Abstract
1. At 3 min after an intravenous injection of radioactive amino acids into the rat, the bulk of radioactivity associated with liver polyribosomes can be interpreted as growing peptides. 2. In an attempt to identify the rate-limiting step of protein synthesis in vivo and in vitro, use was made of the action of puromycin at 0°C, in releasing growing peptides only from the donor site, to study the distribution of growing peptides between the donor and acceptor sites. 3. Evidence is presented that all growing peptides in a population of liver polyribosomes labelled in vivo are similarly distributed between the donor and acceptor sites, and that the proportion released by puromycin is not an artifact of methodology. 4. The proportion released by puromycin is about 50% for both liver and muscle polyribosomes labelled in vivo, suggesting that neither the availability nor binding of aminoacyl-tRNA nor peptide bond synthesis nor translocation can limit the rate of protein synthesis in vivo. Attempts to alter this by starvation, hypophysectomy, growth hormone, alloxan, insulin and partial hepatectomy were unsuccessful. 5. Growing peptides on liver polyribosomes labelled in a cell-free system in vitro or by incubating hemidiaphragms in vitro were largely in the donor site, suggesting that either the availability or binding of aminoacyl-tRNA, or peptide bond synthesis, must be rate limiting in vitro and that the rate-limiting step differs from that in vivo. 6. Neither in vivo nor in the hemidiaphragm system in vitro was a correlation found between the proportion of growing peptides in the donor site and changes in the rate of incorporation of radioactivity into protein. This could indicate that the intracellular concentration of amino acids or aminoacyl-tRNA limits the rate of protein synthesis and that the increased incorporation results from a rise to a higher but still suboptimum concentration.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN D. W., ZAMECNIK P. C. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta. 1962 Jun 11;55:865–874. doi: 10.1016/0006-3002(62)90899-5. [DOI] [PubMed] [Google Scholar]
- Andrews T. M., Tata J. R. Difference in vectorial release of nascent protein from membrane-bound ribosomes of secretory and non-secretory tissues. Biochem Biophys Res Commun. 1968 Sep 30;32(6):1050–1056. doi: 10.1016/0006-291x(68)90136-8. [DOI] [PubMed] [Google Scholar]
- Baliga B. S., Cohen S. A., Munro H. N. Effect of cycloheximide on the reaction of puromycin with polysome-bound peptidyl-tRNA. FEBS Lett. 1970 Jun 27;8(5):249–252. doi: 10.1016/0014-5793(70)80278-2. [DOI] [PubMed] [Google Scholar]
- CANNON M., KRUG R., GILBERT W. THE BINDING OF S-RNA BY ESCHERICHIA COLI RIBOSOMES. J Mol Biol. 1963 Oct;7:360–378. doi: 10.1016/s0022-2836(63)80030-3. [DOI] [PubMed] [Google Scholar]
- Cannon M. The ribosomal binding site for peptidyl-transfer-ribonucleic acid. Biochem J. 1967 Sep;104(3):934–946. doi: 10.1042/bj1040934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earl D. C., Morgan H. E. An improved preparation of ribosomes and polysomes from cardiac muscle. Arch Biochem Biophys. 1968 Nov;128(2):460–469. doi: 10.1016/0003-9861(68)90052-0. [DOI] [PubMed] [Google Scholar]
- FALCONI G., ROSSI G. L. TRANSAURICULAR HYPOPHYSECTOMY IN RATS AND MICE. Endocrinology. 1964 Feb;74:301–303. doi: 10.1210/endo-74-2-301. [DOI] [PubMed] [Google Scholar]
- GILBERT W. Polypeptide synthesis in Escherichia coli. II. The polypeptide chain and S-RNA. J Mol Biol. 1963 May;6:389–403. doi: 10.1016/s0022-2836(63)80051-0. [DOI] [PubMed] [Google Scholar]
- Heysood S. M., Rich A. In vitro synthesis of native myosin, actin, and tropomyosin from embryonic chick polyribosomes. Proc Natl Acad Sci U S A. 1968 Feb;59(2):590–597. doi: 10.1073/pnas.59.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hultin T. Factors influencing the puromycin-induced release of protein from liver ribosomes. Biochim Biophys Acta. 1966 Sep;123(3):561–573. doi: 10.1016/0005-2787(66)90223-1. [DOI] [PubMed] [Google Scholar]
- KORNER A. The effect of hypophysectomy of the rat and of treatment with growth hormone on the incorporation in vivo of radioactive amino acids into the proteins of subcellular fractions of rat liver. Biochem J. 1960 Mar;74:462–471. doi: 10.1042/bj0740462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOSTYO J. L., KNOBIL E. The effect of growth hormone on the in vitro incorporation of leucine-2-C14 into the protein of rat diaphragm. Endocrinology. 1959 Sep;65:395–401. doi: 10.1210/endo-65-3-395. [DOI] [PubMed] [Google Scholar]
- KRAHL M. E. Functions of insulin and other regulatory factors in peptide formation by animal cells. Recent Prog Horm Res. 1956;12:199-219; discussion, 219-25. [PubMed] [Google Scholar]
- KRAHL M. E. Incorporation of C14-amino acids into glutathione and protein fractions of normal and diabetic rat tissues. J Biol Chem. 1953 Jan;200(1):99–109. [PubMed] [Google Scholar]
- Krebs H. A., Dierks C., Gascoyne T. Carbohydrate synthesis from lactate in pigeon-liver homogenate. Biochem J. 1964 Oct;93(1):112–121. doi: 10.1042/bj0930112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MANCHESTER K. L., YOUNG F. G. The effect of insulin on incorporation of amino acids into protein of normal rat diaphragm in vitro. Biochem J. 1958 Nov;70(3):353–358. doi: 10.1042/bj0700353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATHIAS A. P., WILLIAMSON R., HUXLEY H. E., PAGE S. OCCURRENCE AND FUNCTION OF POLYSOMES IN RABBIT RETICULOCYTES. J Mol Biol. 1964 Jul;9:154–167. doi: 10.1016/s0022-2836(64)80097-8. [DOI] [PubMed] [Google Scholar]
- MORRIS A., FAVELUKES S., ARLINGHAUS R., SCHWEET R. Mechanism of puromycin inhibition of hemoglobin synthesis. Biochem Biophys Res Commun. 1962 May 4;7:326–330. doi: 10.1016/0006-291x(62)90201-2. [DOI] [PubMed] [Google Scholar]
- Majumdar C., Tsukada K., Lieberman I. Liver protein synthesis after partial hepatectomy and acute stress. J Biol Chem. 1967 Feb 25;242(4):700–704. [PubMed] [Google Scholar]
- Munro A. J., Jackson R. J., Korner A. Studies on the nature of polysomes. Biochem J. 1964 Aug;92(2):289–299. doi: 10.1042/bj0920289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RANDLE P. J., SMITH G. H. Regulation of glucose uptake by muscle. 1. The effects of insulin, anaerobiosis and cell poisons on the uptake of glucose and release of potassium by isolated rat diaphragm. Biochem J. 1958 Nov;70(3):490–500. doi: 10.1042/bj0700490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider J. A., Raeburn S., Maxwell E. S. Translocase activity in the aminoacyl transferase II fraction from rat liver. Biochem Biophys Res Commun. 1968 Oct 10;33(1):177–181. doi: 10.1016/0006-291x(68)90275-1. [DOI] [PubMed] [Google Scholar]
- Skogerson L., Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968 May;125(2):497–505. doi: 10.1016/0003-9861(68)90607-3. [DOI] [PubMed] [Google Scholar]
- Skogerson L., Moldave K. The binding of aminoacyl transferase II to ribosomes. Biochem Biophys Res Commun. 1967 Jun 9;27(5):568–572. doi: 10.1016/s0006-291x(67)80025-1. [DOI] [PubMed] [Google Scholar]
- Tsukada K., Moriyama T., Umeda T., Lieberman I. Relationship between the ribosomal alteration after partial hepatectomy and the increase in liver protein synthesis in vivo. J Biol Chem. 1968 Mar 25;243(6):1160–1165. [PubMed] [Google Scholar]
- WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARNER J. R., RICH A. THE NUMBER OF GROWING POLYPEPTIDE CHAINS ON RETICULOCYTE POLYRIBOSOMES. J Mol Biol. 1964 Nov;10:202–211. doi: 10.1016/s0022-2836(64)80041-3. [DOI] [PubMed] [Google Scholar]
- WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]
