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Abstract: Accelerated photooxidation of salicylic acid (SA) was performed using UV radia-
tion and hydrogen peroxide. HPLC-MS analysis showed that the primary intermediates are
2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Deeper
oxidation leads to low molecular weight aliphatic acids, such as maleic, fumaric, and
glyoxylic. The photooxidation of the main intermediates was carried out in the same
conditions. The degradation of SA and its main intermediates follows first-order reaction
kinetics. In the case of UV irradiation alone, photodegradation of 2,5-dihydroxybenzoic
acid is slightly faster (reaction rate constant is 0.007 min−1) compared to SA (0.0052 min−1).
Other products degrade more slowly than SA. Hydrogen peroxide, in concentrations of
1.8–8.8 mM, accelerates the photodegradation of salicylic acid and intermediate products.
An ecotoxicological evaluation of SA and the main products was performed using the EPI
SuiteTM software. The overall persistence (POV) and long-range transport potential (LRTP)
of all transformation products were assessed using OECD POV and the LRTP screening tool.
Salicylic acid and its transformation products have low toxicity. Due to their high solubility,
these contaminants can travel considerable distances in the aquatic environment. SA and
phenol have LRTP values of 156–190 km. Other products can travel shorter distances (less
than 100 km).

Keywords: photooxidation; salicylic acid; dihydroxybenzoic acid; pyrocatechol; ecotoxicity

1. Introduction
Salicylic acid (SA) is a low-toxicity contaminant with an annual global production of

approximately 180,000 tons. The main applications are pharmaceuticals, dermocosmetics,
and food preservatives. In the pharmaceutical industry, SA is used mainly in the synthesis
of acetylsalicylic acid (aspirin), which is one of the most consumed drugs [1]. SA is also
a forerunner in the synthesis of other drugs, such as 4-aminosalicylic acid, salicylamide,
ethenzamide, phenyl salicylate, and bismuth subsalicylate. In skin care products, SA is
used as an effective peeling agent with additional bacteriostatic, fungicidal, and keratolytic
effects. SA is a typical component in dermocosmetics to treat acne, melasma, seborrhea,
freckles, lentigines, dandruff, sun damage, etc. [2,3].

In the food industry, SA has long been used as a preservative for fruits and vegetables.
Exogenous SA reduces respiration and ethylene production, thereby inhibiting post-harvest
ripening. This prevents softening and discoloration, maintains the concentration of sugars,
organic acids, and polyphenols, and reduces damage during cold storage [4,5]. Being a
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plant hormone, SA activates the resistance of plant tissues to the development of biotrophic
pathogens [6,7]. In agriculture, SA is increasingly used to protect crops from stress caused
by drought, salinity, and metal ions [8–13].

SA enters the environment in various ways. The main sources of SA contamination
are industrial wastewater, municipal sewage, and agricultural leaks. Once taken by a
patient, aspirin is rapidly metabolized [14]; then, the formed SA is excreted in the urine
and enters the sewage. Therefore, hospital sewages often contain increased amounts of SA
and its secondary metabolites [15]. Another source is expired aspirin and other SA-derived
medications. If disposed of improperly, SA-derived drugs can cause detectable levels of SA
in the environment. Once released into the environment, SA can persist for a long time,
negatively affecting aquatic animals. In addition, the presence of SA in the water reservoirs
generally increases the resistance of algae to stress factors, causing them to grow faster [16].

The removal of SA from wastewater can be carried out by various methods. Coagula-
tion and electrocoagulation provide rather moderate remediation [17–19]. The disadvantage
of these techniques is that they produce a precipitate enriched in metal hydroxides. In this
respect, membrane separation techniques seem to be more advantageous because they do
not generate metal ion contamination [20].

A well-known and versatile method of water purification is adsorption. A commonly
used non-polar sorbent is activated carbon, which is well-suitable for SA adsorption [21,22].
The highly porous surface of activated carbon contains graphene-like fragments whose π

electrons interact with aromatic SA molecules, thus supporting their adsorption [23]. The
presence of basic functional groups on the carbon surface may promote the adsorption
of SA [24]. Similar carbonaceous adsorbents for SA are biochars obtained from agricul-
ture and food waste material by pyrolysis [25,26]. Adsorption removal of SA can also
be performed using inexpensive natural materials. For example, gooseberry husks from
agricultural waste were activated with orthophosphoric acid and heat treated at 500 ◦C
to enhance SA adsorption [27]. Zeolite minerals have a polar surface that weakly adsorbs
SA, but surface modification with cationic surfactants enhances adsorption [28]. The modi-
fier cetylpyridinium chloride provides higher adsorption capacity compared to aliphatic
surfactant. This is probably because the aromatic pyridine ring further increases the ad-
sorption interaction [28]. The disadvantage of adsorption methods is the need to regenerate
used adsorbents.

Among the biological methods of SA remediation, microalgae technology is considered
a promising alternative to conventional activated sludge treatment [29]. By harnessing
solar energy and binding CO2, microalgae technology meets the criteria for a sustainable
remediation strategy [30,31]. The biomass growth and biodegradation of salicylic acid
depend largely on the species and strain of microalgae used [32,33]. The cultivating medium
also plays a role, with the most important components probably being nitrates, phosphates,
potassium, and cyanocobalamin [32]. The microalgae cultivation technology is currently
being developed at a laboratory scale and requires scale-up to be applied in real industry.

Advanced oxidation processes are used to break down SA into smaller molecules [34,35].
An important issue is the selection of oxidation conditions so that SA undergoes mineralization
to simple compounds and does not create intermediate products, which can be more toxic than
the substrate [36]. Typically, advanced oxidation processes use agents with high oxidation
potential, such as hydroxide radicals [37]. The use of AOPs is growing steadily due to their
low cost, ease of operation, and high mineralization of recalcitrant organic contaminants.
Recent reports describe the degradation of tetracycline [38], herbicides and insecticides [39,40],
phenol, and nitrophenol [41–43]. The electro-Fenton process includes the in situ generation of
H2O2 and its subsequent catalytic decomposition into hydroxyl radicals [44,45].



Int. J. Mol. Sci. 2025, 26, 697 3 of 16

The efficiency of SA degradation can be significantly increased by combining oxidizing
agents with UV radiation. An example is a deep degradation of SA by UV-activated peroxy
disulfate using a biochar photocatalyst [46]. The combination of photocatalytic reaction
with ozone provides approximately twice the efficiency of SA degradation compared to the
photocatalytic reaction alone [47].

The combination of hydrogen peroxide and UV radiation also ensures effective oxi-
dation of SA [48–50]. In this case, hydroxyl radicals are formed by the direct photolysis
of hydrogen peroxide under the influence of UV radiation [51,52]. Hydroxyl radicals
react easily with SA, resulting mainly in 2,5-dihydroxybenzoic acid (2,5-DHBA) and 2,3-
dihydroxybenzoic acid (2,3-DHBA) [53–55].

Under the combined action of UV and H2O2, the oxidation products of SA undergo
further photooxidation. The novelty of this work is the comparison of the photodegradation
kinetics of SA and the three main oxidation products measured under the same experi-
mental conditions. The accelerating effect of hydrogen peroxide was studied for the main
intermediates using different concentrations of H2O2. The ecotoxicological characteristics
of major degradation products were also assessed [54,55].

2. Results and Discussion
2.1. The Influence of H2O2 on Photodegradation of Salicylic Acid

Figure 1a shows the kinetic lines of SA photodegradation. Under the influence of UV
irradiation alone, photodegradation occurs at a moderate rate. Approximately 20% of SA
degrades for 60 min of irradiation (Figure 1a). Similar results were obtained by Djouder
et al. [56], who showed that photodegradation occurs even at low SA concentrations. Pho-
todegradation of SA is further accelerated in the presence of hydrogen peroxide (Figure 1a).
The obvious cause is the photolysis of hydrogen peroxide, resulting in aggressive hydroxyl
radicals, which attack the SA molecule. Figure 1b indicates that photooxidative degradation
follows the first-order kinetic model—the values of the reaction rate constant increase from
0.0052 to 0.0929 min−1 (Figure 1b). Figure 1c summarizes the accelerating effect depending
on the H2O2 concentration. At low peroxide concentrations, increasing its amount causes
the formation of more hydroxyl radicals and thus increases the rate of SA degradation.
However, the accelerating effect of hydrogen peroxide decreases with increasing its concen-
tration (Figure 1c). A similar relationship was also observed in [51]. This dependence on
H2O2 concentration can be explained by the fact that at higher concentrations, hydrogen
peroxide can act as a radical scavenger [57,58].
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Figure 1. (a) Kinetic lines of SA photodegradation depending on the concentration of hydrogen peroxide.
(b) The kinetic lines transformed according to the kinetic model of a first-order reaction. (c) The values of
the photodegradation rate are constant depending on the concentration of hydrogen peroxide.
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2.2. Identification of Salicylic Acid Photodegradation Products
Products of SA Photodegradation in the Presence of H2O2

Products of SA photodegradation in the presence of hydrogen peroxide were identified
using the LC-MS technique. Figure 2 shows exemplary chromatograms of the reaction
mixtures, and Table 1 lists the corresponding MS characteristics. Primary products are
formed as a result of a direct attack by aggressive hydroxyl radicals, which easily abstract
the hydrogen atoms from the aromatic ring of SA. The resulting aromatic radicals bind
other hydroxyl radicals, leading to the formation of dihydroxybenzoic acids. The HO•
radical is a strong electrophilic reagent. Therefore, the radical attack is directed at positions
with increased electron density [53,59]. The dominant formation of 2,5-DHBA is due to
the uneven electron density in the aromatic ring of SA. The electron density is higher at
position 5, which favors the electrophilic addition of HO• radicals at this position [60].
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Figure 2. Chromatograms recorded at characteristic m/z values: (a) phenol, (b) glyoxylic acid,
(c) salicylic acid, (d) pyrocatechol, (e) maleic and fumaric acids, and (f) dihydroxybenzoic acids.

Table 1. Retention times and m/z values of the main products of SA photodegradation.

Retention Time, TR Compound Molecular Weight m/z

4.87 phenol 94 [M+H]+ 95
10.73 glyoxylic acid monohydrate 92.05 [M−H]− 91
11.14 salicylic acid 138.12 [M−H]− 137
11.33 pyrocatechol 110.11 [M+H]+ 111
12.12 maleic acid 116.07 [M+H]+ 117
12.34 2,3-dihydroxybenzoic acid 154.12 [M+H]+ 155
12.43 2,5-dihydroxybenzoic acid 154.12 [M+H]+ 155
15.76 fumaric acid 116.07 [M+H]+ 117

Under the influence of UV radiation, dihydroxybenzoic acids can lose the carboxyl group,
which leads to the formation of dihydroxybenzenes. This study revealed the presence of
pyrocatechol (Figure 2d), which is a product of decarboxylation of 2,3-dihydroxybenzoic acid
(Table 1). Phenol (Figure 2a) is also present, which is probably formed by the decarboxylation
of SA. Similar intermediates were revealed during the oxidation of SA by ozone that was
assisted with UV radiation. The main products were found to be 2,5-DHBA, 2,3-DHBA, and
pyrocatechol [60–63].
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Further radical attacks lead to the opening of the aromatic ring and the formation
of aliphatic acids, mainly maleic and fumaric acids (Figure 2e). These unsaturated acids
are easily oxidized to low molecular weight glyoxylic acid (Figure 2b) and ultimately to
the mineralization product, CO2. Based on the identified products, a scheme of salicylic
acid transformation under the influence of H2O2/UV was proposed (Figure 3).

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 5 of 17 
 

 

Table 1. Retention times and m/z values of the main products of SA photodegradation. 

Retention Time, TR Compound Molecular Weight m/z 
4.87 phenol 94 [M+H]+ 95 

10.73 glyoxylic acid monohydrate 92.05 [M−H]− 91 
11.14 salicylic acid  138.12 [M−H]− 137 
11.33 pyrocatechol 110.11 [M+H]+ 111 
12.12 maleic acid 116.07 [M+H]+ 117 
12.34 2,3-dihydroxybenzoic acid 154.12 [M+H]+ 155 
12.43 2,5-dihydroxybenzoic acid 154.12 [M+H]+ 155 
15.76 fumaric acid 116.07 [M+H]+ 117 

Further radical attacks lead to the opening of the aromatic ring and the formation of 
aliphatic acids, mainly maleic and fumaric acids (Figure 2e). These unsaturated acids are 
easily oxidized to low molecular weight glyoxylic acid (Figure 2b) and ultimately to the 
mineralization product, CO2. Based on the identified products, a scheme of salicylic acid 
transformation under the influence of H2O2/UV was proposed (Figure 3). 

 

Figure 3. Scheme of transformation of the main products of SA photodegradation: (1) salicylic acid; 
(2) 2,3-dihydroxybenzoic acid; (3) 2,5-dihydroxybenzoic acid; (4) phenol; (5) pyrocatechol; (6) maleic 
acid; (7) fumaric acid; and (8) glyoxylic acid monohydrate. 

2.3. The Influence of H2O2 on the Degradation of the Main Transformation Products of Salicylic 
Acid 

Similarly to SA, the intermediate products detected in Section 2.2 are reactive mole-
cules and undergo photodegradation. Therefore, their photodegradation kinetics were 
studied using the same experimental conditions as those used for SA. Figure 4a–c show 
the kinetic lines of the photodegradation of 2,5-dihydroxybenzoic acid, 2,3-dihydroxyben-
zoic acid, and pyrocatechol. 

Under the influence of UV radiation alone, 2,5-DHBA degrades slightly faster than 
SA, while 2,3-DHBA degrades slightly more slowly than SA and slower than 2,5-DHBA, 
too (Figures 4a,b, and 1a). As expected, the addition of H2O2 to the reaction solution accel-
erates the photodegradation of both dihydroxybenzoic acids (Figure 4a,b). The degree of 
acceleration is much greater for 2,5-DHBA than for 2,3-DHBA. Using 8.8 mM H2O2, 2,5-
DHBA was 99.8% decomposed within 60 min (Figure 4a), whereas 2,3-DHBA was only 
44% degraded (Figure 4b). 

Figure 4c illustrates the photodegradation of pyrocatechol. Without H2O2, pyrocate-
chol decomposes more slowly compared to SA and dihydroxybenzoic acids. Within 60 
min of UV irradiation, pyrocatechol degradation is only 7% (Figure 4c). As in the case of 
dihydroxybenzoic acid, the photodegradation of pyrocatechol is significantly accelerated 

1 

2 

3 

4 

5 
6 

7 

8 
1 

Figure 3. Scheme of transformation of the main products of SA photodegradation: (1) salicylic acid;
(2) 2,3-dihydroxybenzoic acid; (3) 2,5-dihydroxybenzoic acid; (4) phenol; (5) pyrocatechol; (6) maleic
acid; (7) fumaric acid; and (8) glyoxylic acid monohydrate.

2.3. The Influence of H2O2 on the Degradation of the Main Transformation Products of
Salicylic Acid

Similarly to SA, the intermediate products detected in Section 2.2 are reactive
molecules and undergo photodegradation. Therefore, their photodegradation kinetics were
studied using the same experimental conditions as those used for SA. Figure 4a–c show the
kinetic lines of the photodegradation of 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic
acid, and pyrocatechol.

Under the influence of UV radiation alone, 2,5-DHBA degrades slightly faster than SA,
while 2,3-DHBA degrades slightly more slowly than SA and slower than 2,5-DHBA, too
(Figures 4a,b, and 1a). As expected, the addition of H2O2 to the reaction solution accelerates
the photodegradation of both dihydroxybenzoic acids (Figure 4a,b). The degree of acceleration
is much greater for 2,5-DHBA than for 2,3-DHBA. Using 8.8 mM H2O2, 2,5-DHBA was 99.8%
decomposed within 60 min (Figure 4a), whereas 2,3-DHBA was only 44% degraded (Figure 4b).

Figure 4c illustrates the photodegradation of pyrocatechol. Without H2O2, pyrocatechol
decomposes more slowly compared to SA and dihydroxybenzoic acids. Within 60 min of UV
irradiation, pyrocatechol degradation is only 7% (Figure 4c). As in the case of dihydroxyben-
zoic acid, the photodegradation of pyrocatechol is significantly accelerated by H2O2. Using
8.8 mM H2O2, pyrocatechol was 75% decomposed within 60 min (Figure 4c). The kinetic lines
in Figure 4c also show that the photooxidation of pyrocatechol has an induction period of
about 10 min. The obvious explanation is that pyrocatechol acts as a radical scavenger [55].

Figure 4d–f show the kinetic lines transformed on a logarithmic scale. The resulting
plots are quite linear, indicating that the hydrogen peroxide-assisted photooxidation of
2,5-DHBA, 2,3-DHBA, and pyrocatechol follows the kinetics of a first-order reaction. The
corresponding rate constants are listed in Table 2. The comparison of numerical values in
Table 2 confirms the above conclusion: adding H2O2 accelerates the photodegradation of
dihydroxybenzoic acids and significantly accelerates the photodegradation of pyrocatechol.
Under the influence of UV radiation enhanced with H2O2, 2,3-dihydroxybenzoic acid and
pyrocatechol decompose more slowly than SA.
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Table 2. Reaction rate constants (min−1) of photodegradation of SA and main intermediates depend-
ing on H2O2 concentrations.

Compound 0 mM 1.8 mM 4.4 mM 8.8 mM

salicylic acid 0.0052 0.0295 0.0378 0.0512
2,5-dihydroxybenzoic acid 0.007 0.0148 0.0234 0.0552
2,3-dihydroxybenzoic acid 0.0039 0.0043 0.0067 0.0099

pyrocatechol 0.0013 0.0189 0.023 0.03

2.4. Ecotoxicological Evaluation of Salicylic Acid Transformation Products

The identified intermediates make it possible to assess the possible environmental
hazard of the SA photooxidation that is assisted by hydrogen peroxide. Table 3 shows
the physicochemical properties and environmental characteristics of the photooxidation
products calculated using EPI SuiteTM 4.11 software.

The boiling point (BP) and vapor pressure (VP) provide information on whether a
compound will be emitted into the atmosphere relatively quickly after being released
into the environment. Typically, an organic compound is considered volatile if it has 15
or fewer carbon atoms, its vapor pressure is greater than 10 Pa at 25 ◦C, and its boiling
point at atmospheric pressure is less than 260 ◦C [64]. Table 3 shows that only phenol and
pyrocatechol meet these criteria. Salicylic acid and other degradation products have a VP
below 7.5 × 10−2 mmHg and can, therefore, be classified as low-volatile compounds. The
parameters BP and VP indicate that salicylic acid and its transformation products do not
tend to evaporate and remain in the gas phase.
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Table 3. Physicochemical parameters and environmental characteristics of salicylic acid and its pho-
tooxidation products: boiling point (BP), melting point (MP), vapor pressure (VP), Henry’s law constant
(Henry’s LC), the logarithmic value of n-octanol-water partition coefficient (log KOW), logarithmic value
of air/water partition coefficient (log KAW), logarithmic value of n-octanol/air partition coefficient (log
KOA), logarithmic value of organic carbon/water partition coefficient (log KOC), bioconcentration factor
(BCF), and half-life values.

Compound BP,
◦C

MP,
◦C

VP,
mmHg

WS,
mg/L

Henry’s LC * log
KOW

log
KAW

log
KOA

Log
KOC

BCF
Half-Life, h

Air Water Soil

SA 298 94 8.2 × 10−5 3808 1.52 × 10−9 2.24 −6.523 8.783 1.573 11.96 19.7 360 720
pyrocatechol 230 46 1.48 × 10−1 73,200 5.83 × 10−1 0.88 −7.309 8.189 1.746 1.17 2.47 360 720

2.3-DHBA 338 128 2.9 × 10−7 26,100 1.48 × 10−12 1.2 −10.22 11.96 1.152 1.234 27.6 360 720
2.5-DHBA 338 128 4.36 × 10−5 9034 1.48 × 10−12 1.74 −10.22 11.96 1.452 2.163 27.6 360 720
maleic acid 285 84 1.26 × 10−12 104,000 1.34 × 10−12 −0.48 −10.26 10.72 0.41 1.164 29.3 208 416

fumaric acid 285 84 1.26 × 10−12 7000 1.34 × 10−12 −0.48 −10.26 10.72 0.41 1.164 29.3 208 416
GAMH 249 57 1.04 × 10−3 1,000,000 3.13 × 10−9 −0.7 −6.894 6.194 −1.054 0.8999 13.8 208 416
phenol 182 40 4.30 × 101 26,200 5.61 × 10−7 1.46 −4.866 6.326 1.9 2.419 9.76 360 720
PHPG 289 75 4.16 × 10−4 114,000 5.56 × 10−12 0.47 −9.643 10.11 0.893 1.091 5.94 360 720

* mol L−1 atm−1.

The parameter of water solubility (WS) suggests the fate of substances in water bodies.
The solubility of salicylic acid in water at 25 ◦C is 3808 mg L−1. The photooxidation products
with several –COOH and –OH groups are more soluble in water than SA (Table 3). The
good solubility additionally reduces evaporation into the air phase. One can conclude that
SA and its photooxidation products do not tend to migrate from water to air. However, the
high values of WS suggest that these pollutants can migrate with water over considerable
distances. The highly soluble compounds can also be easily absorbed by plants and animals.

Due to its good solubility, salicylic acid is often detected in the aquatic environment.
According to Yang et al., SA is one of the three most frequently detected pharmaceutical
and personal care products in surface waters [65]. Recorded SA concentrations in aquatic
environments range from 0.1 to 16.9 µg L−1 in Asia and from 2.8 to 27.8 µg L−1 in North
America. The concentration of SA in wastewater from the pharmaceutical industry can
reach 500 mg L−1 [29,66,67]. Benzoic acid and a wide range of benzene derivatives and
related compounds are widely used as antibacterial and antifungal preservatives and
as flavoring agents in food, cosmetics, hygiene, and pharmaceutical products. Due to
their widespread production and use, these compounds are found in the environment,
mainly in water, but also in soil and air [68]. One of the main pollutants of this group
is 2,4-dihydroxybenzoic acid [63]. Phenolic compounds are also common surface water
pollutants. More than 60 different phenols were identified in the aquatic environment in
concentrations from 0.065 to 179,000,000 ng L−1. The highest concentrations were recorded
in surface water channels in India [69].

The log KOW parameter also confirms the hydrophilic nature of salicylic acid and its
transformation products. The discussed compounds are characterized by log Kow values in
the range from –0.7 to +2.24 (Table 3). This suggests that they are less likely to accumulate in
living organisms, sediments, and soils. The values of a BCF parameter less than 12 indicate a
low probability of accumulation and bioconcentration in living organisms. It is worth noting
that the oxidation products have even lower BCF values than the substrate (Table 3).

The ability of pollutants to bioconcentrate in living organisms is one of the parameters
taken into account in assessing a threat posed by the new environmental pollutants. Due to
its low potential for accumulation, the presence of SA in the body of humans or animals is
mainly detected in serum and urine [70]. However, it has also been observed that salicylic
acid can undergo biotransformation to oxidation products, as well as the formation of
conjugates with amino acids. Conjugation of salicyluric acid with glycine was found in
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pigeons. In chickens, no glycine conjugate was formed, but instead, a doubly conjugated
metabolite with ornithine was identified in plasma, feces, kidneys, and liver [71]. In the
plant kingdom, salicylic acid is widely distributed and has many physiological effects
important for plant survival. SA is an important signaling molecule in induced systemic
acquired resistance in tobacco, cucumbers, tomatoes, and other plants [72]. Therefore,
2,4-DHBA and its glycosylated form were found to be accumulated after SA application.
2,4-DHBA acts as a potentially bioactive molecule and is mainly stored conjugated with
glucose. When 2,4-DHBA is applied exogenously, tea plants accumulated more 2,4-DHBA
than SA and showed induced resistance to Ps. camelliae-sinensis (PCS) infection. These
results indicate that glucosylation of 2,4-DHBA positively regulates disease resistance in
tea plants [73].

The values of overall persistence (POV) and long-range transport potential (LRTP) of all
transformation products were assessed using OECD POV and the LRTP screening tool. [74].
The input parameters were log KOW, log KOA, and log KAW, half-lives in air, water, and
soil, and molar masses of compounds. By taking into account the different migration
paths (water, air, and soil), the resulting diagram contains four regions with a specific
priority of environmental risk. Region A corresponds to the high values of both LRTP and
POV. Examples of persistent pollutants located in region A include hexachlorocyclohexane,
p-cresol, and polychlorinated biphenyls. They are considered pollutants of high priority.
Region B corresponds to the high values of LRTP and low values of POV, whereas region C
corresponds to the low values of LRTP and high values of POV. Pollutants located in these
regions are considered to be of moderate priority. Region D corresponds to the pollutants
having low values of both LRTP and POV. They are considered to be of low priority [75].

The LRTP index shows the environmental mobility of the studied products. Sal-
icylic acid and phenol have LRTP values of 156–190 km (Figure 5). The LRTP values
decrease with the increase in the number of hydroxyl groups in the molecule. Therefore,
other transformation products can be transported at much shorter distances (less than
100 km). The influence of the structure, molar mass, and type of atoms in individual
molecules was described by Mostrąg et al. [75]. The overall durability parameter shows
similar relationships. The POV values of the discussed compounds are in the range from
19 to 108 days, with maleic acid being the most stable (Figure 5). Considering the LRTP and
Pov values in the framework of classification by Klasmeier et al. [74], salicylic acid and its
transformation products can be assigned to the compounds with the lowest priority. The
results are similar to the oxidation products ethylhexyl-methoxycinnamate (EHMC) and
octyl-dimethyl-para-aminobenzoic acid (ODPABA), which are used as UV filters and are
also classified as emerging pollutants [76,77].

The toxicity of salicylic acid transformation products was assessed by determining
the acute toxicity for three groups of indicator organisms using the Ecosar module of the
Epi Suite program. Such simulations usually provide reliable toxicity results. The obtained
results indicate that both salicylic acid and its transformation products have low toxicity.
The only toxic product is phenol (Figure 6).

The non-toxic nature of salicylic acid is confirmed by the therapeutic effects of SA
on humans, animals, and plants. For example, Mahdavian found that salicylic acid (SA)
is a plant hormone that has therapeutic effects against non-biological stresses such as
salinity [78]. However, it should be remembered that any contamination may cause un-
desirable physiological reactions in non-target species. Despite its widespread use, SA
can cause acute and chronic toxicity known as salicylism, symptoms of which include
nausea, vomiting, dizziness, disorientation, delirium, stupor, psychosis, coma, and even
death in the worst cases [79]. Therefore, there is great concern about the presence of
SA in municipal and industrial wastewater, and its removal before discharge into the
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aquatic environment has attracted much attention in recent years [80,81]. In fact, out of
140 emerging contaminants (ECs), SA was recently designated as one of eighteen that
should be regulated for wastewater discharge [33,82]. Previous studies have shown that
SA-type contaminants are toxic to a wide range of aquatic organisms, causing liver and
kidney damage, protein denaturation, and even mucosal bleeding [83,84]. For example,
exposure to SA can significantly increase the activity of selenium-dependent glutathione
peroxidase and glutathione reductase in the liver of brown trout (Salmo trutta fario) and
cause nonspecific pathological changes such as fusion of the branchial lobes and epithelial
cell hyperplasia [85]. SA also significantly reduces the respiratory capacity of Mytilus
galloprovincialis, causing neurotoxicity and oxidative stress [86]. Furthermore, SA reduced
swimming speed and distance, heart rate, and jaw movements in Daphnia, suggesting that
SA may act as an ecotoxicological factor affecting both the behavior and physiology of
freshwater crustaceans [87]. All these studies emphasize the need for more comprehen-
sive research on the molecular mechanisms underlying SA toxicity in aquatic ecosystems.
Kamaya et al. [88] studied the toxicity of benzoic acid and its derivatives with hydroxyl
and/or methoxyl groups substituted in the aromatic ring on the freshwater crustacean
Daphnia magna under neutral conditions (initial pH of 7.45 ± 0.05). Toxicity, expressed as
the EC50 value, varied largely depending on the number and position of hydroxyl groups.
In particular, benzoic acids with ortho-substituted hydroxyl groups were more toxic than
benzoic acids with meta- and/or para-substituted hydroxyl groups. Of the compounds
tested, 2,4,6-trihydroxybenzoic acid showed the highest toxicity with a 48 h EC50 [88]. On
this basis, it can be stated that transformation products such as pyrocatechol, 2,3-DHBA,
and 2,5-DHBA may also be potentially dangerous to the environment. In addition, hydrox-
ybenzoic acids are precursors of highly toxic quinones [63]. Another toxic product of the
photodegradation of salicylic acid is phenol. Phenol can cause serious health problems,
such as convulsions, loss of coordination, tremors, respiratory arrest, and muscle weakness.
Phenol also causes serious damage to the nervous system. Therefore, phenol is subject to
environmental regulations [89].
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3. Materials and Methods
3.1. Reagents

Analytical standards of salicylic acid, 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic
acid, and pyrocatechol of 99% purity were purchased from Sigma Aldrich. Hydrogen perox-
ide (H2O2) solution (30% w/v) was purchased from POCh (Gliwice, Poland). The methanol,
water, and formic acid used in the chromatographic analyses were purchased from Sigma
Aldrich (St. Louis, Missouri, United States).

3.2. Experiments on the Photodegradation of Salicylic Acid and Its Transformation Products

Aqueous solutions of salicylic acid, 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic
acid, and pyrocatechol had a concentration of 0.36 mM. The photodegradation experiments
were carried out using a photoreactor (Heraeus, Germany) equipped with a 150 W medium-
pressure mercury lamp (TQ150W) and cooled with tap water to a temperature of 20 ± 1 ◦C.
The photoreactor was placed on a magnetic stirrer to carry out the reaction in the entire volume
of the reaction mixture. The polychromatic light used in the photodegradation experiments
was characterized by excitation wavelengths of 313, 365, 405, 436, 546, and 578 nm. The
corresponding illumination intensity values were 2.5, 5.8, 2.9, 3.6, 4.6, and 4.2 W, respectively.

The concentrations of the tested compounds were determined using a JENWAY 7315
UV–vis spectrophotometer. The measurements were carried out at a wavelength of 300 nm
for salicylic acid, 276 nm for pyrocatechol, 324 nm for 2,5-dihydroxybenzoic acid, and
292 nm for 2,3-dihydroxybenzoic acid.

3.3. Detection of Salicylic Acid Transformation Products

The transformation products were detected using a Shimadzu UFLC XR liquid chro-
matograph equipped with an MS detector (LC-MS 2020 Shimadzu) equipped with an
electrospray ionization source. A Kinetex® Phenomenex C18 column with dimensions of
3 mm × 100 mm, particle size of 2.6 µm, and pore size of 100 Å was used for the analysis.
The mobile phase consisted of water with 0.1% HCOOH (A) and methanol (B). The elution
gradient was the following: 95:5 v/v (time 0); 95:5 v/v (time 7); 55:45 v/v (time 10); 35:65
v/v (time 11); 5:95 v/v (time 12); 5:95 v/v (time 14); 95:5 v/v (time 15); 95:5 v/v (time 17).
The flow rate was 0.4 mL·min−1, the column temperature was 45 ◦C, and the injection
volume was 5 µL. The DAD detector scanned the spectral range from 220 to 700 nm. The
electrospray ionization detector operated using the following parameters: a temperature of
the desolvation line at 250 ◦C, a nebulizing gas flow of 1.5 mL min−1, and a heating block
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temperature of 400 ◦C. The negative ion with m/z of 137 was selected to monitor the sali-
cylic acid. In addition, the entire range of 50–750 m/z was scanned in positive and negative
ionization to detect the presence of other analytical signals. The operating conditions of
the mass spectrometer were as follows: a drying gas (N2) flow rate of 1.5 mL·min−1, gas
temperature of 400 ◦C, nebulizer gas pressure of 30 psi, fragmentor voltage of 70 V a, and
capillary voltage of 4000 V.

3.4. Determination of Ecotoxicological Characteristics

The physicochemical parameters of SA and its transformation products were deter-
mined using the EPI SuiteTM 4.11 software. [90]. The software uses quantitative structure–
activity relationship (QSAR) models to estimate critical parameters. The following pa-
rameters were calculated: melting point (MP), boiling point (BP), water solubility (WS),
vapor pressure (VP), bioconcentration factor (BCF), logarithm of octanol/water partition
coefficient (Log KOW), logarithm of octanol/air partition coefficient (Log KOA), logarithm
of organic carbon/water partition coefficient (Log KOC), logarithm of air/water partition
coefficient (Log KAW), Henry’s constant (KH), LC50, and EC50. Additionally, the POV and
LRTP parameters were calculated for all SA transformation products using the POV and
LRTP screening tool. [91].

The overall procedure for the hydrogen peroxide-assisted photodegradation of sali-
cylic acid, product identification, and ecotoxicological assessment is presented schemati-
cally in Figure 7.

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 11 of 17 
 

 

3.3. Detection of Salicylic Acid Transformation Products 

The transformation products were detected using a Shimadzu UFLC XR liquid chro-
matograph equipped with an MS detector (LC-MS 2020 Shimadzu) equipped with an elec-
trospray ionization source. A Kinetex® Phenomenex C18 column with dimensions of 3 
mm × 100 mm, particle size of 2.6 µm, and pore size of 100 Å was used for the analysis. 
The mobile phase consisted of water with 0.1% HCOOH (A) and methanol (B). The elution 
gradient was the following: 95:5 v/v (time 0); 95:5 v/v (time 7); 55:45 v/v (time 10); 35:65 v/v 
(time 11); 5:95 v/v (time 12); 5:95 v/v (time 14); 95:5 v/v (time 15); 95:5 v/v (time 17). The 
flow rate was 0.4 mL⋅min−1, the column temperature was 45 °C, and the injection volume 
was 5 µL. The DAD detector scanned the spectral range from 220 to 700 nm. The elec-
trospray ionization detector operated using the following parameters: a temperature of 
the desolvation line at 250 °C, a nebulizing gas flow of 1.5 mL min−1, and a heating block 
temperature of 400 °C. The negative ion with m/z of 137 was selected to monitor the sali-
cylic acid. In addition, the entire range of 50–750 m/z was scanned in positive and negative 
ionization to detect the presence of other analytical signals. The operating conditions of 
the mass spectrometer were as follows: a drying gas (N₂) flow rate of 1.5 mL⋅min−1, gas 
temperature of 400 °C, nebulizer gas pressure of 30 psi, fragmentor voltage of 70 V a, and 
capillary voltage of 4000 V. 

3.4. Determination of Ecotoxicological Characteristics 

The physicochemical parameters of SA and its transformation products were deter-
mined using the EPI SuiteTM 4.11 software. [90]. The software uses quantitative structure–
activity relationship (QSAR) models to estimate critical parameters. The following param-
eters were calculated: melting point (MP), boiling point (BP), water solubility (WS), vapor 
pressure (VP), bioconcentration factor (BCF), logarithm of octanol/water partition coeffi-
cient (Log KOW), logarithm of octanol/air partition coefficient (Log KOA), logarithm of or-
ganic carbon/water partition coefficient (Log KOC), logarithm of air/water partition coeffi-
cient (Log KAW), Henry’s constant (KH), LC50, and EC50. Additionally, the POV and LRTP 
parameters were calculated for all SA transformation products using the POV and LRTP 
screening tool. [91]. 

The overall procedure for the hydrogen peroxide-assisted photodegradation of sali-
cylic acid, product identification, and ecotoxicological assessment is presented schemati-
cally in Figure 7. 

 

Figure 7. Flowchart of research photodegradation of salicylic acid, product identification, and eco-
toxicological assessment. 

Figure 7. Flowchart of research photodegradation of salicylic acid, product identification, and
ecotoxicological assessment.

4. Conclusions
The main products of SA photodegradation are 2,5-dihydroxybenzoic acid,

2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Photodegradation of salicylic acid
and its major intermediates follows first-order reaction kinetics. Under the influence of
UV radiation alone, 2,5-DHBA degrades faster than SA, while 2,3-DHBA and pyrocatechol
degrade more slowly than SA.

The combination of UV radiation with hydrogen peroxide significantly increases
the rate of photodegradation. The accelerating effect increases with an increasing H2O2

concentration. The degree of acceleration is much greater for 2,5-DHBA than for 2,3-DHBA
and pyrocatechol. The combined action of UV and H2O2 is suitable for the decomposition
of SA in wastewater from the pharmaceutical industry.

The ecotoxicological parameters of SA and its transformation products were assessed,
resulting in a diagram of overall persistence (POV) vs. long-range transport potential
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(LRTP). SA and its transformation products are located in the D region corresponding to
the low values of both LRTP and POV. In other words, SA and its transformation products
can be considered as pollutants of low priority.
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19. Köktaş, İ.Y.; Gökkuş, Ö. Removal of Salicylic Acid by Electrochemical Processes Using Stainless Steel and Platinum Anodes.
Chemosphere 2022, 293, 133566. [CrossRef] [PubMed]

20. Wang, J.; Teng, Y.; Jia, S.; Li, W.; Yang, T.; Cheng, Y.; Zhang, H.; Li, X.; Li, L.; Wang, C. Highly Efficient Removal of Salicylic Acid
from Pharmaceutical Wastewater Using a Flexible Composite Nanofiber Membrane Modified with UiO-66(Hf) MOFs. Appl. Surf.
Sci. 2023, 625, 157183. [CrossRef]

21. Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C. Thermodynamic Analysis of Acetaminophen and Salicylic Acid Adsorption onto
Granular Activated Carbon: Importance of Chemical Surface and Effect of Ionic Strength. Thermochim. Acta 2020, 683, 178467.
[CrossRef]

22. Taoufik, N.; Elmchaouri, A.; El Mahmoudi, S.; Korili, S.A.; Gil, A. Comparative Analysis Study by Response Surface Methodology
and Artificial Neural Network on Salicylic Acid Adsorption Optimization Using Activated Carbon. Environ. Nanotechnol. Monit.
Manag. 2021, 15, 100448. [CrossRef]

23. Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C. Adsorption of Pharmaceutical Aromatic Pollutants on Heat-Treated Activated Carbons:
Effect of Carbonaceous Structure and the Adsorbent–Adsorbate Interactions. ACS Omega 2020, 5, 15247–15256. [CrossRef]

24. Nunell, G.V.; Gomez-Delgado, E.; Bonelli, P.R.; Cukierman, A.L. Effectiveness of Activated Carbons Developed by Different
Strategies in the Removal of Diclofenac Sodium and Salicylic Acid from Water. J. Porous Mater. 2022, 29, 1309–1319. [CrossRef]

25. Zungu, V.; Hadebe, L.; Mpungose, P.; Hamza, I.; Amaku, J.; Gumbi, B. Fabrication of Biochar Materials from Biowaste Coffee
Grounds and Assessment of Its Adsorbent Efficiency for Remediation of Water-Soluble Pharmaceuticals. Sustainability 2022, 14, 2931.
[CrossRef]

26. Deokar, S.K.; Jadhav, A.R.; Pathak, P.D.; Mandavgane, S.A. Biochar from Microwave Pyrolysis of Banana Peel: Characterization
and Utilization for Removal of Benzoic and Salicylic Acid from Aqueous Solutions. Biomass Convers. Biorefinery 2024, 14,
27671–27682. [CrossRef]

27. Abdel Salam, J.; Saleh, A.A.; El Nenaiey, T.T.; Yang, H.; Shoeib, T.; El-Sayed, M.M.H. Mono- and Multicomponent Biosorption of
Caffeine and Salicylic Acid onto Processed Cape Gooseberry Husk Agri-Food Waste. ACS Omega 2023, 8, 20697–20707. [CrossRef]
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