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Abstract: Background: Quercetin (QCT) and citrulline (CIT) have been independently
associated with improved antioxidant capacity and nitric oxide (NO) production, poten-
tially enhancing cardiovascular function and exercise performance. This study aimed
to evaluate the combined and independent effects of QCT and CIT supplementation on
NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km
cycling time trial (TT). Methods: In a randomized, double-blind, placebo-controlled design,
forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or
placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical
assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power
(FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre-
and post-TT. Results: NO metabolites were significantly elevated post-supplementation
(p = 0.03); however, no significant interaction effects were observed for NO metabolites,
FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses re-
vealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01),
while no significant changes in SOD or antioxidant capacity were found across any groups.
Conclusions: These findings suggest that combined and independent QCT and CIT supple-
mentation did not significantly improve these biomarkers, suggesting that baseline training
adaptations, supplementation timing, and individual variability may influence the efficacy
of these compounds in enhancing exercise performance and oxidative stress markers. The
ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.

Keywords: endurance exercise; aerobic capacity; dietary supplements; oxidative stress;
redox signaling

1. Introduction
Quercetin (QCT) is a polyphenol, more specifically, a parent flavonoid compound [1,2],

that has been shown to have powerful antioxidant and anti-inflammatory properties [3,4].
QCT is commonly found in plant-based foods including apples, elderberries, citrus fruits,
red wine, red onions, hot peppers, berries, kale, buckwheat tea, dark leafy greens, and
capers [2,5,6]. One of the mechanisms by which QCT may exert its effects is through
improving endothelium-dependent vasodilation [7]. In fact, QCT has been shown to
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improve nitric oxide (NO) levels and antioxidant status in rats [8]. Further, QCT acts in the
glutathione pathway to enhance antioxidant capacity [9]. Taken together, QCT may prove to
be a promising supplement for attenuating high levels of oxidative stress by enhancing the
glutathione pathway and the activity of antioxidant enzymes, such as superoxide dismutase
(SOD), as well as increasing antioxidant capacity, measured by ferric reducing antioxidant
power (FRAP) [10,11]. However, to the best of our knowledge, research investigating QCT’s
effects on NO metabolites or antioxidant capacity in trained individuals does not exist.

Citrulline (CIT) is a nonessential amino acid found in high concentrations in water-
melon [12–14]. CIT is formed from arginine, an amino acid involved in several physiological
roles including the urea cycle, protein synthesis, and the activity of NO synthase (NOS) en-
zymes, which also yields NO [14–19]. Chronic CIT supplementation increases NOS activity
and NO production, decreases blood pressure, and may increase peripheral blood flow [13].
Elevated reactive oxygen species (ROS), especially superoxide, can reduce NO bioavailabil-
ity by generating peroxynitrite, further promoting reductions in NO synthesis, leading to
endothelial dysfunction and limited exercise performance [17,20]. Although blood flow
enhancement is a proposed mechanism for the ergogenic potential of CIT, evidence support-
ing acute improvements in vasodilation, vascular conductance, and antioxidant potential
after supplementation is scarce and inconsistent in trained athletes.

Previously, we demonstrated that QCT + CIT, QCT, and CIT supplements did not
alter cycling 20 km time trial (TT) performance and average power, respiratory exchange
ratio (RER), and rate of perceived exertion; however, QCT and CIT improved oxygen
consumption (VO2) in trained cyclists [21]. Yet, several lines of research suggest that
while they may not enhance performance individually, both QCT and CIT could improve
aspects of cardiovascular health and NO metabolism. However, to date, no studies exist
investigating the potential synergist roles of QCT + CIT on NO metabolites and antioxidant
biomarkers in trained athletes after a maximal 20 km TT. To address these gaps in the
current body of knowledge, we conducted a systematic investigation into the ergogenic
effects of daily supplementation with QCT and CIT, both individually and in combination,
over a 28-day period. This study specifically evaluated their impact on NO metabolite
production, FRAP, SOD activity, and overall antioxidant capacity following a 20-kilometer
TT. It was hypothesized [21] that daily supplementation with QCT, CIT, or QCT + CIT for
28 consecutive days would enhance NO metabolite production and improve FRAP, SOD,
and antioxidant capacity compared to placebo (PL) after a cycling 20 km TT.

Study Population

Participants included male and female cyclists who regularly competed in races
(mountain, gravel, cross country, road, cyclocross). Cyclists were defined as Tier 2 of a
six-tier framework to classify exercise/training and/or sports performance levels [22].
Tier 2 is defined as a trained, developed individual who identifies cycling as their main
sport [23] and provides a sport-specific metric of training volume (average: 101.58 ± 64.36
to 285.92 ± 92.10 km/week and 11.16 ± 5.08 to 18.55 ± 7.41 h/week). The participants
were recruited through local cycling teams and races and trained at least three times per
week, currently trained with a stationary bike/trainer, trained at least three to five hours
per week over the past three years [24,25], and trained with a purpose to compete [23,24,26].
All females were tested during their follicular phase (approximately day 0 to day 16,
assuming a 30-day regular cycle [27]), which is when female sex hormone concentrations are
relatively stable and most similar to other women [28]. Females with medically prescribed
monophasic, biphasic, or triphasic oral contraceptives or who were perimenopausal [29]
were excluded due to a possible decrease in peak oxygen uptake (volume of O2peak per
minute) [30]. Exclusion criteria included the following: greater than two days of resistance
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training per week; daily use of nonsteroidal anti-inflammatory drugs and/or use of anti-
hypertensive medications; smoking (in the past six months); use of tetrahydrocannabinol
(THC) or cannabidiol (CBD) products; diagnosis of chronic, systemic, or inflammatory
diseases; pregnant women; females who have not had a period in the past 6 months (i.e.,
amenorrhea); documented intolerance to iron; and orthopedic injuries that may impact
cycling performance testing. This study was approved by and carried out in accordance
with the university’s Institutional Review Board for the protection of human subjects
(IRB # H23189; Approval Date: 11 April 2022).

2. Materials and Methods
A randomized, placebo-controlled study design was employed. Participants visited

the Applied Exercise Physiology laboratory on three separate occasions scheduled through-
out the day (0700–1600) at the same time of day (±2 h), spanning a five-to-six-week period.
Visits required participants to perform a 20 km cycling TT on three separate visits while
examining average power, oxygen consumption (VO2), respiratory exchange ratio (RER),
and rating of perceived exertion (RPE). Informed consent was obtained from all subjects
involved in the study.

During the testing period, participants maintained their typical race training regimen
but avoided strenuous exercise for at least 48 h prior to each visit, only participated in
low-intensity exercise 24 h prior to each visit, and agreed to avoid the use of large-dose
vitamin or mineral supplements (>100% of the recommended dietary allowances (RDAs));
nutritional supplements or ergogenic aids such as QCT, CIT, creatine, β-alanine, antioxidant
medications, tocopherols, or flavonoid supplementation; herbs; and anti-inflammatory or
hypertensive medications during the testing periods. Participants were asked to follow a
diet moderate in carbohydrates and protein similar to what they would normally consume
before a race prior to each visit. Participants completed a 24 h dietary recall before each
visit to ensure diet replication for subsequent visits. These recalls were analyzed using
an online food processor (version 11.1 ESHA Research) to standardize and verify dietary
intake. Body mass was recorded before each visit.

2.1. Visit Descriptions

Visit 1 consisted of completing the informed consent process, health history/medical
history questionnaire, 24 h dietary recall, injury history questionnaire, physical activity
readiness questionnaire, dual energy X-ray absorptiometry (DEXA) body composition scan,
measurement of height and weight, and a 20 km TT familiarization bout. Participants had
their body composition (Lunar Prodigy encore: PR 510021), height, and body mass mea-
sured before the familiarization session. Visit 2 consisted of a baseline TT performance bout
prior to a 28-day supplementation period. Visits 1 and 2 took place 72 h apart, avoiding
strenuous exercise for at least 48 h before visit 2. After visit 2, participants were randomly
assigned to one of four treatment groups (see below). Following the 28-day supplementa-
tion period, participants returned for visit 3 to perform the post-supplementation 20 km TT
performance test. After completion of each 20 km TT, participants performed a self-selected
5-min cool-down session.

2.2. 20 km Time Trial Performance

Participants completed a 10-min warm-up session at a self-selected pace and inten-
sity [31,32] before the 20 km TT. The TTs were performed on a Wahoo Core KICKR Smart
Trainer (Wahoo Fitness, Atlanta, GA, USA) using the Zwift system virtual training app
(Zwift Inc., Long Beach, CA, USA). The 20 km TT consisted of a reproducible, flat terrain
course at a freely-selected pedaling cadence allowing for the collection of average power, as
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previously described [25,26,33–35]. The KICKR trainer was set to open test mode during the
TT, allowing participants to change gears and intensity freely throughout. The participants
were instructed to produce their maximal power output for the TT, adopt their personal
pacing strategies [36–38], and to complete the total distance in the fastest time possible [33].
Participants were permitted to drink water as needed, select their own music, and listen to
the same playlist during each visit.

2.3. Supplementation

Participants were randomly assigned, under double-blind conditions, to one of
four groups: (1) QCT + CIT, (2) QCT, (3) CIT, or (4) PL. Powder-form supplements were dis-
solved in 16 oz of water. The composition of these powders were as follows: (1) QCT + CIT
(500 mg of QCT dihydrate, 3.0 g of L-CIT, 3.5 g orange Crystal Light [Kraft Heinz, Chicago,
IL, USA]), 2×/day; (2) QCT (500 mg of QCT dihydrate, 3.5 g orange Crystal Light), 2×/day;
(3) CIT (3.0 g of L-CIT and 3.5 g orange Crystal Light), 2×/day; (4) PL (3.5 g orange Crystal
Light). Supplements were consumed twice daily for 28 consecutive days [39–41] starting
the day after visit 2. The QCT and CIT dosages were chosen based on previous research in
which the supplements were observed to positively improve performance [39–47].

Participants were instructed to add the powdered supplements to 16 oz of water and
consume them within 30 min of their first and last meals of each day. The zero-calorie
orange-flavored Crystal Light package was added to mask any taste and ensure that par-
ticipants remained blinded to their treatment group. The supplements were consumed
in beverage form to enhance absorption [48,49]. Participants were required to add only
filtered or bottled room-temperature water to the bottle; no other fluids were allowed
in the mix. During the supplementation period, participants received a weekly phone
call or text check-ins from a research team member and logged their physical activity,
gastrointestinal (GI) symptoms, and supplement compliance. To ensure consistency, partic-
ipants were required to track when they consumed the supplement on a daily supplement
compliance dosing diary. If participants were not compliant and missed more than 10%
(~5.6 supplement bags), a sensitivity analysis was performed to determine the extent
to which non-compliance may or may not have influenced the primary outcome of NO
metabolites and secondary outcomes of FRAP, SOD, and antioxidant capacity. Participants
were required to track their physical activity on a compliance dosing diary, including their
intensity (i.e., 6–20 RPE scale), mode, and duration, throughout the study. During the
4-week intervention, participants maintained their typical race training regimen while
adhering to study protocols, which included avoiding strenuous exercise for at least 48 h
and limiting activity to low-intensity exercise 24 h prior to each visit [21].

2.4. Blood Collection

Approximately 20 mL of blood was collected into two EDTA-treated BD Vacutainer®

tubes (BD Biosciences; Franklin Lakes, NJ, USA) from the antecubital vein pre-exercise and
immediately post-exercise. The EDTA-treated tubes were gently inverted 8–10 times and
centrifuged for 10 min at 3600 RPM at 4 ◦C. Plasma was aliquoted and stored at –20 ◦C for
later analysis.

2.5. Biochemical Assessments

NO metabolites, FRAP, SOD, and antioxidant capacity, the ability to regulate free
radicals produced by the body during metabolic processes [50], were measured using
commercial assay kits, according to manufacturer instructions. The metabolic fate of NO
involves its oxidation to its metabolites nitrate and nitrite [51]. These metabolites can
improve cardiovascular function and biomarkers of oxidative stress by regulating blood
flow and vascular tone, thereby influencing performance [52]. FRAP measures antioxidant
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potential in which ferric iron (Fe3+) is reduced to ferrous iron (Fe2+), thus reflecting the total
antioxidant activity [53]. SOD is a metalloenzyme that plays a major role in antioxidant
defense by catalyzing the dismutation of superoxide anion radicals into molecular oxygen
(O2) and hydrogen peroxide (H2O2

) in the body [54].
NO metabolites were measured using Nitrate/Nitrite Colorimetric Assay Kit (cat. #780001),

SOD using Superoxide Dismutase Assay Kit (cat. # 706002-96), and antioxidant capacity using
Antioxidant Assay Kit (cat. # 709001-96) (all from Cayman Chemical, Ann Arbor, MI, USA).
FRAP was measured using OxiSelect™ FRAP Assay Kit (cat. # STA-859, Cell Biolabs Inc.,
San Diego, CA, USA). Samples were assayed in duplicate. All samples from each subject were
analyzed on the same plate. The intra- and inter-assay coefficient of variation (CV) for all blood
measurements was <2%.

2.6. Statistical Analyses

A series of one-way ANOVAs were performed to examine differences among experi-
mental conditions in continuous anthropometric, demographic, and performance variables
at baseline (visit 1). Chi-squared analyses were performed to test for group differences in
categorical variables at baseline. A repeated measures mixed model ANOVA (2 × 2 × 4;
pre/post exercise bout, pre/post supplement, condition, respectively) was performed to
assess mean differences in total NO metabolite production, FRAP, SOD, and antioxidant
capacity. Effect sizes were expressed as partial eta squared (η2), and effect size thresholds
were categorized and interpreted as small (ηp

2 = 0.01), medium (ηp
2 = 0.06), and large

(ηp
2 = 0.14) [55]. In the event of a significant F-ratio, the model was decomposed using a

series of between-group and repeated measures ANOVAs with Bonferroni correction. The
variability of the NO metabolites was calculated using the CV. Percent change for each
subject was calculated to assess the NO metabolites, FRAP, SOD, and antioxidant capacity
concentrations from pre-supplementation to post-supplementation. Data are represented
as mean ± SD. Significance was set at p < 0.05.

3. Results
Demographic characteristics are presented in Table 1, including a total of 50 male

(n = 42) and female (n = 8) trained cyclists (ages 18–55) who regularly competed in category
1–3 cycling races across several disciplines, including mountain, gravel, cross country,
road, and cyclocross. Baseline anthropometric measures for participants randomized
to QCT + CIT (n = 11 males, 1 female), QCT (n = 9 males, 4 females), CIT (n = 11 males,
1 female), and PL (n = 11 males, 2 females) groups are summarized in Table 1. No significant
differences were found for age, gender, ethnicity, or anthropometric measures at baseline
(p > 0.05). There were no significant changes in menstrual cycles among women as all
testing was performed during the participants’ follicular phase. Previously, we reported
there were no significant differences in training volume or intensity between groups during
the intervention, as confirmed by weekly activity logs and compliance checks [21]. Analyses
of the 24 h dietary recall revealed no statistically significant within- and between-group
differences. Minor gastrointestinal (GI) distress was reported by participants in all groups,
including Q + CIT (n = 8), Q (n = 11), CIT (n = 10), and placebo (n = 6). Symptoms such as
bloating, stomach heaviness, belching, abdominal pain, and difficulty with gas evacuation
were noted. However, as only 29 participants completed all four weekly GI surveys, the
data were insufficient to draw definitive conclusions about the impact of supplementation
on GI tolerance.
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Table 1. Cyclist demographic characteristics at baseline familiarization testing, visit 1 [21].

QCT + CIT
(n = 12)

QCT
(n = 13)

CIT
(n = 12)

PL
(n = 13)

Age (yr) 33 ± 1 35 ± 1 37 ± 1 37 ± 1

Height (cm) 176 ± 2 173 ± 1 178 ± 1 177 ± 1

Body Mass (kg) 78.2 ± 1.8 74.6 ± 2.0 79.8 ± 1.2 77.4 ± 1.1

Lean Tissue (kg or %) 59.4 ± 1.1 55.8 ± 1.5 59.0 ± 1.1 59.0 ± 0.9

Body Fat (%) 20.9 ± 0.8 22.9 ± 0.9 23.3 ± 1.0 20.9 ± 1.0

Total Weekly Cycling
Volume (AU) 1416 ± 54 1447 ± 62 1347 ± 120 1619 ± 87

Sex, n (%)

Females 1 (2) 4 (8) 1 (2) 2 (4)

Males 11 (22) 9 (18) 11 (22) 11 (22)

Average VO2 (mL/kg/min) 40.01 ± 6.72 40.50 ± 7.18 * 38.56 ± 5.66 * 40.56 ± 7.43

Time Trial Performance
(minutes) 30.27 ± 2.35 29.96 ± 2.36 30.93 ± 2.69 30.82 ± 3.19

Data are presented as mean ± SD. VAT = visceral adipose tissue. Total weekly cycling volume is expressed as
arbitrary units and is calculated as the rating of perceived exertion * total daily minutes/total exercised days out
of 28. VO2 = oxygen consumption at baseline, visit 1.

Total weekly training distance ranged from 101.58 ± 64.36 to 285.92 ± 92.10 km.
Cyclists’ total weekly time spent training ranged from 11.16 ± 5.08 to 18.55 ± 7.41 h. There
were no differences in physical activity across supplement groups (p > 0.05). Further, there
was a 92% supplement compliance rate across all the participants.

There were no significant interactions for NO metabolites (ANOVA model [F (3, 46) = 2.21,
p = 0.10]; see Supplementary Table S1); however, there was a significant main effect of time,
revealing that NO metabolites were elevated after the supplementation period (visit 3) com-
pared to before the supplementation period (visit 2), regardless of group, with a medium
effect size [F (1, 46) = 5.52, p = 0.03, η2 = 0.11] (p < 0.01). We found no influences of visit
[F (1, 46) = 1.35, p = 0.24] or supplement [F (3, 46) = 1.18, p = 0.33] on NO metabolites. The
main effects of visit [F (1, 46) = 1.09, p = 0.30] and supplement [F (3, 46) = 1.06, p = 0.38] were
not significant. The NO metabolite concentration was increased in the QCT group, albeit not
significantly (Figure 1). The percent change in NO metabolites pre-to-post supplementation
was observed to range from 15.21 to 1.25% [95% CI: 0.81–5.13] for QCT + CIT, 59.37 to 4.96%
[95% CI: 0.60–0.68] for QCT, 6.43 to 4.22% [95% CI: 1.39–0.94] for CIT, and 17.61 to 19.56% [95%
CI: 0.63–0.59] for PL.

There were no significant interactions for FRAP (ANOVA model [F (3, 36) = 0.88,
p = 0.46]; Figure 2, see Supplementary Table S2). However, there were main effects of sup-
plement [F (1, 36) = 3.21, p = 0.03, ηp

2 = 0.21] and visit [F (1, 36) = 8.01, p = 0.01, ηp
2 = 0.18].

Concomitantly, the effect sizes indicated a large effect according to Cohen’s criteria [55],
suggesting that the timing of the visits contributed substantially to the changes observed
in FRAP concentrations. Post-hoc pairwise comparisons using the Bonferroni correction
revealed significant FRAP concentration differences between several groups. Specifically,
QCT (57.92 ± 10.86 µM) was significantly different from PL (97.87 ± 9.83 µM) when
comparing pre- to post-supplementation (−39.96 ± 14.65 µM; 95% CI [−69.66, −10.25],
p = 0.01). This suggests that QCT had lower FRAP concentrations than the PL group overall.
In contrast, the QCT + CIT (57.92 ± 10.86 µM) and CIT (84.57 ±9.83 µM) were not signifi-
cantly different (−26.21 ± 15.36 µM, 95% CI [−57.37, 4.94], p = 0.10), suggesting there was
no difference in FRAP concentrations from pre- to post-supplementation in these groups.
However, QCT (64.57 ± 9.83 µM) was significantly different from PL (97.87 ± 9.83 µM)
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from pre- to post-supplementation (−33.30 ± 13.90 µM, 95% CI [−61.48, −5.12], p = 0.02),
suggesting that QCT had lower FRAP concentrations compared to PL (Figure 2). The
percent change in FRAP concentrations pre- to post-supplementation was observed to
range from 4.81 to 15.00% (95% CI [15.86, 14.95]) for QCT+ CIT, 22.71 to 18.53% (95% CI
[26.00–23.09]) for QCT, 13.13 to 4.10% (95% CI [26.84, 30.03]) for CIT, and 29.95 to 0.80%
(95% CI [25.18, 35.40]) for PL.
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Figure 1. Plasma concentration of nitric oxide (NO) metabolites pre- to post-supplementation. Data
are displayed as mean + SD. n = 47: QCT + CIT (n = 11), QCT (n = 13), CIT (n = 11), PL (n = 12).
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Data are displayed as mean + SD. n = 40: QCT + CIT (n = 9), QCT (n = 11), CIT (n = 9), PL (n = 11).
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the interaction [F (3, 16) = 0.88, p = 0.46] and the main effects for visit [F (1, 16) = 0.04,
p = 0.95], time [F (1, 16) = 1.85, p = 0.19], and supplement [F (1, 16) = 0.38, p = 0.77] (Figure 3,
see Supplementary Table S3). The percent change in SOD concentrations pre- to post-
supplementation was observed to range from 2.48 to 3.05% (95% CI [20.91, 20.33]) for QCT
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+ CIT, 3.83 to 11.23% (95% CI [23.54, 28.59]) for QCT, 7.05 to 1.27% (95% CI [15.04, 17.81])
for CIT, and 3.34 to 1.40% (95% CI [41.13, 45.90]) for PL.
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Figure 3. Superoxide dismutase (SOD) concentration pre-to-post supplementation. Data are displayed
as mean + SD. n = 20: QCT + CIT (n = 6), QCT (n = 4), CIT (n = 6), PL (n = 4).

Lastly, for antioxidant capacity, there was no significant interaction [F (3, 16) = 1.23,
p = 0.33] nor any significant main effects for visit [F (1, 16) = 0.14, p = 0.71], time
[F (1, 16) = 0.80, p = 0.38], or supplement [F (1, 16) = 0.48, p = 0.70] (Figure 4, see Sup-
plementary Table S4). Further, the percent change in antioxidant capacity concentrations
from pre- to post-supplementation was observed to range from 17.54 to 30.22% (95% CI
[0.28, 0.37]) for QCT + CIT, 1.80 to 15.97% for QCT (95% CI [0.73, 0.86]), 4.24 to 8.55% (95%
CI [0.34, 2.34]) for CIT, and 27.44 to 15.13% (95% CI [0.65, 0.48]) for PL.
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Figure 4. Antioxidant capacity concentration (AOC) pre-to-post supplementation. Data are displayed
as mean + SD. n = 20: QCT + CIT (n = 6), QCT (n = 4), CIT (n = 6), PL (n = 4).
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4. Discussion
This investigation into the biochemical effects of supplementing with a combination

of QCT and CIT, as well as with QCT or CIT individually, revealed nuanced impacts.
These findings highlight variations in their effectiveness and suggest potential underlying
mechanisms influencing performance. To our knowledge, this study was the first to
examine the effects of QCT + CIT, QCT, and CIT supplementation on these biomarkers
after a 20 km maximal TT in trained males and females. Despite the lack of improvements
in 20 km time trial performance across all groups, this study provides important insights
into the physiological effects of QCT and CIT supplementation. Previously, our group
reported that QCT and CIT combined supplementation did not elicit synergistic benefits on
performance metrics, but QCT and CIT ingested individually resulted in improvements in
VO2 (p = 0.05 and p = 0.04, respectively) [21]. These findings contribute to the growing body
of research exploring the nuanced roles of these supplements in enhancing NO metabolite
production and antioxidant biomarkers, which remain key areas of focus for optimizing
endurance performance in trained athletes. The results reveal that QCT + CIT, QCT, and
CIT supplementation do not improve plasma concentrations of NO metabolites, FRAP,
SOD, or antioxidant capacity in trained cyclists (Figures 1–4). There was a significant main
effect of time on NO metabolite concentration which may be explained by the large within-
individual or biological variation between visits. It is possible there may be a sex effect
and/or an effect of supplementation duration on NO mediators or related physiological
adaptations [56]. Future studies should consider these effects to further understand the
impact of sex and/or supplementation length on NO metabolites. Consistent with previous
research, the significant variability in the concentration of NO metabolites observed in the
QCT + CIT group may be attributed to considerable differences in how individuals process
plasma nitrate and nitrite before and after supplementation [6]. While the nitrate–nitrite–
NO pathway may influence muscle function and exercise performance, research is limited
in humans.

Furthermore, no significant interaction effects were observed for NO metabolites,
which aligns with previous research indicating that NO markers did not enhance per-
formance in trained individuals [57,58]. However, supplements targeted to improve NO
metabolites and their effects on trained athletes’ aerobic performance are limited. One
possible explanation is the low bioavailability or metabolism of L-arginine, influencing
NO and its metabolites [57]. Exhaustive exercise increases arginase enzyme activity, reduc-
ing L-arginine availability [59]. Additionally, high lysine concentrations in the diet may
compete with L-arginine for cellular entry, possibly preventing an increase in, or at least
bioavailability of, NO metabolites [57,60]. This competition may exacerbate the negative
effects of high oxidative stress experienced during maximal exercise.

High oxidative stress can impair mitochondrial synthesis in skeletal muscle, reducing
ATP production and exercise performance [61]. Studies have demonstrated that QCT can
enhance antioxidant capacity and SOD activity [5,62]. McAnulty et al. [41] investigated
the chronic effects of QCT on exercise-induced oxidative damage using FRAP and Trolox
equivalent antioxidant capacity markers. While exercise elevated these markers, no signifi-
cant differences were observed between groups. Similarly, in our study, the 20 km TT did
not elicit a significant effect on oxidative markers. However, our results suggest that antiox-
idant capacity, measured by FRAP, was maintained in the QCT + CIT, QCT, and CIT groups.
This aligns with previous findings which indicate that QCT supplementation can stabilize
or increase FRAP during oxidative stress [63]. Previously, CIT–malate supplementation
reduced muscle fatigue and increased NO production, which may also help to maintain
FRAP levels [64]. Combined antioxidant supplementation may more effectively mitigate
oxidative stress compared to single compounds, helping to maintain or increase FRAP
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levels during or after exercise [65]. The decrease in FRAP in the PL group likely reflects
exercise-induced oxidative stress, while the QCT + CIT, QCT, and CIT groups maintained
their FRAP levels, likely due to the antioxidant properties and synergistic effects of these
supplements. The antioxidant capabilities of QCT are partly due to its phenolic structure,
which enables free radical scavenging; however, research, including recent findings [21],
highlights that polyphenols also exert their effects by interacting with specific molecular
targets. Similar to what has been previously reported, the absorption and bioavailability of
QCT likely varied among our participants [66]. Granado-Serrano et al. [67] found that QCT
enhances cellular antioxidant capacity by activating the p38MAPK pathway and increasing
intracellular glutathione levels; however, these effects may have already been present in
our trained population. This contrasts with findings in untrained individuals, where CIT
supplementation notably increased SOD levels post-exercise, suggesting that the response
to these supplements can differ based on training status and individual variability [68]. In
contrast, we did not observe significant differences in oxidative stress markers post-exercise
in our study, possibly due to differences in protocol and population [69]. The antioxidant
effects of CIT seem to depend on the nature of the oxidative stress and its concentration
in vivo, with higher concentrations potentially being less effective [16]. We may not have
captured the optimal peak of antioxidant enzyme function, which is reported to occur
around 2 h post-endurance exercise [70]. Moreover, chronic training in our subjects likely
enhanced their baseline antioxidant enzyme activity, potentially overshadowing the effects
of QCT + CIT, QCT, and CIT supplementation on NO metabolites and antioxidant capacity.
Further, recent studies indicated that excessive intake of antioxidants, such as vitamins
C and E, may impair exercise-induced physiological adaptations by disrupting redox
signaling pathways essential for muscle adaptation and performance improvement [71].
Additionally, research on antioxidant supplements and endurance exercise suggests that
while antioxidants are commonly consumed to minimize exercise-induced oxidative stress,
their efficacy in enhancing performance is not well-supported [72], and their use may
even be detrimental. It is possible that QCT + CIT, QCT, and CIT supplementation may
have mitigated inflammatory responses, which could potentially have impeded the ben-
eficial effects on TT performance. Trained individuals with higher baseline FRAP, SOD,
and antioxidant capacity are at lower risk of exercise-induced oxidative stress compared
to untrained individuals with lower baseline antioxidant enzyme activity. Given these
findings, it is crucial to approach antioxidant supplementation with caution, particularly
concerning high doses, as it may counteract desired training adaptations and performance
improvements in athletes.

The timing and bioavailability of supplementation likely influenced our results, as the
peak absorption of NO metabolites could have decreased by the start of the 20 km TT. QCT
has a half-life of 11–28 h, with peak concentrations occurring 1–3 h post-ingestion [73–76],
while CIT has a shorter half-life of approximately 60 min [77]. A potential limitation of this
study is the variability in the timing of supplement consumption, with some cyclists con-
suming their last dose on the day of the time trial and others 24 h prior. This inconsistency
may have affected our ability to capture the supplements’ optimal absorption and peak
concentration window. Future research should focus on investigating the acute effects of
QCT + CIT on NO metabolites within this optimal window to better detect possible supple-
mentation effects [78–80]. The beneficial effects of QCT and CIT in humans largely depend
on their bioavailability [75]. The bioavailability of QCT is influenced by co-ingestion with
nutrients, gut microbiota, and glycosides [81], further highlighting the need for precise
timing in supplementation studies in trained individuals [78–80]. However, while the
effects of nitrate supplementation on endurance exercise remain inconclusive, evidence
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suggests that it may improve time to exhaustion, further underscoring the need for targeted
approaches to optimize supplementation benefits [82].

A limitation of the current study is that the Q, CIT, and placebo powders were not
analyzed for nutrient composition and therefore their nutritional information was derived
from bulk supplements. To allow for an accurate comparison of the nutritional content of
the supplements being studied, future studies need to examine the overall nutrient density
scores and quality of the supplements to avoid associated risks and obtain the greatest
possible benefits from their consumption [83]. For future research, it is suggested to test the
quality of these supplements, analyze their content, and verify if there are any differences
between the information provided and the actual content, such as the presence of other
undeclared ingredients. Moreover, fluid intake was not standardized prior to laboratory
visits, nor were hydration levels assessed, which may have influenced the cardiovascular
measurements. Future studies need to standardize and/or track fluid intake and hydration
levels pre-, during, and post-exercise [84,85].

Further, future studies should control for dietary factors to account for metabolic
variability and the effects of low doses of bioactive supplements [86]. It is possible that the
cyclists’ elevated baseline levels of nitrite, nitrate, and antioxidant enzymes, potentially
influenced by their diet and training adaptations, may have blunted their response to
supplementation [86]. Additionally, trained athletes might not benefit from further supple-
mentation due to adequate dietary intake and training-induced adaptations [87–89]. Future
research should address the biological variability of these biomarkers and establish norma-
tive thresholds for trained athletes. Given the limited research available, further studies
are needed to explore how factors such as training status, age, sex, and supplementation
duration influence the effects of nitrate supplementation on exercise performance [82].

5. Conclusions
Previous findings from our group indicated that QCT + CIT, QCT, and CIT supplemen-

tation did not affect 20 km cycling TT performance, average power, respiratory exchange
ratio (RER), or perceived exertion. However, QCT and CIT improved oxygen consumption
(VO2) in trained cyclists [21]. While the data do not offer definitive conclusions regarding
the effects of QCT and CIT on NO metabolites and antioxidant biomarkers post-exercise,
further research is warranted to investigate localized changes in additional biomarkers and
mediators during recovery. Future studies should also examine the impact of extended
supplementation duration, prolonged exercise, and baseline dietary antioxidant or NO
metabolite levels on the efficacy of QCT or QCT combined with other polyphenols.
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