggests its detection in post-mortem toxicology,
indicates its involvement in the final stages of fatal drug use [66]. Moreover, research sug-
gests that xylazine’s pharmacological effects, particularly its α2-adrenergic agonism, may



Int. J. Mol. Sci. 2025, 26, 444 5 of 23

influence the regulation of extracellular matrix components, including collagen synthesis
and degradation [67]. This interaction could partially explain the severe tissue necrosis
and chronic, non-healing wounds frequently observed in individuals who misuse xylazine.
By impairing normal collagen turnover, xylazine may disrupt wound healing processes,
leading to fibrotic changes and structural abnormalities in affected tissues [68]. Further
investigation into this molecular pathway could provide valuable insights into xylazine’s
role in tissue damage and potential therapeutic targets for mitigating its harmful effects.

Fentanyl’s pharmacokinetics and pharmacodynamics are significantly influenced
by genetic factors, which contribute to individual variability in drug response [69,70].
Pharmacogenetics provides critical insights into how variations in drug-metabolizing
enzymes, transport proteins, and opioid receptors affect fentanyl’s metabolism, efficacy,
and toxicity [71,72].

CYP3A4 and CYP3A5 are the primary enzymes responsible for fentanyl
metabolism [70,73]. Variants in these genes can alter the rate of clearance, with reduced-
function variants slowing metabolism and increasing plasma concentrations, thereby
heightening the risk of overdose. Conversely, enhanced-function variants may accelerate
clearance, necessitating higher doses to achieve therapeutic effects [74–76].

Fentanyl’s binding affinities to the different opioid receptors—µ (MOR), κ (KOR), and
δ (DOR)—are driven by molecular differences in receptor structure and ligand–receptor
interactions. Fentanyl exhibits the highest affinity for MOR, with a Ki in the low nanomolar
range (~1.2–1.4 nM). In contrast, fentanyl’s affinity for κ- and δ-opioid receptors is lower,
with Ki values of approximately 255 nM and over 1000 nM, respectively. This selectivity
profile explains the predominance of MOR-mediated effects, such as analgesia, euphoria,
and severe respiratory depression [77,78]. The MOR, encoded by the OPRM1 (Opioid
Receptor Mu 1) gene, mediates fentanyl’s analgesic and adverse effects. A key polymor-
phism, A118G, modifies receptor binding affinity and sensitivity. Individuals with the GG
genotype exhibit reduced receptor sensitivity, requiring higher doses for effective pain
relief, while those with other genotypes may be more susceptible to adverse effects due to
heightened receptor sensitivity [79,80].

Transport proteins also play a role in fentanyl’s pharmacokinetics. The ABCB1 (ATP
Binding Cassette Subfamily B Member 1) gene encodes P-glycoprotein, a transporter that
regulates fentanyl’s passage across the blood–brain barrier. Variants such as C3435T affect
transporter activity, influencing fentanyl’s central nervous system concentrations and,
consequently, its efficacy and risk for side effects [81,82].

Emerging research highlights the role of other genes, such as COMT (Catechol-o-
methyltransferase), in fentanyl’s effects. The Val158Met polymorphism in COMT af-
fects dopamine metabolism, with the Met/Met genotype linked to enhanced analgesia
due to higher dopamine levels in the brain. Other genes, including UGT2B7 (UDP-
Glucuronosyltransferase-2B7), CGRP (Calcitonin gene-related peptide), and CYP2D6
(Cytochrome P450 2D6), contribute to individual variability in fentanyl metabolism and
response, though their specific roles are less well-defined [83].

These genetic factors, combined with fentanyl’s unique pharmacokinetics, underscore
the complexity of optimizing its use in clinical settings and managing the risks associated
with its potency and potential for misuse [84]. In this way, this in silico study could be very
helpful in the prediction of pharmacogenetics effects [85].

4. Fentanyl’s Adverse Effects
Fentanyl, along with other synthetic opioids such as methadone and oxycodone,

exhibits stronger yet shorter-lasting effects compared to morphine, making it highly suitable
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for intraoperative anesthesia and chronic pain management. Its exceptional analgesic
potency enables effective pain relief even at low doses [86].

Fentanyl’s binding affinity to µ-, κ-, and δ-opioid receptors not only drives its analgesic
properties but also accounts for its extensive side effect profile. These range from mild,
such as itching and nausea, to severe and life-threatening, such as respiratory depression
and cardiac arrest [13,87,88]. Psychostimulant side effects include analgesia, itching, and
euphoria, while central nervous system effects may include delirium, sedation, nausea,
vomiting, and constipation [89]. Dizziness and respiratory depression are notable concerns,
with the latter potentially leading to apnea and death if dosages exceed safe limits. Fentanyl-
induced respiratory depression is exacerbated by its vagus nerve stimulation effects, which
can also cause bradycardia. At higher doses, fentanyl can cause loss of consciousness and
anesthesia, irrespective of the route of administration [90].

The risks associated with fentanyl increase substantially when combined with other
CNS (central nervous system) depressants, such as alcohol or benzodiazepines [86]. These
combinations significantly increase the likelihood of severe adverse effects, including
respiratory depression, fatal cardiac arrhythmias, and profound sedation. Unlike some
other opioids, fentanyl can trigger these outcomes without elevating plasma histamine
levels, which makes it distinct [91]. Moreover, as previously described, there is a growing
threat to the combined use of xylazine and fentanyl. Particularly, the chronic use of xylazine
is associated with additional severe health complications, such as chronic skin ulcers and
necrosis, cardiovascular and respiratory compromission, and withdrawal symptoms. Skin
damage is related to the vasoconstrictive properties of xylazine that impair blood flow,
particularly in peripheral tissues, leading to necrosis, ulcerations, and non-healing wounds.
These wounds are often severe, exposing underlying tissues and becoming easily infected.
In many cases, amputation becomes the only viable treatment option [68,92–94].

The main adverse effects related to fentanyl abuse are summarized in Figure 1.
Elderly patients are particularly susceptible to fentanyl side effects. Commonly re-

ported symptoms include vertigo, migraines, confusion, dizziness, and hallucinations,
which not only reduce quality of life but also increase the risk of falls and associated
complications that in elderly patients are associated with an increased death risk [95,96]. In
younger individuals, fentanyl’s high potency and rapid onset make it especially hazardous.
A notable adverse effect is chest wall rigidity, a condition impairing ventilation and chest
movement, which can lead to respiratory failure. Chronic misuse in this population may
result in neurocognitive deficits, including disruptions in memory, learning, and emotional
regulation, alongside increased anxiety, depression, and risky behaviors [97,98].

Individual responses to fentanyl vary widely and are influenced by factors such as
age, sex, body weight, pharmacokinetics, comorbidities, polydrug use, and environmental
conditions. For instance, younger individuals may experience more pronounced psychos-
timulant effects, while older adults are more prone to cognitive disturbances. Additionally,
underlying health conditions, such as respiratory or cardiovascular disorders, amplify the
risks of adverse outcomes [99,100].

Recognizing and understanding these side effects is critical for clinicians prescribing
fentanyl, as well as for public health strategies aimed at reducing its misuse. Monitoring
patient-specific factors, tailoring doses to individual needs, and identifying early signs of
adverse reactions are essential to minimizing risks. In cases of illicit use, the unpredictable
purity and potency of fentanyl further heighten the dangers, emphasizing the need for
widespread education, harm reduction strategies, and accessible treatment for opioid
addiction [101].
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Figure 1. This figure provides an overview of the complex and far-reaching adverse effects fentanyl
has on various bodily systems. (created with BioRender, https://biorender.com).

4.1. Brain Damage

Fentanyl’s high lipophilicity allows it to cross the blood–brain barrier efficiently, where
it acts as a potent central nervous system depressant [4,102,103]. By acting on MOR in
the periaqueductal gray matter, it inhibits the neurotransmitter gamma-aminobutyric
acid (GABA) release and activates potassium channels, modulating the pain pathway
originating in the spinal cord [4,102,103]. This mechanism makes fentanyl highly effective
for managing chronic pain.

Chronic exposure to fentanyl results in the downregulation and desensitization of
opioid receptors in key brain regions, such as the thalamus and amygdala. Over time, these
changes contribute to structural and functional alterations in the white matter of the frontal
and temporal lobes, resulting in cognitive and emotional impairments [104,105].

A hallmark of opioid overdose is respiratory depression, which, if prolonged, can lead
to cerebral hypoxia, resulting in brain damage and neuropsychological deficits [106]. In
acute cases, fentanyl alters pain perception, induces euphoria, and promotes relaxation;
however, its sedative effects also impact the sleep–wake cycle [107]. Moreover, as previously
described, the veterinary sedative xylazine is used as an additive to fentanyl, contributing
to the “zombie effect”, characterized by slow movements, a bent posture, and a vacant stare
observed in abusers [108]. Furthermore, repeated use of xylazine and fentanyl contributes
to significant neurotoxicity, leading to cognitive impairments, memory deficits, and mood

https://biorender.com
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disorders. Chronic sedation and hypoxia caused by the combination exacerbate these
effects, potentially causing long-term brain damage [39,42,66].

4.2. Lung Damage

Fentanyl significantly impacts pulmonary function. Acutely, it suppresses the cough
reflex by targeting the medulla oblongata’s cough regulation center and impairing the brain-
stem’s respiratory control. Additionally, fentanyl acts on chemoreceptors, reducing the body’s
respiratory response. This leads to hypoventilation, characterized by irregular, shallow, and
slow breathing, which may progress to hypercapnia, hypoxemia, chest wall rigidity, and
apnea [109]. These effects are significant contributors to fentanyl-induced fatalities, especially
in cases of overdose. Usually, fentanyl overdose can be related to acute lung injury as severe
acute respiratory distress syndrome [110]. The administration way could influence lung
damage: as recently reported, inhaled fentanyl leads to diffuse alveolar hemorrhage [111].
Chronic administration can induce pulmonary diseases, including interstitial inflammation,
fibrosis, bronchospasm, pulmonary edema, and pleural effusions [112].

4.3. Heart Damage

Chronic illicit drug use, particularly opioids like fentanyl, poses a significant long-
term risk for cardiac dysfunction, including myocardial fibrosis. Morphometric analyses
have shown a strong correlation between drug-related damage (DRD) and structural
heart changes [113,114]. Recent studies indicate that fentanyl interacts with the hERG
(human Ether-a-go-go-Related) channels, which regulate the potassium currents critical for
cardiac repolarization [115]. Dysregulation of these channels can lead to hypocalcemia and
prolongation of the QT interval, increasing the risk of arrhythmias, torsades de pointes,
and sudden cardiac death [116]. These findings underscore the need for caution when
administering fentanyl, particularly in individuals with pre-existing cardiac conditions.

Finally, the co-administration of xylazine should be considered: indeed, it induces
profound bradycardia and hypotension, thereby exacerbating cardiovascular adverse effects,
particularly increasing the risk of fatal arrhythmias and ischemic events [39,42,44,45].

4.4. Gastrointestinal Damage

Like other opioids, fentanyl significantly impacts gastrointestinal function. By tar-
geting MOR in the enteric nervous system, it inhibits acetylcholine release, disrupting
peristalsis and causing severe constipation. In the esophagus, opioids can cause dysmotil-
ity, presenting symptoms like primary achalasia, including dysphagia. In the stomach,
they can delay gastric emptying, leading to postprandial nausea and early satiety. In the
colon, opioid-induced constipation (OIC) frequently occurs, and a condition known as
narcotic bowel syndrome manifests as chronic abdominal pain, nausea, and vomiting
without an identifiable cause [117]. Chronic use has been linked to liver damage, with
histopathological studies showing hepatocyte necrosis and portal inflammation [118]. Less
well-characterized are the potential direct hepatotoxic effects of fentanyl [119]. In overdose
cases, elevated IL-6 levels and reduced CYP3A11 (Cytochrome P450 3A11) expression high-
light an inflammatory response and impaired hepatic drug metabolism [120]. Interestingly,
emerging research has begun exploring the connection between the gut microbiome and
drug addiction. Notably, studies indicate that reducing the diversity of the gut microbiome
or impairing its normal composition significantly enhances the motivation to seek fentanyl,
suggesting a potential role for gut health in modulating addictive behaviors [121].

4.5. Immune and Endocrine System Damage

Fentanyl also affects the immune and endocrine systems [122]. Fentanyl abuse, like
alcohol, opioids, and anabolic-androgenic steroids, can reduce testosterone production in
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males by disrupting testicular or hypothalamic-pituitary function [123]. Acute use is associ-
ated with reduced plasma levels of cortisol, testosterone, and gonadotropins, while chronic
opioid therapy can lead to endocrinopathies in both men and women. These hormonal
disruptions compromise immune function, reducing the body’s ability to fight infections
and maintain metabolic balance [124]. Although these findings suggest immunosuppres-
sive effects, limitations related to methodological variability, differing opioid dosages, and
small sample sizes caution against generalizing immunosuppression as a universal side
effect of all opioids [125].

Finally, considering the combined use of xylazine, chronic exposure to this drug has
been linked to weakened immune responses [126]. This immunosuppression, coupled with
poor wound healing and unsanitary injection practices, increases vulnerability to severe
bacterial infections, including cellulitis, abscesses, and sepsis.

5. Post-Mortem Investigation in Fentanyl-Related Deaths
5.1. Crime Scene Investigation

A thorough crime scene investigation is critical for establishing the context of fentanyl-
related deaths. Investigators should document and collect evidence such as syringes,
needles, transdermal patches, spoons, aluminum foil, and other paraphernalia associated
with fentanyl use. Items such as discarded packaging or solvent containers may indicate
illicit extraction methods [127,128]. The presence of prescription fentanyl, such as patches or
vials, should be compared with medical records to determine whether misuse or diversion
occurred. Accurate documentation of the scene, including the positioning of the body and
nearby materials, is essential for reconstructing the events leading to death [129]. Fentanyl
poses significant risks to first responders and investigators, as even small quantities can
be fatal; therefore, the use of personal protective equipment (PPE) is essential, and rapid
administration of naloxone, often in repeated doses due to its short duration of action, can
be lifesaving in such situations [130].

5.2. External Examination

During the external examination, the forensic pathologist should carefully inspect
the body for signs indicative of fentanyl misuse or overdose. These may include needle
punctures, particularly in less visible areas like the feet or groin, and signs of venipuncture.
Pupillary constriction (miosis), a hallmark of opioid toxicity, and frothy material (“mush-
room plume”) around the mouth or nose suggest respiratory distress or pulmonary edema.
Discoloration of the skin, such as cyanosis or purple areas, may indicate hypoxia prior to
death. Additionally, the presence of any rashes or irritation near transdermal patch sites
should be noted [131,132].

5.3. Autopsy Investigation

At autopsy, a systematic approach should be taken to examine each organ, including
weighing, measuring, and performing a detailed macroscopic inspection. Observations
such as the presence of petechiae in the lungs or pleura, organ congestion, or focal hem-
orrhages should be documented [133–135]. Considering fentanyl’s adverse effects, key
steps include:

• Brain: Evaluate for cerebral edema, focal hemorrhages, or signs of hypoxic-ischemic
injury. Weigh and preserve the brain for histological analysis, particularly the hip-
pocampus and cerebellum.

• Lungs: Note pulmonary edema, frothy fluid in airways, or signs of aspiration pneu-
monia. Weigh both lungs and assess for amorphous material within the alveoli.
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• Heart: Examine for myocardial fibrosis, valvular abnormalities, or signs of arrhythmias
such as focal ischemic changes. Document the weight and macroscopic findings.

• Liver: Assess for hepatomegaly, discoloration, or nodularity, indicating chronic dam-
age. Note any portal inflammation or necrosis.

• Gastrointestinal Tract: Inspect for irritation, ulcers, or other lesions associated with
opioid use.

• Gonads: In males, examine the testes for reduced size or changes in tubular structure;
in females, assess the ovaries for signs of chronic endocrine disruption.

After the initial gross examination, all organs should be fixed in formalin for subse-
quent histological, immunohistochemical, toxicological, and genetic analyses. Samples of
blood (preferably from the femoral vein), urine, vitreous humor, gastric contents, and solid
tissues (e.g., brain, lungs, liver) should be collected promptly to minimize the post-mortem
changes and redistribution effects. Hair samples from the nape or pubic area can provide a
long-term drug exposure history [136].

5.4. Histological Findings in Fentanyl-Related Deaths

The use of fentanyl can cause a range of toxic effects in various organs, each with
distinct histopathological characteristics [137,138]. Histological analysis reveals critical
evidence of fentanyl’s effects on the following target organs:

• Brain: Chronic exposure leads to the downregulation of opioid receptors and structural
changes in the white matter of the frontal and temporal lobes, resulting in cognitive
and emotional impairments. Histologically, hypoxic damage is common, with loss of
eosinophilic Purkinje cells in the hippocampus and cerebellum. Neuronal apoptosis,
microglial activation, and cortical degeneration are also observed [138,139].

• Lungs: Pulmonary findings include edema, evidenced by a “mushroom plume” of
frothy material in the airways and mouth and amorphous eosinophilic deposits in
alveolar spaces. Aspiration pneumonia, intra-alveolar hemorrhage, and neutrophilic
inflammation are common in cases with a prolonged interval between unconsciousness
and death [140].

• Heart: Fentanyl impacts the hERG channel, disrupting potassium currents and pro-
longing the QT interval, increasing the risk of arrhythmias and sudden cardiac death.
Chronic intravenous use may also result in endocarditis and myocardial fibrosis [141].

• Liver: Histopathological changes include hepatocyte necrosis, lymphocyte infiltration,
and portal inflammation. Chronic use often coincides with viral hepatitis, particularly
hepatitis C, in intravenous drug users [142].

• Gonads: Chronic opioid exposure leads to endocrine disruptions, such as hypog-
onadism and reduced libido. Histological findings include diminished germ cell
maturation and reduced tubular diameter in the testes [123,143].

In Table 2, we summarized the organ, relative toxicity, and histopathology damage.

Table 2. Toxicity and histopathology of target organs.

Organ Toxicity Histopathology

Brain

- Downregulation of opioid receptors;
- Cognitive and emotional alterations
(chronic);
- Euphoria but also sedation (acute).

- Hypoxia in the hippocampus
and cerebellum;
- Neuronal apoptosis;
- Microglia inflammation;
- Altered distribution of microglia;
- Vacuolization and gliosis of the
affected regions.
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Table 2. Cont.

Organ Toxicity Histopathology

Lung

- Hypercapnea;
- Hypoxemia;
- Chest wall rigidity;
- Respiratory depression.

- Pulmonary edema;
- Amorphous eosinophilic material in
the alveolar spaces;
- Intra-alveolar hemorrhage;
- Inflammation of neutrophils;
- Septic embolism.

Heart
- Hypocalcemia;
- QT elongation arrhythmias;
- Sudden cardiac death.

- Myocyte necrosis;
- Endocarditis;
- Fibrous connective tissue
(myocardium).

Gastrointestinal
system

- Nausea;
- Vomit;
- Constipation.

- Lymphocyte infiltration;
- Portal inflammation;
- Pyknosis and necrosis
of hepatocytes.

Gonad - Infertility;
- Loss of libido and hypogonadism.

- Reduced maturation of germ cells;
- Tubular diameter of the epithelium.

5.5. Immunohistochemical Markers in Fentanyl-Related Deaths

Immunohistochemical markers are valuable for understanding the adverse effects of
fentanyl abuse and identifying the underlying mechanisms. These markers can be divided
into specific markers, which directly highlight the damage caused by fentanyl, and aspecific
markers, which reflect generalized responses such as inflammation or tissue injury [4]. The
relevant markers are reported in Table 3.

Table 3. Relevant immunohistochemical markers for each organ, the rationale, and the expected positivity.

Organ Marker Rationale Expected
Positivity

Brain GFAP (Glial Fibrillary Acidic Protein) Indicates astrocytic gliosis +++
NeuN Assesses neuronal viability ++

Cleaved Caspase-3 Marks neuronal apoptosis +++
Iba1 Reflects microglial activation +++

MBP (Myelin basic protein) Evaluates white matter integrity ++

Lungs Surfactant protein A (SP-A)/SP-B Assesses alveolar integrity ++
Aquaporin-1 Highlights fluid balance and edema +++

CD15 Detects neutrophilic infiltration +++
Myeloperoxidase (MPO) Indicates acute inflammation ++

CD31/VEGF (vascular endothelial
growth factor) Evaluates vascular endothelial damage ++

Heart Cardiac troponin I (cTnI) Identifies cardiac myocyte injury ++++
Desmin Assesses structural integrity of myocytes +++

Collagen I/III Indicates myocardial fibrosis ++

CD3/CD4/CD8 Reveals immune-mediated
myocardial damage ++

von Willebrand factor (vWF) Highlights endothelial dysfunction +++

Liver Hepatocyte paraffin-1 (HepPar-1) Identifies hepatocyte-specific
cytoplasmic antigens +++

Cleaved Caspase-3 Marks hepatocyte apoptosis +++
Interleukin 6 (IL-6) Reflects inflammatory response +++

α-Smooth muscle actin (α-SMA) Indicates stellate cell activation and fibrosis ++
Hepatitis C Virus Core Antigen

(HCcAg) Detects hepatitis C infection ++++

Gonads SOX9 Highlights Sertoli cell function ++
Inhibin-α Marks Sertoli and Leydig cell activity ++

Ki-67 Indicates proliferative activity +++
Notes: Intensity definitions: (+): Weak positivity; localized faint staining. (++): Moderate positivity; visible across
larger areas of tissue. (+++): Strong positivity; prominent staining indicative of significant protein expression.
(++++): Very strong positivity; widespread, intense staining. Adjustments may be needed depending on the
specific conditions of your experimental setup.
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In the brain, fentanyl’s action can lead to neuronal apoptosis, microglial activation, and
white matter degeneration. These effects are often observed in regions like the hippocampus
and cerebellum [138,144,145]. A specific marker such as GFAP can be used to identify
astrocytic gliosis, a hallmark of neuroinflammation and tissue damage [146]. Additionally,
NeuN can be used to assess neuronal viability, and cleaved caspase-3 serves as a marker
for apoptosis, indicating neuronal loss [138,147–149]. To evaluate microglial activation and
neuroinflammation, aspecific markers such as Iba1 and CD68 are effective, reflecting the
involvement of immune responses in the central nervous system [150].

At the level of the lungs, fentanyl’s effects include pulmonary edema, respiratory de-
pression, and alveolar damage. A specific marker like SP-A or SP-B can help assess alveolar
integrity, which is often compromised in opioid-related deaths [151]. Aquaporin-1 can be
used to evaluate fluid balance and detect the presence of pulmonary edema. Aspecific
markers such as CD15 and MPO are useful for identifying neutrophilic infiltration and
acute inflammation, while CD31 or VEGF can be employed to assess vascular damage and
endothelial integrity [152,153].

In the heart, fentanyl has been associated with arrhythmias, QT prolongation, and
myocardial fibrosis. Specific markers like cTnI are essential for detecting myocyte injury and
necrosis, while desmin can evaluate the structural integrity of cardiomyocytes [154,155].
To identify fibrotic changes, collagen I and III can be used as markers of extracellular
matrix deposition. Aspecific markers such as CD3, CD4/CD8, and vWF are valuable for
identifying immune-mediated myocardial damage and endothelial dysfunction [156].

In the liver, fentanyl use can lead to hepatocyte necrosis, portal inflammation, and
fibrosis. A specific marker such as HepPar-1 can highlight hepatocyte-specific cytoplasmic
antigens, making it useful for assessing cellular damage [157,158]. Inflammatory responses
can be evaluated using IL-6, while cleaved caspase-3 serves as a marker for apoptosis in
hepatic cells. Aspecific markers like α-SMA can detect stellate cell activation and fibrosis,
and HCcAg can be used to confirm hepatitis C infection, which is common in intravenous
drug users [159,160].

In the gonads, chronic fentanyl use disrupts the hypothalamic–pituitary–gonadal axis,
leading to hypogonadism and impaired germ cell maturation [123]. Specific markers like
SOX9 are useful for evaluating Sertoli cell function, while inhibin-α highlights Leydig cell
activity. To assess cellular proliferation within the germinal epithelium, Ki-67 is an effective
marker [161].

By combining specific and aspecific markers, immunohistochemical investigations
provide a detailed picture of fentanyl’s impact on organ systems, offering valuable insights
for both clinical and forensic contexts.

5.6. Toxicological Investigation

Accurate toxicological analysis requires the proper collection and preservation of
biological samples, including blood (preferably from the femoral vein), urine, vitreous
humor, gastric contents, bile, and solid organ tissues such as the brain, lungs, liver, and
kidneys. Hair samples from the nape or pubic region can provide a long-term history
of drug exposure [136,162]. Additionally, fentanyl and its metabolites are often detected
in encephalic tissues and vitreous humor, offering supplemental evidence in cases of
overdose [163].

Illicitly manufactured fentanyl is frequently combined with other substances, compli-
cating toxicological analysis and increasing the risk of fatal outcomes [164]. For instance:

• Alcohol and benzodiazepines: These central nervous system depressants exacerbate
fentanyl-induced respiratory depression, increasing the likelihood of apnea and car-
diac arrest [165].
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• Cocaine: This stimulant can enhance cardiovascular effects, such as tachycardia and
arrhythmias, which, when combined with fentanyl, can lead to sudden cardiac death [48].

Polydrug use also interferes with fentanyl’s metabolism. For example, ritonavir and
calcium channel blockers, such as diltiazem, increase fentanyl plasma levels by inhibiting
CYP3A4, while fentanyl itself can inhibit the clearance of sedatives like midazolam [166].

The rising prevalence of xylazine as an adulterant in fentanyl-related deaths has in-
troduced significant challenges for toxicological investigations. Xylazine is increasingly
co-involved in overdoses, often exacerbating the lethal effects of fentanyl [39]. A recent
study analyzing xylazine-associated deaths in Michigan highlighted its growing prevalence
in the illicit drug supply and underscored the complexities it adds to post-mortem toxicol-
ogy testing. From October 2019 to June 2023, 100% of xylazine-positive deaths were found
to also involve fentanyl, consistent with national trends of co-detection in drug-related
fatalities [167].

However, its detection in post-mortem investigations remains inconsistent, hindering
accurate assessments of its role in fatalities. One major issue is the variability in toxicolog-
ical testing protocols across jurisdictions. Many laboratories do not routinely screen for
xylazine, resulting in an underreporting of its presence in overdose cases [168]. Moreover,
even in laboratories equipped to test for xylazine, variability in its post-mortem blood
concentrations, which ranged from 5.2 to 200 µg/L in recent analyses, complicates the inter-
pretation of its toxicological significance. This range is consistent with previous literature,
yet no established thresholds exist to determine its toxicity levels in humans [167].

Even when xylazine is included in toxicology panels, its short half-life of approx-
imately 25–30 min complicates its detection, particularly in cases with delayed sample
collection. This transient presence in the bloodstream may lead to a misclassification of
xylazine-related deaths as solely fentanyl-induced. Additionally, naloxone detection was
notably lower in xylazine-positive cases (30%) compared to opioid-positive but xylazine-
negative cases (21.2%), highlighting gaps in the use of naloxone in overdose scenarios
involving xylazine. This finding underscores the critical need for increased naloxone distri-
bution and public education about its limitations in addressing non-opioid components of
polydrug overdoses [167].

5.7. Genetic Influences on Metabolism and Susceptibility

Understanding fentanyl’s pharmacokinetics and pharmacogenetics is essential in
forensic investigations, particularly for interpreting post-mortem findings and determining
the cause of death [72]. As previously described, due to its lipophilicity, fentanyl is quickly
redistributed into fatty tissues after death, leading to variable blood concentrations that
may not accurately reflect ante-mortem levels [169]. This redistribution complicates the
differentiation between therapeutic use, misuse, and overdose. Ante-mortem doses cannot
reliably be inferred solely from post-mortem blood concentrations [170].

As previously discussed, pharmacogenetics plays a significant role in fentanyl-related
fatalities by influencing individual variability in metabolism and susceptibility to toxic-
ity [171]. To determine the potential impact of various polymorphisms, the following key
genes should be investigated during post-mortem examinations:

• CYP3A4 and CYP3A5: These enzymes metabolize fentanyl into its inactive metabolite,
norfentanyl. Reduced-function polymorphisms in these genes can lead to slower
clearance, resulting in prolonged exposure and an increased risk of respiratory
depression [172,173].

• OPRM1: This gene encodes the MOR, which mediates fentanyl’s central effects. The
A118G polymorphism in OPRM1 alters receptor binding affinity, with certain geno-
types associated with enhanced sensitivity or tolerance to fentanyl [174,175].
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• ABCB1: This gene encodes P-glycoprotein, which regulates fentanyl’s transport across
the blood–brain barrier. Variants such as C3435T can influence fentanyl’s central
nervous system concentrations, impacting both efficacy and toxicity [176,177].

Genetic testing for these polymorphisms can provide valuable insights into the mecha-
nisms behind fatal cases, particularly when polydrug use or comorbidities are involved.

6. Discussion
Although fentanyl misuse has been documented since its discovery, its abuse has

surged to alarming levels due to illegal trafficking and its replacement of traditional opioids
like heroin [178]. In the United States, fentanyl-related fatalities have reached epidemic
proportions, with approximately 70,000 deaths reported in 2022 alone [179]. Europe is also
experiencing rising mortality rates; Sweden documented its first fentanyl-related deaths
in 1997, and since 2012, the European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA) has reported growing availability and abuse of fentanyl and its analogs [180].

In Italy, fentanyl abuse is becoming an emergent concern. Between 2018 and 2023, law
enforcement agencies seized 123.17 g of fentanyl powder, equivalent to thousands of lethal
doses, alongside tablets and other formulations. Recognizing the severity of the issue, a
law enacted on 28 July 2020 classified fentanyl analogs as illegal substances. Despite these
measures, fentanyl continues to pose a national and international emergency [181]. The na-
tional Drugs Policies Department has outlined measures such as increasing police oversight
of the precursors and chemical substances used in fentanyl production, enhancing web
monitoring to prevent trafficking, and tightening controls on fentanyl distribution within
hospital pharmacies [181]. However, despite these initiatives, significant challenges remain.
Fentanyl’s high potency means that even small quantities can cause mass intoxications,
straining public health systems. Moreover, the proliferation of fentanyl analogs, which
often bypass existing regulations due to their chemical variability, complicates enforcement.

One factor driving the crisis is the accessibility of fentanyl via the dark web. On-
line platforms enable anonymous distribution of fentanyl and its analogs, complicating
enforcement efforts. Furthermore, fentanyl’s lower cost, higher potency, and ease of adulter-
ation with other substances make it an attractive option for both users and dealers [37,38].
This widespread substitution of fentanyl for heroin amplifies the risks, as users are often
unaware of its presence, significantly increasing the likelihood of overdose.

For a fentanyl-related death to be accurately identified, a multifaceted forensic investi-
gation is essential. This begins with a thorough judicial inspection, which often reveals the
drug paraphernalia commonly associated with fentanyl abuse, such as syringes, needles,
spoons, aluminum foil, or transdermal patches. A detailed external examination of the
body can uncover telltale signs, including needle marks, purple discoloration indicative of
respiratory depression, frothy material around the mouth (referred to as the “mushroom
plume”), and pupillary constriction (miosis). Together, these findings lay the groundwork
for an autopsy that, when combined with toxicological and histopathological analyses,
provides crucial insights into fentanyl’s effects on key organs, including the brain, lungs,
heart, liver, and gonads [129]. While the autopsy remains the gold standard for determin-
ing the cause of death in fentanyl-related cases, future studies should focus on deepening
our understanding of fentanyl’s specific impact on organ systems. Histological and im-
munohistochemical investigations can provide more detailed insights into organ-specific
damage, particularly in the brain, lungs, heart, and liver [182]. These studies could identify
novel markers of fentanyl-induced toxicity, improving diagnostic accuracy and advancing
forensic methodologies.

Additionally, the role of polydrug use in fentanyl-related deaths warrants further
investigation. Understanding the pharmacokinetic and pharmacodynamic interactions
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between fentanyl and substances such as alcohol, benzodiazepines, and stimulants like
cocaine is critical for assessing the compounded risks of polydrug abuse. Advanced toxi-
cological techniques should be applied to quantify these interactions and establish their
contribution to fatal outcomes [183]. Moreover, as previously described, the identification
of xylazine remains challenging. Standardized toxicological protocols and increased aware-
ness of xylazine’s role in drug-related deaths are critical. Expanding routine toxicology
panels to include xylazine, improving post-mortem sampling techniques, and developing
guidelines for interpreting xylazine levels are necessary steps to address this emerging
issue [167,168].

Pharmacogenetics also holds significant potential for advancing forensic investigations.
Studies focusing on genetic polymorphisms in key enzymes (e.g., CYP3A4 and CYP3A5),
transporters (e.g., ABCB1), and opioid receptors (e.g., OPRM1) could help explain individ-
ual variability in fentanyl metabolism, efficacy, and toxicity [72]. Future research could
explore integrating genetic testing into standard forensic protocols, enabling personalized
interpretations of post-mortem findings.

Finally, the impact of fentanyl analogs on organ damage and their pharmacological
profiles remains underexplored. As these substances differ in potency and metabolism,
comparative studies are essential for developing comprehensive forensic tools that can
adapt to the evolving drug landscape. In this way, the use of artificial intelligence tools
could be very helpful in the future [184].

Addressing the fentanyl epidemic requires not only robust enforcement and preven-
tion strategies but also a concerted effort in scientific research to better understand its
effects and enhance medico-legal practices. Additionally, enhancing collaboration between
toxicologists, forensic pathologists, and public health officials can ensure more accurate
documentation and an understanding of xylazine’s impact, ultimately improving responses
to this growing public health crisis [39,47].

7. Conclusions
Fentanyl is a potent synthetic opioid widely used for its rapid onset and multiple

routes of administration, making it an effective analgesic for chronic pain management
and intraoperative anesthesia. However, its accessibility through illegal channels, low
cost, and extreme potency have made it a major drug of abuse worldwide. Its misuse is
associated with severe side effects, including central nervous system depression, respiratory
depression, cardiac arrhythmias, hypotension, coma, and death.

Fentanyl trafficking and abuse have become escalating problems, especially as opioid-
related deaths continue to rise globally. In the United States, programs such as the National
Forensic Laboratory Information System (NFLIS) and the National Drug Early Warning
System (NDEWS) monitor emerging drug trends. NDEWS also collaborates with the
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and Europol to
exchange information and maintain an early warning system for new psychoactive sub-
stances. Despite these efforts, the measures implemented thus far have proven insufficient
to curb the fentanyl epidemic. Additionally, the co-administration of xylazine presents
distinct challenges for the scientific community.

To combat this crisis effectively, stricter controls must be implemented across all
stages of fentanyl’s lifecycle, including production, medical distribution, and trafficking
prevention. Enhanced regulations and international collaboration are crucial for reducing
both the medical misuse and illicit circulation of fentanyl.

Given the increasing number of fentanyl-related deaths, particularly in the United
States and Europe, it is imperative to establish standardized medico-legal protocols. These
protocols should aim to improve the accuracy and efficiency of diagnosing fentanyl-related
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deaths, guiding forensic investigations in suspected overdose cases. Furthermore, integrat-
ing pharmacogenetic testing and toxicological analyses into routine forensic practice will
enhance the identification of individual susceptibilities, providing valuable insights into
the causes of fatal outcomes.

The growing prevalence of fentanyl misuse also underscores the importance of public
health interventions, such as harm reduction programs, education on opioid risks, and
improved access to addiction treatment. Strengthening these measures will not only help
mitigate the impact of fentanyl but also address the broader opioid epidemic.
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