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Abstract: Honey is abundant in bioactive compounds, which demonstrate considerable
therapeutic effects, particularly on oxidative stress and inflammation. Objectives: This
work sought to evaluate the antioxidant mechanisms of Manuka honey (MH) and Ohia
Lehua honey (OLH), correlating them with phytochemical analyses in a rat model of exper-
imentally induced inflammation. Methods: The identification of polyphenolic compounds
in the extracts was carried out using HPLC-ESI MS. The extracts’ antioxidant activity was
evaluated in vitro through DPPH, FRAP, H2O2, and NO scavenging assays, while in vivo as-
sessments included measurements of total oxidative status (TOS), total antioxidant capacity
(TAC), oxidative stress index (OSI), advanced oxidation protein products (AOPP), malon-
dialdehyde (MDA), nitric oxide (NO), and total thiols (SH). Results: The phytochemical
analysis found a rich content of phenolic compounds in MH and lower quantities in OLH.
In terms of in vitro activity, both MH and OLH exhibited strong DPPH radical scavenging
abilities, effective NO and H2O2 scavenging capacities, and high FRAP-reducing power.
In vivo, OLH proved highly effective in enhancing antioxidant capacity and lowering
oxidative stress markers, showing significant increases in TAC and substantial reductions
in TOS and OSI levels. Conversely, MH displayed limited and dose-dependent antioxidant
activity, a considerable increase in TAC and SH, and a moderate decrease in TOS and OSI
levels. Conclusions: To our knowledge, this is the first study to assess the phenolic content
of OLH and to show its capacity to scavenge free radicals and reduce oxidative stress. The
effectiveness of MH primarily relies on its increased antioxidant properties and depends
on concentration. These results highlight the importance of investigating natural products
in developing antioxidant strategies.
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1. Introduction
Honey, a natural and ancient remedy, is recognized globally for its diverse nutritional

and medicinal properties. Comprising a complex mixture of sugars (80%)—primarily
fructose (33–43%), glucose (25–35%), and sucrose (0.2–2%)—along with water (17–20%),
polyphenols (2–42 mg GAE/100 g), amino acids (0.2–0.4%), minerals (0.1–0.5%), vitamins,
organic acids (0.2–0.8%), enzymes and bioactive compounds, like hydrogen peroxide
(H2O2) and methylglyoxal (MG), honey’s composition varies depending on factors such
as botanical source, geographical location, and environmental conditions [1–5]. These
bioactive components provide honey with remarkable therapeutic effects, particularly in
the context of inflammation and oxidative stress. In recent years, scientific investigations
have highlighted honey’s important anti-inflammatory and antioxidant properties with
health-promoting effects [6].

Oxidative stress and inflammation are closely linked biological processes, which play
pivotal roles in various chronic diseases, including diabetes, hypertension, cancer, and
cardiovascular diseases. Oxidative stress occurs when the equilibrium between reactive
oxygen species (ROS), which are generated by immune cells such as macrophages and
neutrophils during inflammation, disrupts the body’s antioxidant defenses, resulting in
cellular damage. This excess of ROS harms proteins, lipids, and DNA and amplifies
inflammation by triggering immune responses. Inflammation, on the other hand, is the
body’s defense mechanism against harmful stimuli like infections or injuries [7]. While
acute inflammation is essential for healing, chronic inflammation can contribute to long-
term tissue damage and disease development.

Several molecular pathways are involved in mediating the inflammatory response,
including the nuclear factor-kappa B (NF-κB), cyclooxygenase (COX), and mitogen-
activated protein kinase (MAPK) pathways. These pathways control the production of
pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-alpha
(TNF-α), which, in turn, amplify the inflammatory response [8]. Meanwhile, NF-κB and
oxidative stress can activate the NLRP3 inflammasome, a vital component of the innate
immune system, which amplifies inflammation and is implicated in diseases like atheroscle-
rosis and type II diabetes [9].

Studies have demonstrated honey’s ability to influence the production of these key
inflammatory markers. For example, thyme honey has been shown to increase the ex-
pression of TNF-α and COX-2, while Manuka and Kanuka honey have demonstrated
their effectiveness in modulating inflammatory responses in both immune and cancer cell
lines [1].

In addition to its anti-inflammatory properties, honey exhibits significant antioxidant
activity due to its rich composition of phenolic acids. Some phenolic acids (e.g., ellagic
acid, caffeic, p-coumaric, and ferulic acids) and flavonoids (e.g., hespereti, kaempferol, and
quercetin), enable it to scavenge free radicals and prevent oxidative damage [6,10].

Lastly, honey is widely recognized for its potent antimicrobial properties, being effec-
tive against a range of multidrug-resistant bacteria, including Pseudomonas aeruginosa and
Staphylococcus aureus [10,11]. Its low pH, high sugar content, and bioactive components
create a hostile environment for microbial growth. Furthermore, honey’s high viscosity
helps protect wounds from infection, promoting healing and tissue repair [10]. Based on
their main antimicrobial mechanism, there are two types of honey: peroxide and non-
peroxide honey. The antimicrobial mechanism of the peroxide type of honey depends on
the glucose oxidase, which, in the presence of water, converts the glucose from honey into
gluconic acid and hydrogen peroxide. The antimicrobial mechanism of the non-peroxide
type of honey is based on other molecules, like polyphenols, and inhibition of glucose
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peroxidase by methylglyoxal formation. Manuka honey is the best-known non-peroxide
type of honey [12].

The properties of MH were studied beginning in the early 90s, and it continues today,
but OLH’s medical properties were not studied [13]. Therefore, the current work aimed
to investigate and compare the mechanisms of the antioxidant effects of MH and OLH in
correlation with the polyphenol analysis.

2. Materials and Methods
2.1. Chemicals

Ferrous ammonium sulfate, Ortho-dianisidinedihydrochloride (3-3V-dimethoxybenzidine),
Sodium citrate, Reduced glutathione (GSH), Ethylenediaminetetraacetic acid (EDTA),
Vitamin C (L(+) ascorbic acid), 5,5V-dithiobis-(2-nitrobenzoic acid) (DTNB), Ribose,
Glucose, 2,2V-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS), Saccharose, (F)-
catechin, Potassium persulfate, Hydrogen peroxide (H2O2), tert-butyl hydroperoxide,
Cumenehydroperoxide, Thiobarbituric acid (TBA), 3,5,3′,5′-tetramethylbenzidine (TMB),
Xylenol orange [o-cresosulfonphthalein-3,3-bis(sodium methyl iminodiacetate)], Glycerol,
Sorbitol, Sulfuric acid, Hydrochloric acid, 1,1,3-3-tetramethoxypropane (malondialde-
hydebis(Dimethyl Acetal), Alchilamine (N-N-diethyl-para-phenylenediamine, DEPPD),
Sodium azide, Butylated hydroxytoluene (BHT), Ortho-dianisidinedihydrochloride (3-3′-
dimethoxybenzidine), Ferric chloride, Ferrous ammonium sulfate, Horseradish peroxidase,
Sulfanilamide (SULF), N-(1-Naphthyl) ethylenediaminedihydrochloride (NEDD), Sodium
nitrite (NaNO2), Tris-HCl, EDTA, Methanol, Sodium borohydrate (NaBH4), Sodium chlo-
ride (NaCl), Formaldehyde, Chloramine-T, Phosphate-buffered saline (PBS), Distilled water,
Potassium iodide (KI). All chemicals were purchased from Sigma Co. (St. Louis, MO, USA)
and Merck Co. (Darmstadt, Germany) and were of ultra-pure grade.

The HPLC-grade acetonitrile was acquired from Merck (Darmstadt, Germany), while
ultrapure water was obtained with the Direct-Q UV system from Millipore (Burlington, MA,
USA). Standard substances, including catechin, luteolin, rutin, chlorogenic acid, gallic acid,
hesperidin, and caffeine (all of 99% HPLC grade), were purchased from Sigma (St. Louis,
MO, USA).

2.2. Honey Products

The Manuka honey (MH) is 100% sourced from honeybees in New Zealand, primarily
feeding on the Manuka shrub (Leptospermum scoparium; Family: Myrtaceae) (Figure S1). This
monofloral honey is reportedly “briefly stirred, hand-sifted and bottled” without further
processing. The MH used in this study had a Methylglyoxal (MGO) concentration of
400+, as verified by the German manufacturer “HonigWernet”. According to the company,
the MGO content is determined in specialized honey laboratories as part of their quality
control process.

The Ohia Lehua blossom honey (OLH) (Metrosiderospolymorpha; Family: Myrtaceae), is
sourced directly from the Ka’u District on the Big Island of Hawaii by the “Big Island Bees”
honey manufacturer (Figure S2). It is a monofloral honey produced “without chemicals,
artificial feeds, miticides, heat, or filtration”, ensuring it is neither heated nor blended.

The fact that both honeys were claimed to be raw and unprocessed is critical, as any
processing could have potentially affected the study’s outcomes.

2.3. Phytochemical Analysisubsection
2.3.1. Total Polyphenol Content

The total phenolic content (TPC) was evaluated with Folin–Ciocâlteu’s phenolic
reagent (Alpha Chemical, Navi Mumbai, India) through a modified protocol of the Folin–
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Ciocalteu method. The standard curve of gallic acid was used for quantification (Sigma
Aldrich, St. Louis, MO, USA). Each sample underwent analysis in quadruple. In summary,
1 mL of honey solution (100 mg/mL diluted in distilled water) from each sample was
mixed with 5 mL of 10% Folin–Ciocalteu’s phenol reagent. After a 5 min interval, 4 mL
of 7.5% sodium bicarbonate was added, and the mixture was allowed to rest at room
temperature for 30 min (in dark conditions). The absorbance was measured at 765 nm with
a spectrophotometer. The total phenolic content was calculated using the standard curve
of gallic acid solutions (Figure S3) and quantified as milligrams of gallic acid equivalents
(GAE) per gram of honey (mg GAE/g) [14,15].

2.3.2. Total Flavonoid Content (TFC)

The total flavonoid content was determined using a previously described method [16].
In brief, 25 µL of honey solution (100 mg/mL diluted in distilled water) was combined with
8 µL of 7% NaNO2, 15 µL of 10% AlCl3 solution, 50 µL of 1M NaOH solution and 28 µL
of distilled water. After thorough mixing, the solution was left at room temperature for
15 min. Absorbance was then measured at 510 nm. Flavonoid content was quantified using
calibration curves ranging from 10 to 500 µg/mL, with the results expressed as milligrams
of quercetin equivalents per gram of honey (mg QE/100 g) [17].

2.3.3. High-Performance Liquid Chromatography Coupled with Electrospray Ionization
Mass Spectrometry (HPLC-ESI MS) Analysis

An Agilent 1200 HPLC system (Agilent Technologies, CA, USA) was used to char-
acterize the honey extracts; as previously described, it was equipped with a quaternary
pump, solvent degasser, autosampler, UV-Vis detector with photodiode array (DAD), and
a single quadrupole mass spectrometer (MS) detector, model 6110 [18]. The separation of
compounds was performed on a Kinetex XB C18 column (4.6 × 150 mm, 5 µm particle size;
Phenomenex, USA). Two mobile phases were used. Mobile phase (A), which consisted of
water with 0.1% acetic acid, and mobile phase (B), which consisted of acetonitrile with 0.1%
acetic acid. Each run lasted 30 min. The temperature was set at 25 ◦C, and the flow rate at
0.5 mL/min. The elution program started at 0 min with 5% B, continued for 2 min with
5% B; increased up to 18 min from 5% to 40% B; further increased from 18 to 20 min from
40% to 90% B and then kept for 4 min at 90% B. Next, from 24 to 25 min, the percentage
was decreased from 90% to 5% B and maintained for another 5 min at 5% B. Spectral data
were collected in the 200–600 nm range for all peaks, and chromatograms were recorded at
280 and 340 nm wavelengths.

In the MS analysis, ESI positive full scan ionization mode was used using the capillary
voltage at 3000 V, the temperature at 350 ◦C, the nitrogen flow at 7 L/min, and the mass
range between 120 and 1200 m/z. Data acquisition and interpretation were performed
using Agilent ChemStation software, version B.02.01-SR2 [18].

Calibration curves for quantifying phenolic compounds were generated by injecting
five different concentrations of each standard dissolved in methanol. The equations derived
from these curves were used for the quantitative analysis of each phenolic compound. Hy-
droxycinnamic acids were quantified as chlorogenic acid equivalents (y = 22.585x − 36.728,
(R2 = 0.9937), LOD = 0.41 µg/mL, LOQ = 1.24 µg/mL)); hydroxybenzoic acids as gallic
acid equivalents(y = 33.624x + 30.8; R2 = 0.9978; LOD = 0.35 µg/mL, LOQ = 1.05 µg/mL);
flavones as luteolin equivalents (y = 68.857x + 25.113, (R2 = 0.9972), LOD = 0.38 µg/mL,
LOQ = 1.14 µg/mL)); flavanones as hesperidin equivalents (y = 11.206x + 77.19, R2 = 0.9968;
LOQ = 0.85, LOD = 2.55 µg/mL), and flavonols as rutin equivalents (y = 26.935x − 33.784,
(R2 = 0.9981), LOD = 0.21 µg/mL, LOQ = 0.64 µg/mL)).
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The identification of phenolic compounds was performed by comparing their mass
spectra, retention periods, and UV-Vis absorption with reference standards, published data,
and information from the Phenol-Explorer database.

2.4. In Vitro Antioxidant Activity Analysis
2.4.1. DPPH Radical-Scavenging Activity

The DPPH radical-scavenging activity of the honey was assessed using a previous
method [19]. A 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed for the analysis.
This procedure combined 100 µL of the honey solution with 100 µL of the DPPH working
solution. The mixture was then incubated in the dark for 30 min, and the absorbance was
measured at 517 nm to determine the percentage of DPPH radical-scavenging activity.
The DPPH scavenging activity (AA) was computed as a percentage using the formula
AA% = [(A control − A sample)/A control] × 100, where A control is the absorbance of
DPPH radical + methanol and A sample is the absorbance of DPPH radical+ sample extract.
The IC50 value, indicating the concentration required to inhibit 50% of DPPH free radicals,
was converted to µgTrolox equivalents/mL (µg TE/g).

2.4.2. Ferric Ion Reducing Antioxidant Power Assay (FRAP)

The Ferric Ion Reducing Antioxidant Power (FRAP) assay used a previous proce-
dure [20]. Moreover, 10 µL of each honey solution was combined with 190 µL of the FRAP
reagent. After incubating for 30 min in the dark, the absorbance was measured at 593 nm
using a microtiter plate reader. FRAP was calculated with the formula: (CTXx V × D ×
100)/weight of the honey sample, where CTX is the TX concentration (mg/mL) from the
standard TX curve, V (mL) is the honey volume, and DF is the dilution factor. Results were
expressed as µg TE/g.

2.4.3. Hydrogen Peroxide (H2O2) Scavenging Activity

The ability of honey solutions to scavenge hydrogen peroxide (H2O2) was evaluated
following a previously described method [21]. In short, the extracts were combined with
an H2O2 solution, and the absorbance was measured at 230 nm against a phosphate
buffer blank after 10 min. The IC50 of H2O2 scavenging was calculated using the formula:
scavenged H2O2 % = [(A control − A sample)/A control] × 100, where A control is a
solution containing phosphate buffer and hydrogen peroxide, and A sample is a solution
containing phosphate buffer, hydrogen peroxide, and serum sample. The results were
converted to mg TE/g.

2.4.4. Nitric Oxide (NO) Radical Scavenging Assay

The nitric oxide radical scavenging assay was conducted as previously described [21].
Using sodium nitroprusside to generate nitric oxide (NO), the Griess reagent was used to
detect nitric oxide (NO). Briefly, 0.5 mL of honey solutions were mixed with 2 mL sodium
nitroprusside solution (SNP) and 0.5 mL of PBS (pH 7.4). The mixture was then incubated
at 25 ◦C for 2.5 h. Next, 0.5 mL of the mixture was mixed with 1 mL of sulphanilic acid.
After 5 min, 1 mL of Naphthylethylenediaminedihydrochloride was added. Afterward,
the mixture was vortexed and incubated in dark conditions for 30 min. Absorbance was
measured at 546 nm, and IC50 was calculated using the formula: scavenged NO % = [(A
blank − A sample)/A blank] × 100. The IC50 results were expressed as micrograms of
quercetin equivalent per g (µg QE/g).

The in vitro antioxidant analysis was performed in triplicate. The measurements were
performed with a UV-Vis spectrophotometer (Jasco V-350, Jasco International Co., Ltd.,
Tokyo, Japan).
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2.5. In Vivo Experimental Design
2.5.1. Animal Subjects

This experiment was conducted on male albino Wistar rats weighing 200–250 g. The an-
imals were obtained from the Animal Facility of “Iuliu Haţieganu“ University of Medicine
and Pharmacy, Cluj-Napoca, Romania. They were accommodated in polypropylene cages
and held under controlled environmental conditions: 12:12 h light:dark cycle, temperature
25 ± 10 ◦C and relative humidity 55 ± 5%. Ad libitum water and a normal granular diet
were freely available.

All procedures adhere to Directive 2010/63/EU and Romanian national law 43/2014 re-
garding protecting animals used in scientific research. The project received approval
from the Veterinary Sanitary Direction and Food Safety Cluj-Napoca (Approval No.
372/04.07.2023). The experiments were performed in triplicate.

2.5.2. Experimental Protocol

The animals were randomized and put into 10 groups (n = 5): CONTROL group,
inflammation group (INFL), group INFL treated with diclofenac (DICLO) (10 mg/kg) [22],
group INFL treated with TROLOX (10 mg/kg) [23], 3 groups INFL treated with
1 mL/rat/day of three MH (Leptospermum scoparium) dilutions, respectively 100% (MH100)
(2 g honey/kg b.w./day), 50% (MH50) (1 g honey/kg b.w./day), and 25% (MH25) (0.5 g
honey/kg b.w./day), and 3 groups INFL treated with three OLH (Metrosiderospolymor-
pha) dilutions, respectively 100% (OLH100) (2 g honey/kg b.w./day), 50% (OLH50) (1 g
honey/kg b.w./day) and 25% (OLH25) (0.5 g honey/kg b.w./day). Except for CONTROL
animals, all INFL groups received intramuscular turpentine oil (6 mL/kg b.w.) on the
first day. Subsequently, from the second day onwards, the animals were administered
treatments orally via gavage for 10 days. One hour before the administration, honey was
prepared daily by solving each dose/rat/day in 1 mL of distilled water [24]. CONTROL
and INFL groups received tap water (1 mL/rat/day). On the 12th day, the rats were
sedated with ketamine (60 mg/kg) and xylazine (15 mg/kg) [25]. Blood was collected
via retro-orbital sinus puncture. Serum was immediately separated and stored at −80 ◦C
until further analysis. The animals were then humanely euthanized by cervical dislocation
under general anesthesia, following ethical guidelines approved by the Ethics Committee.

2.5.3. Assessments of Oxidative Stress Markers

• Determination of Total Antioxidant Capacity

Total Antioxidant Capacity (TAC) assesses the ability of an organism’s antioxidants
to neutralize harmful free radicals and combat oxidative stress. It was measured using
a colorimetric method. A standard solution of Fe2+-o-dianisidyl underwent the Fenton
reaction with a standard H2O2 solution, forming hydroxyl radicals, which in the presence
of an acid oxidized o-dianisidine to dianisidyl radicals. The antioxidants from the sample
inhibited the oxidation reactions and the appearance of coloration proportional to their
concentrations [26]. The absorbance was read at 440 nm, and results were reported in
millimoles of Trolox equivalents per liter (mmol TE/L) (Figure S4).

• Determination of Total Oxidative Status

Total oxidative status (TOS)was measured as a general marker of serum oxidants.
It was measured using a colorimetric assay based on the oxidation of ferrous ion (Fe2+)
to ferric ion (Fe3+) in the presence of oxidant species in an acidic medium, where the
measurement of the ferric ion was conducted through a reaction with xylenol orange. The
absorbance was read at 560 nm, and results were expressed in micromoles of hydrogen
peroxide equivalents per liter (µmol H2O2/L) (Figure S5) [27].
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• Determination of Oxidative Stress Index

The Oxidative Stress Index (OSI) is a marker used to assess the level of oxidative stress
by evaluating the ratio between TOS and TAC, which represent the overall pro-oxidant
load and the body’s antioxidant defenses, respectively [28]. This index provides insight
into the balance between oxidative damage and the body’s ability to neutralize it. OSI is
calculated using the formula: OSI = TOS (µmol H2O2 Eq/L)/TAC (µmol TE/L).

• Determination of Nitric Oxide

Nitric oxide (NO), the naturally occurring signaling molecule produced by nerve,
endothelial, and immune cells, was quantified. The quantification was indirectly performed
by measuring total nitrites and nitrates with Griess reaction. Accordingly, serum proteins
were removed following the methanol/diethyl ether solution extraction (3:1 (v/v)). The
nitrates were converted to nitrites following vanadium (III) chloride addition. After Griess
reagent was added, absorbance was read at 540 nm. Results were expressed in micromoles
of nitrite per liter (µmol/L) [16,29].

• Determination of Malondialdehyde

Malondialdehyde (MDA), considered an important marker of lipid peroxidation, was
measured. The thiobarbituric acid method was performed as previously described. Serum
(0.1 mL) was combined with 40% trichloroacetic acid (0.1 mL) and mixed with 0.67%
thiobarbituric acid (0.2 mL). The mixture was heated for 30 min using a boiling water bath
and, afterward, cooled in an ice water bath. Next, the mixture was centrifuged (3461× g,
5 min). The absorbance was read at 532 nm, and the MDA concentration in the serum was
expressed in nanomoles per milliliter (nmol/mL) [30].

• Determination of Advanced Oxidation Protein Products

Advanced oxidation protein products (AOPP), considered biomarkers for protein
oxidation, were determined spectrophotometrically [31]. The samples and a blank of
chloramine T were diluted (to 10%)in phosphate-buffered saline (PBS). Next, potassium
iodide and glacial acetic acid were added. The absorbance of the samples was registered
at 340 nm after the addition of glacial acetic acid. Before data analysis, the optical density
of the blank sample was subtracted. AOPP concentrations were calculated and expressed
in µmol chloramine-T equivalent/L (µmol chloramine E/L).

• Determination of Total Thiols

Total thiols (SH), considered a class of sulfur-containing compounds with antioxidant
effect, were determined to evaluate the associated antioxidant capacity. Ellman’s reagent
(Sigma-Aldrich, Munich, Germany) was used for the assay, and the absorbance of the
supernatant was recorded at 412 nm [32]. The concentration of serum SH was expressed as
millimole of glutathione per milliliter (mmol GSH/mL).

Spectrophotometric analyses, including TAC, TOS, NO, MDA, SH, OSI, and AOPP,
were conducted using a UV-Vis spectrophotometer (Jasco V-350, Jasco International Co.,
Ltd., Tokyo, Japan).

2.6. Statistical Analysis

The results were presented as the mean ± standard deviation (SD) for data following
a normal distribution. Group comparisons were conducted using one-way analysis of
variance (ANOVA) followed by post hoc Bonferroni–Holm tests. Correlation analysis was
performed using the Pearson test and principal component analysis (PCA). A p-value of
less than 0.05 was considered statistically significant.
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3. Results
3.1. Phytochemical Analysis
3.1.1. Total Polyphenols and Flavonoid Content

TPC and TFC of both OLH and MH were substantial, with MH exhibiting higher
values than OLH (Table 1).

Table 1. Total polyphenols and total flavonoid content of Manuka honey and Ohia Lehua honey.

Plantextract
(100 mg/mL)

Total Polyphenols Content
(mgGAE/g)

Total Flavonoids Content
(mg QE/g)

Ohia Lehua honey 4.826 ± 00.4 12.65 ± 1.05
Manuka honey 5.425 ± 0.09 31.65 ± 1.86

Note: Values are expressed as mean ± SD (n = 3).

3.1.2. HPLC-ESI-MS Analysis of Phenolic Compounds

MH and OLH provided a different pattern of HPLC-DAD-ESI + results, with MH
having about ten times more phenolic compounds. Phenolics analysis showed that honey
solutions were rich in non-flavonoid compounds, like hydroxybenzoic and hydroxycin-
namic acids (Figure 1; Table 2). From the phenolic acids, some hydroxybenzoic acids,
respectively methyl-syringic acid and trimethoxybenzoic acid, were the most abundant
in MH and were missing in OLH. From the hydroxycinnamic acids, p-coumaroyquinic
acid, chlorogenic acid, and caffeic acid-glucoside were identified only in MH. Other phe-
nolic acids extracted from both MH and OLH include 2,4-dihydroxybenzoic acid, gallic
acid, protocatechuic acid, 4-hydroxybenzoic acid, vanillic acid, and syringic acid. From
the flavonoids apigenin-glucoside, quercetin-glucoside, and quercetin were found just in
MH, pinocembrin-glucoside was found in MH and OLH. Furthermore, MH and OLH had
almost similar phenyllactic acid content.
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solutions (100 mg/mL): (A) Manuka honey phenolic compounds at 280 and 340 nm; (B) Ohia Lehua
honey phenolic compounds at 280 and 340 nm. The peak identification is provided in Table 2.

Table 2. HPLC-DAD-ESI + phenolic compound tentative identification from Manuka honey and
Ohia Lehua honey solutions (100 mg/mL).

Peak
No

Rt
(min)

UV
λmax
(nm)

[M + H]+

(m/z) Compound Subclass
Manuka
Honey

(µg/mL)

Ohia Lehua
Honey

(µg/mL)

1 4.03 270 155 2,4-Dihydroxybenzoic acid Hydroxybenzoic acid 36.65 ± 2.12 7.35 ± 0.93
2 4.53 270 171 Gallic acid Hydroxybenzoic acid 30.04 ± 2.35 17.49 ± 1.46
3 10.12 320 339 p-Coumaroyquinic acid Hydroxycinnamic acid 10.22 ± 0.04 ND
4 10.25 280 155 Protocatechuic acid Hydroxybenzoic acid 18.98 ± 4.71 4.71 ± 0.05
5 11.76 330 355 Chlorogenic acid Hydroxycinnamic acid 4.50 ± 0.02 ND
6 12.24 330 343 Caffeic acid-glucoside Hydroxycinnamic acid 11.54 ± 1.30 ND
7 12.49 270 139 4-Hydroxybenzoic acid Hydroxybenzoic acid 9.94 ± 0.97 0.72 ± 0.22
8 12.90 265 213 Trimethoxybenzoic acid Hydroxybenzoic acid 106.30 ± 4.20 ND
9 13.42 340, 245 433, 271 Apigenin-glucoside Flavone 0.72 ± 0.04 ND

10 13.81 280 169 Vanillic acid Hydroxybenzoic acid 6.14 ± 3.02 0.37 ± 0.01
11 15.81 360, 250 465, 303 Quercetin-glucoside Flavonol 1.92 ± 0.90 ND
12 16.58 280 199 Syringic acid Hydroxybenzoic acid 80.58 ± 5.68 0.28 ± 0.01
13 18.05 350, 250 419, 257 Pinocembrin-glucoside Flavanone 4.30 ± 2.89 0.34 ± 0.05
14 19.69 280 213, 199 Methyl-Syringic acid Hydroxybenzoic acid 144.37 ± 6.21 ND
15 21.21 360, 250 303 Quercetin Flavonol 1.74 ± 0.98 ND
16 26.71 280 167 Phenyllactic acid 14.35 ± 2.69 14.23 ± 2.24

Total phenolics 482.30 ± 34.43 45.49 ± 4.95

Note: Values are expressed as mean ± SD (n = 3); ND—not detected.

3.2. In Vitro Antioxidant Activity

The MH and OLH displayed in vitro antioxidant activity. Regarding antioxidant
activities, the concentration of honey necessary to inhibit 50% of DPPH radical was above
100 µg TE/g and smaller than that of Trolox. H2O2 and FRAP scavenging capacities were
more robust than those of Trolox. Compared to quercitin, MH and OLH NO scavenging
activity was also higher (Table 3). There were no significant differences between the
antioxidant test results of MH and OLH.
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Table 3. In vitro antioxidant activity of the Ohia Lehua honey and Manuka honey.

Samples DPPH
µg TE/g

NO Scavenging
Activity mg QE/g

H2O2
mg TE/g

FRAP
µg TE/g

Ohia Lehua honey
(0.1 g/mL) 108.33 ± 9.20 85.79 ± 9.45 49.01 ± 4.01 148.85 ± 14.09

Manuka honey
(0.1 g/mL) 106.57 ± 13.54 78.83 ± 5.83 44.71 ± 2.79 121.20 ± 11.27

Note: Values are expressed as mean ± SD (n = 3). The honey samples were compared by one-way ANOVA test.
DPPH—DPPH free radical scavenging capacity; FRAP—ferric reducing antioxidant power; H2O2—hydrogen peroxide
scavenging capacity; NO—nitric oxide radical scavenging assay; TE—TROLOX equivalent; QE—quercetin equivalent.

3.3. In Vivo Antioxidant Activity

Oxidative stress (OS) was evaluated using both global and specific biomarkers. The
INFL group exhibited higher OS levels compared to the CONTROL group, marked by a
significant increase in the levels of the global OS markers, TOS and OSI, and NO, MDA,
and AOPP (p < 0.001). Moreover, there was a moderate reduction in TAC (p < 0.05) and an
important decrease in the SH levels (p < 0.01) (Table 4).

Table 4. In vivo antioxidant activity of the Manuka honey and Ohia Lehua honey.

GROUPS
TAC

(mmol Trolox
Equiv./L)

TOS
(µmol H2O2

Equiv./L)
OSI NO

(µmol/L)
MDA

(nmol/L)
AOPP

(µmol/L)
SH

(µmol/L)

CONTROL 1.11 ± 0.00 27.56 ± 4.35 24.81 ± 3.91 52.94 ± 10.48 4.61 ± 0.46 25.75 ± 2.11 458.2 ± 94.95

INFL 1.10 ± 0.00
a

45.68 ± 6.39
aaa

41.24 ± 5.73
aaa 71.81 ± 16.16 5.80 ± 1.13

a
41.48 ± 3.75

aaa
299.4 ± 53.72

aa

DICLO 1.10 ± 0.00 35.7 ± 3.42
b 32.23 ± 3.06 b 66.41 ± 9.27 5.15 ± 0.35 35.088 ± 4.57

b
356.2 ± 72.07

b

TROLOX 1.11 ± 0.00
b

29.32 ± 5.50
bb

26.40 ± 4.94
bb, c

45.21 ± 4.54
bbb, cc 5.71 ± 0.30 33.25 ± 0.89

bb
412.5 ± 45.35

bb, c

OLH100 1.11 ± 0.00
bb; cc

24.73 ± 4.61
bbb, cc

22.19 ± 4.2
bbb, cc

68.79 ± 11.63
dd

4.48 ± 0.58
bb, cc, ddd

40.26 ± 9.47
c, d

398.6 ± 54.74
bb

OLH50 1.11 ± 0.00
bb; cc; d

26.40 ± 4.21
bbb,cc

22.97 ± 2.68
bbb, cc

69.01 ± 7.8
dd

4.32 ± 0.35
bb, cc, ddd

40.18 ± 7.54
c, d

373.5 ± 50.79
bb

OLH25 1.12 ± 0.00
bbb; ccc; ddd

29.91 ± 5.69
bbb

26.64 ± 5.05
bb

60.30 ± 12.68
dd

3.98 ± 0.43
bb, cc, ddd

41.62 ± 7.91
c, d

369.8 ± 59.20
bb

MH100 1.10 ± 0.00
ddd

45.2 ± 4.54
cc, ddd

45.67 ± 3.30
ccc, ddd

52.49 ± 20.56
bb, c 5.00 ± 0.74 30.11 ± 5.43

bb
462.6 ± 66.84

bbb, cc

MH50 1.10 ± 0.00 41.12 ± 7.13
c,d 37.08 ± 6.44 51.20 ± 19.24

bb, c 5.18 ± 0.22 29.54 ± 2.29
bb

424 ± 58.37
bbb, cc

MH25 1.10 ± 0.00
dd

33.99 ± 7.26
bb

30.72 ± 6.55
bb

54.43 ± 10.22
bb,c 5.14 ± 0.822 32.17 ± 4.94

bb
362.5 ± 60.71

bbb,c

Note: Values are expressed as mean ± SD (n = 5). Vs CONTROL: a p < 0.05, aa p < 0.01, aaa p < 0.001; vs.
INFl: b p < 0.05, bb p < 0.01, bbb p < 0.001; vs. DICLO: c p < 0.05, cc p < 0.01, ccc p < 0.001; vs. TROLOX:
d p < 0.05, dd p < 0.01, ddd p < 0.001; OLH100—Ohia Lehua honey 100%; OLH50—Ohia Lehua honey 50%;
OLH25—Ohia Lehua honey 25%; MH100—Manuka honey 100%; MH50—Manuka honey 50%; MH25—Manuka
honey25%; DICLO—Diclofenac; INFL—Inflammation; TAC—Total antioxidant capacity; TOS—Total oxidative
status; OSI—Oxidative stress index; NO—Nitric oxide; MDA—Malondialdehyde; AOPP—Advanced oxidation
protein products; SH—total thiols.

Diclofenac administration produced a slight decrease in TOS and OSI (p < 0.05),
associated with a slight AOPP reduction (p < 0.05) and a small SH increase (p < 0.05).
TROLOX antioxidant activity caused a moderate decrease in TOS, OSI, and AOPP (p < 0.01),
along with an important reduction of NO (p < 0.001), a weak increase in TAC (p < 0.05) and
a moderate increase in SH (p < 0.01) (Table 4).
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The administration of OLH significantly increased TAC (p < 0.01), and the effects were
better than those of diclofenac, with OLH25 having the best activity. OLH reduced TOS and
OSI levels (p < 0.001), and OLH100 and OLH50 were stronger inhibitors than diclofenac
(p < 0.01). OLH did not significantly influence NO and AOPP. All three OLH dilutions
lowered MDA (p < 0.01), and the effect was stronger than those of diclofenac and trolox
(p < 0.01). SH was increased by OLH treatments (p < 0.01), and there were no significant
differences when compared to diclofenac and trolox (p > 0.05) (Table 4).

None of the three MH dilutions had a notable effect on TAC compared to the INFL
group (p > 0.05). Regarding TOS, only MH25 caused a moderate reduction of TOS and OSI
(p < 0.01). Compared to DICLO and TROLOX, all MH100 and MH50 dilutions had lower
inhibitory activity on TOS. NO levels were lowered by MH (p < 0.01), and the effect was
better than that of diclofenac (p < 0.05). MH dilutions had no important activity on MDA
(p > 0.05) but reduced AOPP (p < 0.01). The MH50 caused a significant rise in SH levels
(p < 0.001), and the effect was better than that of diclofenac (p < 0.001) (Table 4).

3.4. Principal Component Analysis

The PCA analysis was conducted to evaluate the correlations among the analyzed
parameters and to assess their variability across rat groups based on different concentra-
tions of honey administration (Figure 2). The variability was evaluated by comparing the
first principal components (PC1 and PC2), as seen in the score plots (Figure 2). For OLH
administration at concentrations of 100%, 50%, and 25%, these components (PC1 and PC2)
accounted for 82.92%, 97.82%, and 87.29% of the total variance, respectively (Figure 2A–C).
Similarly, for MH administration at 100%, 50%, and 25% concentrations, PC1 and PC2 ex-
plained 80.68%, 88.54%, and 100% of the total variance, respectively (Figure 2D–F).

For OLH100, the PCA analysis indicated a positive correlation between TOS, OSI, and
SH. In OLH50, these were also correlated with TAC; in OHL25, they were associated with
TAC and MDA (Figure 2).

For MH100, there was a positive correlation between TOS, OSI, SH, and AOPP, and
only NO was negatively correlated. In MH50PCA analysis, NO, AOPP, and SH were
positively correlated, but TOS and OSI were negatively correlated to NO, AOPP, and SH.
PCA analysis in MH25 indicated that only AOPP was negatively correlated, with the rest
of the parameters being positively correlated.

These findings indicate that antioxidant and oxidative stress parameters are influenced
differently depending on the type and concentration of honey.
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Figure 2. The PCA results of oxidative stress biomarkers based on the correlation matrix with
PC1 and PC2 for Ohia Lehua honey (Metrosiderospolymorpha) and Manuka honey (Leptospermum
scoparium): (A) PCA of OLH100—Ohia Lehua honey100%; (B) PCA of OLH50—Ohia Lehua honey
50%; (C) PCA of OLH25—Ohia Lehua honey 25%; (D) PCA of MH100—Manuka honey 100%; (E) PCA
of MH50—Manuka honey 50%; (F) PCA of MH25—Manuka honey 25%.

4. Discussion
Apitherapy is an alternative therapy that uses bee products, such as honey, propo-

lis, royal jelly, pollen, and bee venom [31]. Today, honey is a functional food produced
by honeybees (Apismellifera) by mixing plant nectar with bee hypopharyngeal excretions.
Consuming functional foods provides the body with health benefits such as the reduction
of inflammation and oxidative stress and the prevention of neurodegenerative diseases and
cancer [3]. The study of honey composition is needed to find the compounds responsible
for some of the health-promoting effects [33], like their antibacterial, anti-inflammatory,
antioxidant, antithrombotic, antiallergic, antimutagenic, anti-cytostatic and immunosup-
pressive effects [34]. It contains about 200 substances [31], and the percentages of these
differ between different types of honey due to the floral sources, nectars, seasons [35],
climates, environmental conditions, genetic factors, and others [36]. Several studies have
revealed that the antioxidant capacity of honey correlates with the presence of specific
proteins, amino acids, carotenoids, phenolic compounds and flavonoids, ascorbic acid, and
organic acids [31,36]. Based on the literature data, vitamins have no significant contribution
to honey’s antioxidant capacity [37].
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Polyphenols are plants’ secondary metabolites that are transferred to honey, and
phenolic acids and flavonoids were the main groups detected in honey [33]. In MH and
OLH samples, TPC and TFC were higher than in other honey samples [38]. In this study,
the polyphenols of MH and OLH samples were determined by HPLC-DAD-ESI+. Like
in other studies [24], the identified polyphenols were phenolic acids, like benzoic and
cinnamic acids, and flavonoids, like flavonols, flavones, and flavanones.

The chemical and structural differences in the phytochemical profiles of MH and OLH
can strongly influence their bioactivities. MH, with its higher phenolic content and greater
diversity of compounds, is likely to exhibit superior antioxidant properties compared
to OLH.

MH is characterized by high percentages of hydroxybenzoic acids (89.61% of total
phenolics), predominating compounds such as methyl-syringic acid (144.37 µg/mL), sy-
ringic acid (80.58 µg/mL), and trimethoxybenzoic acid (106.30 µg/mL). These compounds
contribute to strong antioxidant and anti-inflammatory properties. Next, hydroxycinnamic
acids were 5.44% of total phenolics with p-coumaroyquinic acid (10.22 µg/mL) and chloro-
genic acid (4.50 µg/mL), known for their antioxidant and enzyme-inhibiting activities.
Furthermore, flavonoids were present in a smaller percentage (1.80% of total phenolics)
with quercetin-glucoside (1.92 µg/mL) and apigenin-glucoside (0.72 µg/mL), which are
known as well for their anti-inflammatory and radical-scavenging properties [39,40].

In OLH (45.49 µg/mL), high percentages of hydroxybenzoic acids (67.98% of total
phenolics) were also identified (e.g., 2,4-dihydroxybenzoic acid: 7.35 µg/mL, gallic acid:
17.49 µg/mL). Even though OLH lacks hydroxycinnamic acids and flavonoids, other
phenolics like phenyllactic acid represent 31.27% of total phenolics, indicating its potential
for antioxidant activity [39,40].

The present study highlights that MH mainly contributed to the in vivo antioxidative
properties by causing an important increase in SH, and by a smaller reduction of NO
and AOPP. OLH in vivo antioxidant activity had another mechanism other than MH;
it consisted of an important reduction of TOS, OSI, and MDA and a smaller increase
in TAC and SH. It has been previously demonstrated that phenolic compounds may
decrease MDA, an important genotoxic product of lipid peroxidation [41]. Also, among
the phenolic acids, methyl-syringic acid, trimethoxybenzoic acid, and syringic acid had
the highest concentration in MH. Methyl-syringic acid was found in large quantities
only in MH. It is the ester of syringic acid, and it has been reported to be one of the
abundant constituents of honey. Methyl-syringic acid shows antioxidant and anti-radical
activities [42]. Trimethoxybenzoic acid is a potent antioxidant and inhibitor of cytokine
production. Syringic acid was found in both honey samples, MH and OLH, but at a higher
concentration in MH. It possesses medicinal properties such as antioxidant, antimicrobial,
anti-inflammatory, hepatoprotective, cardioprotective, neuroprotective, and anti-diabetic
activities [43]. Syringic acid antioxidant and anti-inflammatory activities rely on their ability
to neutralize free radicals and to inhibit the NF-κB-iNOS-COX-2 and JAK-STAT signaling
pathways [44]. Other phenolic acids were also reported to be found in other honey samples,
such as cinnamic acid, coumaric acid, benzoic acid, and chlorogenic acid [35].

The presence of certain flavonoids in honey is also an indicator of its antioxi-
dant activity. The most important flavonoids found in different honey samples are
quercetin, myricetin, chrysin, apigenin, luteolin, pinocembrin, pinobanksin, triacetin,
kaempferol, naringenin, hesperidin, fisetin, wogonin, genkwanin, acacetin, catechin and
epicatechin [35,39]. In our study, MH TFC was higher than that of OLH, apigenin-glucoside,
quercetin-glucoside and quercetin were found only in MH and pinocembrin-glucoside was
found in MH and OLH [45].
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Considering these differences between the antioxidant mechanisms and the phy-
tochemical analysis, further detailed research is required in order to elucidate which
compounds have the most significant effect on these oxidative stress biomarkers.

Honey has been used for medical purposes since ancient times, primarily due to its
wound healing and antibacterial effects [46]. There is a medical-grade honey (Reva Mil,
Medi honey) that has a broad-spectrum bactericidal activity, and it is used as a topical
antibacterial prophylaxis or treatment [47]. Both wounds and infections associate an
inflammatory response with inflammation-dependent oxidative stress. Therefore, the
present study evaluated some of the MH and OLH antioxidant activity mechanisms.

The antioxidant activity of phenolic compounds consists of their ability to be hydrogen
donors, reducing agents, metal chelators, and free radical scavengers [44,48,49]. DPPH,
FRAP, NO, and H2O2 scavenging tests are commonly used tests evaluating different
antioxidant mechanisms [39]. Regarding MH and OLH, the samples displayed strong
DPPH radical scavenging capacity, NO and H2O2 scavenging capacities, and high FRAP-
reducing power activity as compared to those reported by other investigations [34]. These
results can be attributed to many factors, including floral origin, harvest season, and
environmental conditions. Because in vitro interactions between the bioactive compounds
may induce changes in antioxidant capacities [34], we continued by testing the in vivo
antioxidant effects in an experimental rat inflammation model.

Although it is known that honey exhibits in vitro antioxidant activities, there is limited
information about the specific mechanisms of its in vivo antioxidant capacity [40]. Further-
more, because the main therapeutic effects of honey are attributed to the polyphenols, and
polyphenols’ interactions with other food compounds during digestion may influence their
bioaccessibility and bioavailability [50], in vivo study is highly needed.

Thus, in this study, we assessed the in vivo antioxidant effect of OLH and MH against
oxidative stress markers in an experimentally induced acute inflammation model. The
results highlighted the impact of these natural products on oxidative stress. Previous animal
studies have illustrated the connection between honey and conditions caused by oxidative
stress. The intake of honey appears to boost the activity of important antioxidant enzymes,
such as superoxide dismutase (SOD), glutathione-disulfide reductase (GR), catalase (CAT),
and glutathione peroxidase (GPx), in the livers of rats that consumed acetaminophen for
10 days [51]. Although the antioxidant capacity of honey is widely acknowledged, the exact
mechanisms through which it provides these effects are still not fully understood. Among
the most studied interrelated mechanisms are hydrogen donation, metal ion chelation, and
the scavenging of free radicals by boosting the levels of essential antioxidant molecules and
enzymes, including β-carotene, vitamin C, glutathione reductase, and uric acid [52].

The INFL group demonstrated significantly elevated OS levels, as evidenced by
increased TOS, OSI, and markers such as NO, MDA, and AOPP. Similar findings in prior
studies have underscored that inflammation exacerbates oxidative stress, leading to cellular
damage and contributing to pathological conditions such as arthritis and cardiovascular
diseases [53,54]. The observed moderate reduction in TAC and a significant decrease in
SH levels in the INFL group suggests that an inflammatory environment can deplete the
body’s antioxidant defenses, corroborating evidence from recent literature [55].

Diclofenac, a commonly used non-steroidal anti-inflammatory drug (NSAID), exhib-
ited a modest ability to mitigate oxidative stress, leading to slight decreases in TOS and
OSI. This aligns with previous reports indicating that, while NSAIDs can reduce inflamma-
tory responses, their antioxidant activity is often limited [56]. The minor increases in SH
levels may illustrate an aspect of diclofenac’s protective mechanisms, yet the effects were
insufficient to restore antioxidant balance significantly.
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On the other hand, the synthetic antioxidant TROLOX manifested a more pronounced
reduction in oxidative stress biomarkers. This finding supports the established role of
vitamin E analogs in effectively scavenging reactive oxygen species, thereby protecting
cellular integrity and function [57]. The improvement in TAC and SH levels following
TROLOX treatment further emphasizes its capacity to enhance antioxidant defenses in vivo.

OLH showed remarkable efficacy in enhancing antioxidant capacity and reducing
oxidative stress markers. With significant increases in TAC and substantial decreases in
TOS and OSI, especially with OLH25, the data strongly suggest that OLH possesses potent
bioactive compounds contributing to its antioxidant properties. Studies have shown that
honey’s high phenolic content contributes significantly to its ability to scavenge free radicals
and mitigate oxidative damage [52,58]. To our knowledge, this is the first study to evaluate
this aspect in OLH. The effectiveness of OLH in reducing MDA levels, an indicator of
lipid peroxidation, is significant; it demonstrates that OLH can aid in preserving cellular
membrane integrity during inflammatory states, aligning with literature findings that
highlight honey’s protective effects against lipid peroxidation [27]. The lack of significant
impact on NO levels and AOPP could indicate that OLH’s mechanisms might be more
aligned with lipids protection and enhancement of natural antioxidant pathways instead of
directly affecting nitric oxide production and protein oxidation.

Additionally, the PCA analysis revealed a significant positive correlation among
TOS, OSI, and SH levels in the OLH treatments, indicating that OLH not only diminishes
oxidative stress markers but also enhances the antioxidant defense mechanisms. These
findings align with the notion that honey may have intricate effects on oxidative pathways,
boosting endogenous antioxidant levels while reducing oxidative damage [59].

In contrast, MH showed limited antioxidant activity, as only the MH25 dilution
resulted in a moderate decrease in TOS and OSI levels. While MH is well-known for
its unique antibacterial properties [60,61], its comparative antioxidant efficacy appears
less robust than that of OLH. Previous research indicates variability in the antioxidant
properties of different honey types, suggesting that the phytochemical composition and
concentration of active compounds in MH may not be uniform, thereby influencing its
antioxidant efficacy [61,62]. The notable increase in SH levels observed in MH50 suggests
potential protective mechanisms against oxidative stress, yet the overall performance in
enhancing TAC was not compelling.

Furthermore, while MH managed to lower NO levels and reduce AOPP, underlying
evidence suggests that stresses from inflammatory responses may require more robust
antioxidant support than what MH can provide on its own [63]. The correlations noted
in the PCA analysis for MH reflect the complex interplay between oxidative markers,
indicating that different honey types may interact uniquely with oxidative pathways.

The main limitations of the study were related to the small experimental groups and
the phytochemical analysis limited to polyphenol determination.

5. Conclusions
In summary, this study is, to our knowledge, the first to provide compelling evidence

for the antioxidant potential of OLH, which reduces serum oxidant concentration, posi-
tioning it as a promising natural therapeutic agent for managing inflammation-induced
oxidative stress. Conversely, while MH offers some benefits, its effectiveness as an antioxi-
dant is based on the phenolic compound content and serum antioxidant increase. However,
it may vary based on composition and concentration, suggesting that further research
is warranted. These findings underscore the importance of exploring natural products
in developing antioxidant strategies, emphasizing their potential alongside established
pharmaceutical interventions in treating inflammatory conditions. Future studies should
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aim to elucidate the specific molecular mechanisms underlying the protective effects of
OLH and the variable responses observed with MH, thus enhancing our understanding of
their respective roles in oxidative stress reduction.
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