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Abstract: Background: Due to scientific advancements in high-throughput data production
technologies, omics studies, such as genomics and metabolomics, often give rise to numer-
ous measurements per sample/subject containing several noisy variables that potentially
cloud the true signals relevant to the desired study outcome(s). Therefore, correcting for
multiple testing is critical while performing any statistical test of significance to minimize
the chances of false or missed discoveries. Such correction practice is commonplace in
genome-wide association studies (GWAS) but is also becoming increasingly relevant to
metabolome-wide association studies (MWAS). However, many existing procedures may
be too conservative or too lenient, only assume a linear association between the features, or
have not been evaluated on metabolomics data. Methods: One such multiple testing correc-
tion strategy is to estimate the number of statistically independent tests, called the effective
number of tests, based on the eigen-analysis of the correlation matrix between the features.
This effective number is then used for a subsequent single-step adjustment to obtain the
pointwise significance level. We propose a modification to the p-value adjustment based
on a more general measure of association between two predictors, the distance correlation,
with a specific focus on MWAS. Results: We assessed common GWAS p-value adjustment
procedures and one tailored for MWAS, which rely on eigen-analysis of the Pearson’s cor-
relation matrix. Our study, including varying sample size-to-feature ratios, response types,
and metabolite groupings, highlights the superior performance of the distance correlation.
Conclusion: We propose the distance-correlation-based p-value adjustment (DisCo P-ad)
as a novel modification that can enhance existing eigen-analysis-based multiple testing
correction procedures by increasing power or reducing false positives. While our focus
is on metabolomics, DisCo P-ad can also readily be applied to other high-dimensional
omics studies.

Keywords: multiple testing; effective number of tests; correlated tests; eigen-analysis;
pointwise error rate; metabolome-wide association study

1. Introduction
Over the past two decades, advances in technology have led to the generation of big

data in the omics fields, including genomics, proteomics, and metabolomics. The high-
dimensional nature of these data has posed challenges for the data-scientists in identifying
true signals among many potentially noisy features. Ref. [1] presents a literature review
listing some common types of data analysis scheme for multi-omics studies along with the
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computational and statistical methods used for each type. To make inferences regarding
relationships between features and the outcome(s) of interest, one often performs multiple
tests on a per-feature level. Now note that, in every test of hypothesis, one may encounter
two types of errors [2]: for a type-I error, we come up with a false signal (false positive,
i.e., rejecting a null hypothesis when it is actually true); whereas, for a type-II error, we fail
to detect a true signal (false negative, i.e., fail to reject a null hypotheses when it is actually
false). It is important to prefix the maximum allowable type-I error (e.g., 5%), also termed
as the significance level of a statistical test. However, in multiple testing, to restrain the
overall type-I error rate for the family of individual tests (family-wise error rate, FWER), α

(probability that at least one null hypothesis is rejected when it is true), we need to consider
a corresponding individual test-specific error rate (point-wise error rate, PWER), α f , which
satisfies the following equation: α = FWER ≤ 1 − (1 − α f )

M, where M is the total number
of tests in the family. Notably, α f ≤ α.

A simplistic and, hence, widely used p-value adjustment procedure is the Bonferroni
correction [3]:

α
(B)
f = α/M, (1)

where M tests are assumed to be mutually independent. However, Bonferroni is also
the most conservative adjustment, potentially resulting in many false negatives. Ref. [4]
proposed an alternative adjustment:

α
(S)
f = 1 − (1 − α)1/M. (2)

Note that Equation (2), when expanded up to the second term in a Taylor series
expansion, gives rise to Equation (1). Also, as for the Bonferroni adjustment, the derivation
of Šidák’s formula also assumes that all the M tests of hypotheses are mutually independent.
Unlike controlling for an overall type-I error rate (FWER), another popular approach is to
control the expected proportion of falsely identified significant discoveries among all the
declared significant ones, termed as false discovery rate (FDR; [5–9]).

FDR is a more suitable false discovery controlling measure for datasets with rela-
tively more prevalent signals than those with sparser signals, such as mass-spectrometry
metabolomics. Moreover, as pointed out in [10], (a) FDR is effective in controlling the false
signals with independent and positively dependent tests and is affected by correlated tests;
and (b) FWER offers a tighter control over type-I error rate than the FDR.

In addition to the above procedures, there exists the permutation-based gold-standard
approach to estimate α f [11,12]. The main drawback of this approach, however, is the
severe computational cost, making this approach practically infeasible to be implemented
for large datasets [13,14]. Depending on the size of the dataset (the sample size (n) and
the total number of features (M)) and the overall type-I error rate (α), one often needs
to implement several thousand permutations for accurate estimation of α f (e.g., at least
1000 permutation shuffles for α = 0.05 and 10, 000 for α = 0.01; [15]).

Note that the assumption of the statistical tests to be mutually independent is often
violated with omics data, e.g., single nucleotide polymorphisms (SNPs) in GWAS are in
linkage disequilibrium. See [16] for a review of pros and cons of some popular p-value
correction methods in quantitative omics experiments. Therefore, as an alternative, one
can estimate the effective number of tests, Meff, and use that estimate for a Bonferroni- or
Šidák-type correction as follows [17]:

α̂
(B)
f = α/M̂eff (3a)
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for Bonferroni-type adjustment, or

α̂
(S)
f = 1 − (1 − α)1/M̂eff (3b)

for Šidák-type adjustment.

In the context of genome-wide association studies (GWAS), Meff is estimated based
on the eigen-analysis of the features’ correlation matrix, where the features are SNPs with
allele counts 0, 1, or 2. The most commonly used measure of correlation is the Pearson’s
correlation (PrsCo; [18–21]). In such cases, the estimate M̂eff is a function of the eigen-
values obtained from the eigen-analyses and M̂eff ≤ M [13,15,17,22,23]. Most methods
have focused on GWAS, but there is increasing interest to identify the effective number of
tests in the metabolomics context. However, the association structure between metabolites
may be different to that found with SNPs. More recently, [10] proposed a new M̂eff approach
for the metabolome-wide association studies (MWAS).

Therefore, in order to derive a more realistic and robust M̂eff measure, i.e., one that
accounts for both linear and non-linear types of association among the features that are
likely in metabolomics data, we propose to apply the distance correlation (DisCo; [24]). Note
that, signed distance correlation has been introduced for the analysis of metabolomic and
lipidomic data [25], but not for calculating the effective number of tests, which is the focus
of this work. We examine how the M̂eff estimation methods apply to metabolomics data
by estimating Meff using DisCo for the above-mentioned eigen-analysis-based methods
applied on a metabolomics dataset. By means of simulations and a real data application, we
demonstrate the effectiveness of using DisCo compared to PrsCo in reducing potential false
negatives and false positives for multiple testing corrections in the metabolomics context.
We also consider how results are affected by known groupings of metabolites based on
pathway annotations. Although the focus is on metabolomics data, the proposed DisCo-
based p-value adjustment procedure (DisCo P-ad) can be used for any eigen-analysis-based
method to account for both linear and non-linear associations in omics datasets.

2. Materials and Methods
2.1. Methods to Estimate Meff

We compare the performance of seven procedures to estimate Meff, six popular in
GWAS literature [26] and one recently introduced for MWAS: 1. Bonferroni [3]; 2. Šidák [4];
3. Nyholt [22]; 4. Li and Ji [23]; 5. Gao et al. [13]; 6. Galwey [17]; and 7. Peluso et al. [10]. For
the estimation of Meff, for Bonferroni and Šidák, Meff = M; whereas the last five procedures
are based on eigen-analysis of the features’ correlation matrix. To obtain eigen-vectors, we
use principal component analysis (PCA; [27,28]). PCA is a high-dimensional data analysis
procedure that provides projected directions of maximum variation among a set of data
points in a real coordinate space. In an M-dimensional space, the unit-length principal
components (PCs; directions) are computed sequentially. That is, the m-th PC is orthogonal to
all the previous (m− 1) PCs while explaining the maximum variability not explained by the
previous PCs. Thus, PCA provides orthonormal bases with M spanning vectors projecting
the original data along the directions of maximum variability. Often, researchers use PCA as
a tool for reducing the dimension of the M-dimensional data to a lower-dimensional space
spanned by just the first few PCs. In our context, PCA can be used on the correlation matrix
(using PrsCo or DisCo) of the metabolomics features. For example, let A be an M-by-M
correlation matrix of M metabolites’ abundances (log-transformed and adjusted for the
clinical covariates, if applicable). Then the elements of A = ((aij)), i, j = 1, . . . , M, will,
respectively, consist of the PrsCo or the DisCo of the ith and the jth metabolites’ abundances.
In the equations below, λ̂i are the M eigenvalues obtained from the eigen-analysis of the
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estimated correlation matrix, such that λ̂1 ≤ λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂M. Note that, while the
eigen-values obtained from the eigen-analysis of the PrsCo matrix conveniently indicate
the variance explained by the corresponding eigen-vectors, the same interpretation might
not necessarily hold true for the DisCo matrix. Our study objective, however, is not to
intepret the variance-explaining features of the eigen-values/vectors, but, rather, to use the
matrix as an intermediate step for accurately estimating the effective number of tests in a
multiple testing scenario.

The five eigen-analysis-based procedures to estimate Meff give rise to the following:

Nyholt :M̂N
eff = 1 + (M − 1) ·

(
1 − var(λ̂)/M2

)
; (4a)

LiJi :M̂LiJi
eff = ∑

i
f (|λ̂i|); where, f (x) = I(x ≥ 1) + (x − ⌊x⌋); (4b)

Gao :M̂G
eff = no. of PCs explaining ≥ 99.5% of total variation; (4c)

Galwey :M̂Gw
eff =

(
∑

i

√
λ̂i

)2

/ ∑
i

λ̂i; (4d)

Peluso :M̂P
eff =

(
∑

i

√
λ̂i/log(λ̂1)

)2

/

(
∑

i
λ̂i/λ̂1 +

√
λ̂1

)
. (4e)

2.2. Evaluating the Performance of Estimated Meff

Although it can be computationally expensive for large data (high n or M), the “gold-
standard” is the permutation-based approach, which we used to evaluate the performance
of estimated Meff values using the seven procedures described in Section 2.1. For a fixed
FWER (α = 0.05), we estimated the permutation-based PWER, denoted as α̂0

f . Then, we

computed the gold-standard effective number of tests as M̂0
eff = α/α̂0

f . Next, we estimated
Meff values twice for each of the five eigen-analysis-based procedures—once using the
PrsCo matrix and once using the DisCo matrix—and compared those two estimates to M̂0

eff.
The closer the value, the better the estimation performance. Note, however, for Bonferroni
and Šidák, M̂eff = M always. As a secondary evaluation with the gold-standard approach,
inspired by [13], for each of the methods with two association types (PrsCo, DisCo), we
also estimated the PWER, α̂ f = α/M̂eff. The closer α̂ f is to the gold-standard α̂0

f , the better.

2.3. Computation of Permutation-Based Gold-Standard α0
f

We followed the procedure described in [10] and adopted their R-programming code
to estimate the gold-standard PWER, α0

f .

1. Randomly assign the n outcomes to n samples (subjects), keeping each sample in con-
junction with its fixed clinical covariates (if applicable) and M metabolite abundances.
This way, we generate a dataset under null hypothesis of no association between
clinical outcomes and metabolite abundances.

2. Compute M linear regression models, using one metabolite at a time and adjusting
for the clinical covariates in each model (if applicable).

3. Store the minimum of the M p-values, i.e., one that corresponds to the highest thresh-
old value that rejects all the M null hypotheses.

4. Repeat steps 1–3 K times (≥ n/2); obtain a vector of length K, say q, composed of the
K minimum p-values.

5. Sort q in ascending order. The [αK]-th value indicates the gold-standard PWER
estimate, α̂0

f .
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6. Finally, estimate the gold-standard Meff: M̂0
eff = α/α̂0

f .

Note that, at step 5, one can use the Gaussian approximation to a binomial distribution
to obtain a desired confidence interval for α̂0

f . For our study, we set the FWER at α = 0.05
and the number of permutations at K = 10, 000.

2.4. DisCo P-ad Algorithm

First, we introduce the distance covariance and distance correlation, originally proposed
by [24]. Let X and Y be two random vectors with arbitrary dimensions l and m, respec-
tively, and finite first-order moments. Also, let fX,Y, fX, and fY, respectively, denote the
characteristic functions of the joint distribution of (X, Y) and the marginal distributions of
X and Y. Then, the distance covariance between X and Y is the non-negative number, η(X, Y),
defined as follows:

η2(X, Y) = ∥ fX,Y(s, t)− fX(s) · fY(t)∥2

=
1

cl · cm

∫
Rl+m

| fX,Y(s, t)− fX(s) · fY(t)|2

|s|1+l · |t|1+m · dt ds, (5)

where cl and cm are two scalars that are functions of l and m, respectively, and ∥γ(u, v)∥ de-

notes the norm of the complex function γ(·, ·) defined on Rl ×Rm. Following Equation (5),
the distance variance of a random vector, say X, can be defined as follows:

η2(X) = η2(X, X) = ∥ fX,X(s, t)− fX(s) · fX(t)∥2. (6)

Finally, using the definitions of distance covariance and distance variance in
Equations (5) and (6), we define the distance correlation (DisCo) as the non-negative number
R(X, Y) ∈ [0, 1] as follows:

R2(X, Y) =


η2(X,Y)√

η2(X)·η2(Y)
, if η2(X) · η2(Y) > 0;

0, otherwise.
(7)

Next, we describe the DisCo P-ad algorithm as used in our context with M features
(metabolites’ abundances) and n mutually independent samples (patients).

1. Compute DisCo for each of the (M
2 ) pairs of metabolites, where each metabolite

abundance (log-transformed and adjusted for covariate(s), if applicable) is a univariate
random variable. To compute DisCo, we used the computationally efficient fastDcov()
function [29] provided in Chaudhuri and Hu [30].

2. Check whether the M × M empirical DisCo matrix is positive definite. If not, convert
the empirical DisCo matrix to the nearest (we chose with respect to the Frobenius
norm) non-negative definite matrix [31] using the nearestSPD() function in [29]. We set
all eigen-values less than 10−12 to zero.

Note that the DisCo P-ad algorithm can be applied to any of the eigen-analysis-based
methods in Section 2.1.

2.5. Real Data Application

We applied the DisCo P-ad and PrsCo P-ad (Pearson-correlation-based p-value adjust-
ment) to a liquid chromatography–mass spectrometry (LC–MS) metabolomics dataset from
the COPDGene cohort obtained using the Metabolon platform [32] for studying chronic
obstructive pulmonary disease (COPD). The COPDGene Visit 2 dataset is generated from
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the plasma samples of 1136 individuals, containing abundances of 1005 metabolites on
each sample. We used the imputed and normalized dataset for our analysis and omit-
ted the 2 partially characterized molecules (compound IDs: 62145 and 62146; chemical
IDs: 100020253 and 100020254) and 242 unidentified metabolites from subsequent analy-
ses. Thus, the total number of metabolites retained was M = 761. Among the 1136 total
number of subjects, we omitted 82 who had missing data on the measure of a patient’s
cigarette-smoking history as published by American Thoracic Society (ATS) journals (ATS
pack-years) covariate and the ratio of post-bronchodilator forced expiratory volume at
one second (FEV1) to forced vital capacity (FVC) outcome [33], thus eventually using the
remaining 1054 subjects for the statistical analysis. The COPDGene data are available
at the National Institutes of Health (NIH) Common Fund’s National Metabolomics Data
Repository, Metabolomics Workbench https://www.metabolomicsworkbench.org ([32];
Study ID ST001443, accessed on 7 January 2025) with data-processing described in [34].

As an example of an analysis that may be performed, we tested for the association
of sex (female/male) [35] with metabolite abundances using the Welch’s two-sample
parametric t-test [36], without any covariate adjustment. To explore two different sample
sizes, we stratified on two sub-groups based on disease severity defined using the Global
Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations: (1) control
COPD subjects (GOLD value = 0; n = 448) and (2) subjects with severe and very severe COPD
(GOLD values = 3 or 4; n = 183). For notational convenience, we refer to the latter group
simply as ”severe COPD” throughout the rest of the article.

As an initial quick check, we examined the visualization performance of the t-SNE algo-
rithm [37,38] in revealing any obvious grouping of patients by sex as explained by the abun-
dances of metabolites. No notable results were found for either of the two COPD GOLD
subpopulations (see Supplement Figure S3a,b). Next, we compared the eigen-analysis-
based estimated PWERs (and M̂effs) with those obtained from the permutation-based gold
values (number of permutations, K = 10, 000) to draw conclusions about the efficacy of the
PrsCo- and DisCo-based approaches. Note that we only considered the ungrouped and the
defined metabolites’ groupings scenarios for this application (Section 2.6).

2.6. Grouping of the Metabolites

We first considered all the M = 761 metabolites individually (ungrouped). However,
metabolites can be grouped into pathways based on the Metabolon platform annotation.
To investigate the effect of pathway-based grouping of the metabolites on the perfor-
mance of eigen-analysis-based M̂eff computations, we considered the following two types
of grouping:

1. Defined grouping: Based on the available annotation information on Metabolon
super-pathways, we grouped the metabolites into the following eight categories
(number of metabolites in parentheses): lipid (365), xenobiotics (99), amino acid
(181), carbohydrate (24), cofactors and vitamins (25), nucleotide (32), energy (10),
and peptide (25).

2. Randomly assigned: Keeping the number of groups and the number of members in
each group unchanged as above, we randomly assigned the M = 761 metabolites into
8 groups.

2.7. Simulation Setup

We varied the following parameters in our simulations:

1. Sample size (n): “small”, n = 100 (≈10% of total n; n : M ≈ 1 : 7.6), “moderate”,
n = 500 (≈50% of total n; n : M ≈ 1 : 1.5), and “large”, n = 1000 (≈100% of total n;
n : M ≈ 1 : 0.76). Note that, for each of these scenarios, we had a fixed number of

https://www.metabolomicsworkbench.org
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metabolites, i.e., M = 761. For each of the simulation repetitions, we sub-sampled,
from the total pool of n = 1054 subjects in the COPDGene dataset, a data subset
of sample size n = 100, 500, or 1000, to generate data from a multivariate Gaussian
distribution. The mean-vectors and the covariance matrices were estimated from the
corresponding sub-sampled data subsets [10]. Based on these simulated data, we
then computed the permutation-based gold-standard M̂0

eff’s and those for each of the
eigen-analysis-based methods (M̂eff’s) .

2. Grouping of metabolites (see Section 2.6):

(a) Ungrouped: We used all the M = 761 metabolites together for the eigen-
analysis-based methods.

(b) Defined: We divided the M = 761 metabolites into 8 groups based on pathway
annotation.

(c) Random: We divided the M = 761 metabolites randomly among the 8 groups,
maintaining the same cardinality of groups as for defined grouping.

Note that for the two grouped scenarios above, we estimated the effective number of
tests separately for each sub-group and then added those to obtain the final M̂eff value.

3. Nature of the outcome: As a continuous outcome, we used the logit-transform of the
ratio FEV1/FVC [33,34]. Before performing the analysis, we adjusted for the effects of
the following six fixed covariates on the log-abundance of each of the 761 metabolites
and used the residuals as the adjusted metabolite concentrations: age (in years),
body mass index (BMI), ATS pack-years, sex (female/male), smoking status (for-
mer/current), and data collection center (National Jewish Center (NJC)/University
of Iowa (UIA)). For an example of a binary outcome, we considered a subject’s sex
(female/male) as an outcome of interest since metabolite features may be strongly pre-
dictive of sex [35]. The metabolite abundances were adjusted for the same covariates
as above, except for sex.

2.8. Summary Metric for Performance Evaluation

We summarized the simulation results, computing the medians of the estimated
Meff’s across the 100 simulation repetitions (random subsets from the COPDGene data;
see Section 2.7). As a metric for the estimation performance, we reported the root-mean-
squared error (RMSE) of the M̂eff’s, where the “true” values were considered those obtained
from the corresponding permutation-based gold-standards M̂0

eff. We applied the PrsCo
P-ad and the DisCo P-ad for all five eigen-analysis-based procedures under comparison.
The smaller the RMSE, the better the performance.

2.9. Computing Software

Most of the results and figures were generated using R (v. 4.1-4.4; [39]). The dis-
tance correlations were computed using MATLAB (v. 9.14.0.2206163 (R2023a); [40]).
The permutation-based gold-standard for the simulations were computed using the high-
performance cluster computing facilities at the Research Computing unit of the University
of Colorado Boulder (https://www.colorado.edu/rc/; accessed on 7 January 2025).

3. Results
We used simulations and a real-data application to compare the performance of

PrsCo P-ad and DisCo P-ad for five different eigen-analysis-based Meff estimating methods
(see Section 2.1), alongside the Bonferroni and Šidák corrections, to the permutation-based
gold-standard values. Note that the permutation gold values used the outcome for regres-
sion modeling, whereas none of the other methods did to estimate Meff.

https://www.colorado.edu/rc/
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3.1. Gold-Standard M̂effs

With increasing n, the median M̂0
eff values decreased (i.e., increased α̂0

f ), most likely
because a higher sample size was able to better capture the null association among the
metabolite abundances and the outcome (Table 1, row 1). As expected, the rate of this
decrease reduced for higher n’s (e.g., from n = 500 to n = 1000). These gold-standard M̂0

eff
values were used for evaluating the performance of the eigen-analysis-based methods.

Table 1. Simulations for Continuous Outcome (n = 100, 500, and 1000). All simulations were repeated
100 times and the medians of the estimated effective number of tests for logit of FEV1/FVC outcome
are reported. The first three rows contain the permutation-based gold-standard medians of the
estimated effective number of tests, along with the standard correction methods of Bonferroni and
Šidák. For the gold-standard values, in parentheses are the median absolute deviations. For all other
rows, in parentheses are the root-mean-squared errors (RMSE’s), computed as a measure of deviation
from the corresponding permutation-based gold-standard values. All numbers are rounded off to
the nearest integers. Sub-tables correspond to varying sample sizes (across columns; n = 100, 500,
and 1000) and varying metabolites’ grouping (across rows; ungrouped, defined by super-pathways,
and random). Rows correspond to the five eigen-analysis-based procedures. The smaller the RMSE
values, i.e., the closer the estimated Meff’s are to the corresponding gold-standard values, the better the
performance. Cell-values in bold indicate when DisCo P-ad performed better than the corresponding
PrsCo P-ad counterpart, decided based on their respective RMSE’s.

Sample Size n = 100 n = 500 n = 1000

Permutation-based
gold-standard 694 (37) 632 (27) 611 (33)

Bonferroni 761 (74) 761 (132) 761 (152)

Šidák 742 (58) 742 (114) 742 (133)

Metabolites’ Grouping: Ungrouped
PrsCo DisCo PrsCo DisCo PrsCo DisCo

Nyholt 739 (55) 725 (44) 745 (117) 744 (116) 746 (137) 746 (137)
LiJi 140 (556) 402 (294) 303 (330) 417 (216) 331 (282) 419 (195)
Gao 91 (604) 416 (280) 397 (236) 511 (124) 546 (70) 534 (82)

Galwey 72 (623) 287 (409) 241 (392) 352 (281) 316 (296) 366 (247)

Peluso 155 (541) 528 (170) 522 (113) 734 (108) 686 (81) 786 (176)

Metabolites’ Grouping: Defined
PrsCo DisCo PrsCo DisCo PrsCo DisCo

Nyholt 721 (42) 712 (37) 727 (99) 731 (103) 728 (119) 733 (125)

LiJi 330 (365) 445 (252) 409 (224) 465 (169) 421 (192) 468 (146)
Gao 354 (342) 553 (145) 613 (34) 621 (30) 646 (44) 630 (32)

Galwey 260 (436) 396 (300) 407 (226) 453 (181) 429 (185) 461 (152)

Peluso 352 (346) 486 (212) 572 (66) 626 (29) 605 (28) 652 (49)

Metabolites’ Grouping: Random
PrsCo DisCo PrsCo DisCo PrsCo DisCo

Nyholt 736 (53) 725 (45) 741 (113) 744 (116) 742 (133) 746 (137)

LiJi 362 (334) 504 (194) 469 (165) 536 (100) 487 (128) 540 (77)
Gao 361 (335) 584 (115) 650 (34) 655 (37) 684 (77) 665 (60)

Galwey 286 (410) 450 (247) 472 (161) 524 (111) 500 (115) 535 (81)

Peluso 486 (211) 593 (107) 835 (206) 821 (193) 890 (280) 876 (266)
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3.2. Continuous Outcome

We estimated the DisCo P-ad- and the PrsCo P-ad-based Meff values using the metabo-
lite abundances adjusted for the six clinical covariates (Section 2.7).

The M̂eff’s for Bonferroni and Šidák were, respectively, 761 and 742, irrespective of
the sample sizes and types of grouping of metabolites. These values were higher than
the corresponding gold-standard ones, leading to more conservative PWERs, resulting
in potentially false negatives. The primary comparison was between DisCo and PrsCo,
but we also compared performance across the five eigen-analysis-based methods and the
three types of metabolite groupings.

For the smallest sample size scenario (n = 100), DisCo-based results outperformed
the corresponding PrsCo-based ones for all the eigen-analysis-based methods and the three
metabolite groupings. For the moderate sample size scenario (n = 500), DisCo-based
results also outperformed the corresponding PrsCo-based ones for all the eigen-analysis-
based methods, except for Nyholt in the defined and random grouping case, and Gao for
the random grouping case. However, in these three exceptions, the estimated effective
number of tests were close between PrsCo and DisCo (within five). For the largest sample
size scenario (n = 1000), DisCo-based results again met or outperformed the corresponding
PrsCo-based ones, except for a few exceptions (Gao for ungrouped, Peluso for ungrouped
and defined groupings, and Nyholt for defined and random groupings). In 3 of these
5 exceptions, the differences between PrsCo and DisCo were close (within 12).

As a secondary comparison, the PWERs are better estimated using DisCo compared
to PrsCo for the LiJi and Galwey methods, varying sample sizes (n = 100, 500, and 1000)
and metabolites grouping (Figures 1 and S1a,b). Similar figures for all three sample
sizes and three metabolite groupings but with all the seven methods are provided as
supplementary materials (see Figure S2a–i).

Comparing the different methods using DisCo, for n = 100 and all three metabolite
groupings, the smallest RMSE was achieved by the Nyholt method, outperforming all
the other methods by large margins. For the larger sample sizes, Gao and Peluso had the
smallest RMSEs using DisCo, especially for ungrouped and defined grouping scenarios.
Notably, some methods estimated Meff’s higher than the gold-standard one, which means
that the corresponding PWER’s (significance level α divided by M̂eff) will be more conser-
vative, leading to potential false negatives (but fewer than those produced by Bonferroni
and Šidák, except for Peluso in random grouping). In contrast, other methods produced
smaller than gold-standard M̂eff’s, leading to more lenient PWERs, i.e., potentially higher
false positives. In general, Nyholt for all sample sizes tended to have estimates higher
than the gold standard. Peluso tended to have higher estimates for the larger sample sizes
(n = 500, 1000) and Gao for moderate sample size (n = 500) with random grouping and for
the largest sample size (n = 1000) with both defined and random groupings.

Comparing the effect of groupings of metabolites using DisCo, for almost all sample
sizes and methods, either defined or random groupings had the smallest RMSEs compared
to the ungrouped scenario. For Nyholt, ungrouped and random performed similarly and
worse (larger RMSE) than the defined grouping results. In the LiJi and the Galwey methods,
the RMSEs decreased from ungrouped to defined to random groupings. Finally, for both
Gao and Peluso, for smaller sample size (n = 100), random grouping performed better
compared to ungrouped; while for larger sample sizes (n = 500 or 1000), defined grouping
performed better.
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Figure 1. Boxplots of estimated PWERs (across 100 repetitions) obtained by LiJi and Galwey methods
using random subsets of sizes of n = 100 from the COPDGene dataset. The red horizontal line
corresponds to the median permutation-based gold-standard PWER value at 5% level of significance
for the continuous outcome: logit of FEV1/FVC ratio. The first 6 boxplots from the left correspond
to the LiJi method and the rightmost 6 correspond to the Galwey method. For each of the two
procedures, the 6 boxplots indicate the estimated PWERs for PrsCo/DisCo pairs, respectively, for
ungrouped, defined grouping, and random grouping of p = 761 metabolites. PrsCo: LiJi—green,
Galwey—cyan; DisCo: LiJi—blue, Galwey—magenta. The closer the boxplots are to the red horizontal
line, the better the performance of the concerned method. Gal: Galwey method, un: metabolites
ungrouped, df = defined metabolites’ grouping, rn = random metabolites’ grouping.

3.3. Categorical Outcome

Unlike the continuous outcome, for sample sizes smaller than the number of metabo-
lites (n = 100 and 500), the permutation-based gold-standard PWERs did not give rise to
the desired FWER (α = 0.05). We, therefore, included the sole scenario of the largest sample
size (n = 1000) in the results (Table 2). By definition, the M̂eff’s for Bonferroni and Šidák are
again, respectively, 761 and 742, irrespective of the types of grouping of metabolites. Here,
again, these values are higher than the gold-standard leading to more conservative PWERs,
resulting in potentially false negatives. The primary comparison was between DisCo and
PrsCo, but we also compared performance across the five eigen-analysis-based methods
and the three types of metabolite groupings.

Across all the metabolite groupings, DisCo-based results outperformed the corre-
sponding PrsCo-based ones for LiJi, Gao, and Galwey methods. For Nyholt, DisCo- and
PrsCo-based estimated effective number of tests were close (within 6), while for Peluso,
PrsCo-based results differed with larger margins for ungrouped and defined grouping
scenarios (minimum difference 46), quite similar to the case for the continuous outcome.

Comparing the different methods using DisCo, across all the metabolite grouping
scenarios, the smallest RMSE was jointly achieved by the Gao method (ungrouped), the LiJi
method (random), and the Galwey method (random), outperforming all the other methods
by large margins. Once again, the enhanced performance of Gao was prominent for a
larger sample size compared to the number of features. Please note that, except for LiJi
and Galwey (all groupings) and for Gao (ungrouped), all other methods estimated Meff’s
much higher than the gold-standard one, which means that the corresponding PWERs



Metabolites 2025, 15, 28 11 of 17

(significance level α divided by M̂eff) will be more conservative, leading to potential false
negatives (but often fewer than those produced by Bonferroni and Šidák, except for Peluso
in ungrouped and random grouping). In contrast, for the above-mentioned exclusions,
the M̂eff’s will lead to more lenient PWERs, i.e., potentially higher false positives. Peluso
tended to have higher estimates (>M = 761) for the random grouping scenario.

Comparing the effect of groupings of metabolites using DisCo for different methods,
similar to the continuous outcome case, the smallest RMSEs corresponded to defined or
random grouping compared to ungrouped, except for Gao (best RMSE for ungrouped).
Nyholt, for ungrouped and random groupings, performed similarly and worse (larger
RMSE) than the defined grouping results. For LiJi and Galwey methods, the RMSEs
decreased from ungrouped to defined to random groupings. For both these methods,
the best performance (smallest RMSE) corresponded to the random grouping (and not
defined grouping). Finally, for Peluso, defined grouping performed the best compared to
ungrouped and random scenarios.

Table 2. Simulations for sex outcome (n = 1000). All simulations were repeated 100 times and
the medians of the estimated effective number of tests are reported. The first three rows contain
the permutation-based gold-standard median estimated effective number of tests, along with the
standard correction methods of Bonferroni and Šidák. For the gold-standard value, in parentheses
is the median absolute deviation. For all other rows, in parentheses are the root-mean-squared
errors (RMSEs), computed as a measure of deviation from the corresponding permutation-based
gold-standard value. All numbers are rounded off to the nearest integer. Sub-tables correspond
to varying metabolites’ grouping (ungrouped, defined by super-pathways, and random) and rows
correspond to the five eigen-analysis-based procedures. The smaller the RMSE values, i.e., the closer
the estimated Meff’s are to the gold-standard values, the better the performance. Cell values in bold
indicate when DisCo P-ad performed better than the corresponding PrsCo P-ad counterpart, decided
based on their respective RMSE’s.

Permutation-Based Gold-Standard 529 (23)

Bonferroni 761 (230) 761 (230) 761 (230)

Šidák 742 (211) 742 (211) 742 (211)

Metabolite Grouping
Ungrouped

Metabolite Grouping
Defined

Metabolite Grouping
Random

PrsCo DisCo PrsCo DisCo PrsCo DisCo

Nyholt 746 (215) 746 (215) 727 (196) 733 (202) 742 (211) 746 (215)

LiJi 328 (206) 412 (123) 417 (118) 463 (73) 485 (53) 537 (24)

Gao 545 (27) 530 (24) 645 (115) 627 (98) 683 (152) 661 (130)

Galwey 313 (221) 362 (173) 426 (109) 458 (79) 496 (43) 530 (24)

Peluso 679 (149) 774 (243) 599 (70) 645 (115) 887 (356) 867 (335)

3.4. Real Data Application

In Tables 3 and S1, we present the results for the two strata—severe COPD (GOLD = 3
or 4) and controls (GOLD = 0), respectively—considering a subject’s sex as the binary out-
come and the individual log-metabolite abundances as the continuous predictors (without
any covariate adjustment), using the parametric Welch’s two-sample t-test. All the PWERs
are computed for a preset FWER of α = 0.05.

For severe COPD cases (n = 183) and ungrouped metabolites scenario, the DisCo-
based M̂eff’s (and, hence, corresponding PWERs) were closer to the gold-standard for all
methods (smaller for Nyholt and higher for the rest). Maximum improvement was noticed
for Gao, followed by Peluso, then Galwey, and LiJi methods. Consequently, the number of
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significant metabolites for these methods were, respectively, 11, 10, 9, and 7 fewer compared
to what were found using PrsCo, potentially eliminating some false positives. For Nyholt,
although DisCo performed better (M̂eff less by 7), no effect was reflected in significant
metabolite findings. For the defined metabolite grouping scenario, DisCo-based M̂eff’s
continued to be closer to the gold standard for all methods except Gao (higher for LiJi,
Galwey, and Peluso and smaller for Nyholt), resulting in four significant metabolites fewer
than the PrsCo-based ones for LiJi and Galwey, thus potentially eliminating some false
positives. PrsCo and DisCo M̂eff’s for Nyholt stayed very close (difference of two), with no
effect found in significant metabolite findings. Finally, the DisCo-based M̂eff for Peluso led
to only one fewer significant metabolite compared to the PrsCo-based finding.

For COPD controls (n = 448) and ungrouped metabolites scenario, the DisCo-based
M̂eff’s (and, hence, corresponding PWERs) were higher and closer to the gold-standard one
for all methods except Peluso. Maximum improvement was noticed for Gao and Galwey
methods. Consequently, for both these methods, the number of significant metabolites
was eight fewer compared to what was found using PrsCo, potentially eliminating some
false positives. For Peluso, the PrsCo-based results appeared to be smaller and closer to
the gold-standard with five significant metabolites higher than the DisCo-based result.
For Nyholt, PrsCo and DisCo performed almost similar (M̂eff difference of two) with no
effect in significant metabolite findings. For the defined metabolite grouping scenario,
DisCo-based M̂eff’s continued to be higher and closer to the gold standard for LiJi and
Galwey methods, resulting in, respectively, four and three significant metabolites fewer
than the PrsCo-based ones, thus potentially eliminating some false positives. PrsCo and
DisCo M̂eff’s for Gao and Nyholt were almost similar (maximum difference of seven), with
no difference in significant metabolite findings. Finally, the PrsCo-based M̂eff for Peluso
was smaller and closer to the gold standard with only one additional significant metabolite.

Table 3. Real-data application results: severe COPD (GOLD = 3 or 4) sub-population, n = 183.
Estimated effective number of tests (Meff’s), point-wise error-rates (PWERs), and number of signif-
icant metabolites based on the parametric Welch’s two-sample t-test, for ungrouped and defined
metabolites’ grouping, corresponding to the permutation-based gold standard and all five eigen-
analysis-based methods are reported. Numerical values in bold within M̂eff and estimated PWER
cells indicate those that are closer to the gold-standard permutation ones. Values within parentheses
for M̂eff indicate the absolute differences from the gold-standard. Bold for the numbers of significant
metabolites indicate that the PrsCo-based and the DisCo-based findings differ.

GOLD = 3 or 4
(n = 183) M̂eff Estimated PWER

t-Test: No. of
Significant

Mets
M̂eff Estimated PWER

t-Test: No. of
Significant

Mets

Permutation 531 9.42 ×10−05 - 531 9.42 ×10−05 -

Metabolites: Ungrouped Metabolites: Defined Grouping

Nyholt
PrsCo 742 (211) 6.74 ×10−05 37 724 (193) 6.91 ×10−05 37

DisCo 735 (204) 6.80 ×10−05 37 722 (191) 6.93 ×10−05 37

LiJi
PrsCo 220 (311) 2.27 ×10−04 50 371 (160) 1.35 ×10−04 45

DisCo 408 (123) 1.23 ×10−04 43 449 (82) 1.11 ×10−04 41

Gao
PrsCo 172 (359) 2.91 ×10−04 52 480 (51) 1.04 ×10−04 41

DisCo 455 (76) 1.10 ×10−04 41 585 (54) 8.55 ×10−05 39

Galwey
PrsCo 122 (409) 4.10 ×10−04 55 332 (199) 1.51 ×10−04 46

DisCo 312 (219) 1.60 ×10−04 46 421 (110) 1.19 ×10−04 42

Peluso
PrsCo 261 (270) 1.92 ×10−04 49 455 (76) 1.10 ×10−04 41

DisCo 607 (76) 8.24 ×10−05 39 545 (14) 9.17 ×10−05 40
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4. Discussion and Concluding Remarks
Adjustment procedures for p-values in multiple testing for high-dimensional corre-

lated data have primarily been focused on GWAS applications to account for SNP structure.
Less has been studied in other omics contexts, such as metabolomics, where the associations
between features may have different characteristics. We introduced DisCo P-ad as an alter-
native approach based on the distance correlation that is more flexible to account for linear
and non-linear associations that may occur between metabolites. We also considered the
groupings of metabolites in pathways in the adjustment procedure. We demonstrated the ef-
fectiveness of DisCo P-ad via numerical examples applied to the COPDGene metabolomics
dataset. Our simulations and real data application confirmed the enhanced performance of
DisCo P-ad compared to PrsCo P-ad (its Pearson counterpart), for both continuous and
categorical (binary) outcomes, varying ratios of sample sizes (n) to the number of predictors
(M; metabolite abundances), and defined and random grouping of metabolites.

DisCo P-ad can be used on different adjustment methods with varying effects. For the
Nyholt procedure, the DisCo-based M̂eff can potentially reduce false negatives, while for
LiJi, Gao, Galwey, and Peluso, it can help reduce false positives. For the LiJi and Galwey
procedures, DisCo P-ad yielded better results for all simulation scenarios and the real data
application. The benefits of DisCo P-ad was more pronounced for smaller n/M ratios
for the Nyholt procedure. Similarly, for Peluso, which does not guarantee M̂eff ≤ M for
moderate to large n/M ratios, DisCo also performed better for smaller n/M ratios.

To compare the particular effect of DisCo, we also used the correlation matrix of another
non-linear, non-parametric correlation measure—Spearman’s correlation [41]—especially for
the small-sample-size scenario (n = 100), where the DisCo outperformed the PrsCo with the
highest margins. However, the results with Spearman correlation were relatively similar to
those obtained from PrsCo.

Grouping metabolites also provided some improvement in performance. Generally,
the M̂eff’s became closer to the gold-standard values for defined groupings of metabolites
based on pathway information or random groupings compared to those for the ungrouped
case. One reason could be that the estimation of Meff’s was more accurate when we
leveraged the intrinsic association structure among the metabolites. The random grouping
may still be capturing metabolite pathway structure.

For grouping the features, instead of hard grouping (as we did for the metabolites
based on the super-pathway information), one may technically implement some data-
driven method, such as hierarchical clustering [42], to allow for flexible hierarchical struc-
ture among the features. However, this may result in an increase in computation time,
depending on the number of parameters involved to optimize the hierarchical clustering.

The real data analysis illustrates example applications of identifying differentially
abundant metabolites using two different sample sizes. Especially with the smaller sample
size strata (severe COPD), we observed the benefits of the DisCo approach compared to
PrsCo for almost all of the eigen-analysis-based methods and grouping types. For the larger
sample size strata (controls), the differences were less pronounced, but DisCo also showed
a benefit for a majority of the combinations.

Note that the proposed DisCo-based approach outperformed the PrsCo for all sce-
narios, especially when the sample size was small, i.e., n = 100, possibly due to Pearson
correlation being more influenced by noise or outliers than the more robust distance correla-
tion. We also note that with a more high-dimensional dataset (larger number of predictors),
the benefit of the DisCo-based approach may be more pronounced even for larger sample
sizes. However, there is relatively less exploration of the effective number of tests for
metabolomics data, so this work is more focused on the typical number of predictors found
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in metabolomics studies. Exploring scenarios with the larger number of predictors typically
found in genetic and epigenetic studies is a topic for future work.

Next, note that, prior to the eigen-analysis step, the approximation of the original
correlation matrices (PrsCo and DisCo) to their nearest positive-definite matrices using the
R function nearPD() and the MATLAB function nearestSPD(), respectively, may “distort”
the original dependencies. Ideally, these approximations have to be tested in different
scenarios, especially in cases where the original matrices are far from the SPD versions.

To obtain the eigen-solution, DisCo requires the computation of the distance correlation
matrix, while PrsCO can rely on singular value decomposition of the standardized data,
leading to improved computational memory and efficiency. While the relatively greater
computation cost for DisCo compared to PrsCo is tolerable with cutting-edge computing
resources, the memory allocation of the precomputed M-by-M DisCo matrix might prove
to be prohibitive when M is on the order or millions or more. An area of future work is to
explore whether singular value decomposition would be applicable for the DisCo matrix
as well. An interested reader can refer to [43] for a comparative study on PrsCo and DisCo.

In summary, while our focus for this article was to investigate the efficacy of DisCo
P-ad for metabolomics data, one can readily apply our proposed procedure to eigen-
analysis for other types of omics data as well. In addition, DisCo P-ad can be applied for
multiple testing corrections in multi-omics studies where data are integrated from different
“layers” of understanding (e.g., genomics, transcriptomics, proteomics, microbiomics,
metabolomics, etc. [1]) to discover molecular pathways not possible by examining a single
layer only.

Supplementary Materials: The following supporting information can be downloaded at: https://doi.
org/10.5281/zenodo.14057773, 1. Simulation: Continuous Outcome - Additional Results: (a) Figure S1:
Boxplots of estimated PWER’s (across 100 repetitions) obtained by LiJi and Galwey methods using
random subsets of sizes of n = 500 (a) and n = 1000 (b) from the COPDGene data set. (b) Figure S2:
Continuous outcome: logit of FEV1/FVC ratio: Boxplots of estimated PWER’s (across 100 repeti-
tions) obtained by Bonferroni, Šidák, Nyholt, LiJi, Gao, Galwey, and Peluso methods using ran-
dom subsets of sizes of n = 100 (a–c), n = 500 (d–f), and n = 1000 (g–i) from the COPDGene
data set. For each triplet, the sub-figures correspond to the three types of metabolites’ grouping:
ungrouped—(a,d,g); defined—(b,e,h); and random—(c,f,i). 2. Real-Data Application: Results for
COPD controls (GOLD = 0) and severe COPD (GOLD = 3 or 4): (a) Figure S3: 2-D t-SNE scatterplots
of COPD GOLD = 0 (a) and GOLD = 3 or 4 (b) subpopulations, as explained by 761 log-metabolites
abundances (unadjusted for covariates). For each subpopulation, the patients are color-coded by
their sex. (b) Table S1: Real-data application results: COPD control (GOLD = 0) sub-population,
n = 448. Estimated M-eff’s, point-wise error-rates (PWER’s), and number of significant metabolites
based on the parametric Welch’s two-sample t-test, for ungrouped and defined metabolites’ grouping,
corresponding to the permutation-based gold-standard and all 5 eigen-analysis based methods.
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DisCo P-ad Distance-Correlation-Based P-value Adjustment
FWER Family-Wise Error Rate
PWER Point-Wise Error Rate
FDR False Discovery Rate
SNP Single Nucleotide Polymorphism
PrsCo Pearson Correlation
PC Principal Component
PCA Principal Component Analysis
LC-MS Liquid Chromatography–Mass Spectrometry
COPD Chronic Obstructive Pulmonary Disease
NIH National Institutes of Health
GOLD Global Initiative for Chronic Obstructive Lung Disease
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FVC Forced Vital Capacity
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as published by the American Thoracic Society (ATS) journals

BMI Body Mass Index
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UIA University of Iowa
RMSE Root-Mean-Squared Error
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