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Abstract: Hepatitis E Virus (HEV) is a globally widespread pathogen that causes acute
hepatitis infection. Beyond hepatic pathogenesis, HEV has been proven to cause several
extrahepatic manifestations, such as neurological, renal, and hematological manifestations.
It was also associated with mortality in pregnant females. Several studies have investigated
the impact of HEV on the male reproductive system; however, the available data are
limited and conflicting. Assessment of the patients” ejaculates/semen samples revealed
that HEV particles are excreted in these fluids in cases of chronic infection but not acute
infection. The excreted HEV particles are infectious to in vivo animal models and in vitro
cell culture. However, the effect of HEV infection on male infertility is not confirmed. One
study including human samples showed male infertility associated with HEV genotype
4 infection. Studies of HEV infection in animal models such as pigs, gerbils, and mice
showed that HEV infection caused distortion on the testes, damage of the blood-testis
barrier, and induction of inflammatory responses leading to abnormalities in the sperm.
The excretion of HEV in the semen fluids raises concerns about HEV transmission via sexual
transmission. However, all available data do not confirm the transmission of HEV through
sexual intercourse. This review aims to summarize and critically assess the available studies
investigating the influence of different HEV genotypes on the male reproductive system,
providing insights into whether HEV contributes to reproductive impairment in men.

Keywords: Hepatitis E virus; extrahepatic manifestations; male reproductive system;
semen; male infertility; testicular tissues

1. Introduction

Hepatitis E Virus (HEV) is an emerging pathogen that is considered the most common
cause of acute viral hepatitis worldwide [1-3]. HEV, a positive sense single-strand RNA
virus that infects humans and animals, is a member of the genus Paslahepevirus, subfamily
Orthohepevirinae, and family Herpesviridae [4,5]. The genus Paslahepevirus includes two
species: Paslahepevirus alci and Paslahepevirus balayani. Paslahepevirus balayani includes eight
genotypes, and five genotypes can infect humans [4,5]. HEV genotypes 1 and 2 are fecal-
orally transmitted viruses associated with outbreaks in developing countries [1,6]. HEV
genotypes 3, 4, and 7 are zoonotic viruses, and pigs, wild boars, camels, and rabbits are
the main reservoirs and sources of human infection, mainly through foodborne transmis-
sion [7-11]. Blood transfusion can be another source of HEV infection in humans [12-15].
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Vertical transmission is confirmed from pregnant women to their fetuses, causing severe
complications in the case of HEV genotype 1 infection [16,17] and mild infection in the
case of HEV genotype 3 infection [18,19]. The genome of HEV contains three open reading
frames, and the genome of HEV genotype 1 includes four open reading frames [20,21].
Open reading frame 1 (ORF1) is located at 5" of the genome, and it encodes the proteins
required for viral replication (non-structural proteins) such as RNA polymerase, helicase,
and cysteine protease [21]. Open reading frame 2 (ORF2) is located at 3’ of the viral genome
and includes the structural proteins required for capsid and virus assembly [22,23]. There
are three different forms of ORF2 proteins; two forms are associated with non-infectious
virions, and they are glycoprotein (ORF2g and ORF2c), and one form is associated with
infectious virions and not linked with glycoprotein (ORF2i) [24-26]. Open reading frame 3
is required for viral infection, replication, and release [27]. Open reading frame 4 stimulates
the RNA polymerase and activates the viral replication [20].

HEV can cause acute and chronic infections. Acute HEV infection, mainly caused by
HEV genotypes 1 and 2, is mostly a self-limiting disease; however, progression to acute
liver failure can develop, especially among pregnant women, as well as coinfection with
other hepatotropic viruses and old ages [16,28,29]. It is worth noting that HEV genotypes 1,
2, and 4 can cause acute liver failure in pregnant women, while HEV genotype 3 causes
mild infection in pregnant women [17,18,30,31]. HEV can persist in the human body for
more than three months, leading to chronic infection [32-34]. Chronic infection, caused
by HEV genotypes 3, 4, and 7, is mainly developed in patients with weak immunity
such as patients receiving immunosuppressant drugs after organ transplantation, patients
infected with HIV, and patients with leukemia [32-34]. HEV genotypes 1 and 2 do not
cause chronic infection [35,36]. Chronically HEV-infected patients are at risk of developing
extrahepatic complications, mainly in the nervous system, kidney, placenta, bone marrow,
and monocytes [37-42]. Neurological manifestations can be caused by direct replication
of the virus (such as meningitis or encephalitis), immune responses against the virus
such as Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), or the cause of
some manifestations (such as neuralgic amyotrophy and Guillain-Barré syndrome) is
not clear due to the viral replication or host immune responses [42]. Additionally, the
genital system is also a target for HEV replication. HEV genotypes 1, 3, and 4 have been
shown in earlier research to have an impact on the reproductive system of females. In vivo
animal studies demonstrate the ability of HEV genotype 4 to multiply in the ovaries
and uterus, which facilitates the vertical transmission of HEV to the fetus [43,44]. HEV
genotype 1 and, to a lesser extent, genotype 3 have been shown to replicate in decidual
and fetal placental stromal cells as well as in organ cultures, causing significant tissue
damage and altering the cytokines secreted in the surrounding microenvironment [45].
Moreover, HEV genotypes 1 and 3 can replicate efficiently in primary human endometrial
stromal cells, suggesting that these cells could be an endogenous source of the infection
during pregnancy [46]. The extrahepatic disorders associated with HEV infection are either
mediated by direct pathogenesis and replication of the virus or indirectly through the
formation of virus—antibody immunocomplexes that can precipitate in various organs
and stimulate inflammatory responses [37]. Regarding the effect of HEV on the male
reproductive system, the role of HEV in male infertility is a query that has not been
answered. The data about this hot topic are scarce and not conclusive, probably due to the
difference in the viral genotypes, experimental approaches used, source of the virus, etc.

Male reproductive health can be significantly impacted by viral infections, which may
result in infertility and other complications. Various viruses have been shown to adversely
impact men’s reproductive health, hormonal balance, and sperm quality [47]. Several
viruses, including the Hepatitis B virus, Hepatitis C virus, Human immunodeficiency virus,
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Human papillomavirus, Human simplex virus, Human cytomegalovirus, Zika, Mumps
virus, influenza, Ebola, and SARS-CoV-2 virus, have been linked to infection-induced male
infertility [47,48]

In this review, we will discuss the effect of HEV infections on the male reproductive
system and the excretion of HEV in the semen samples, which raise concerns about the
possibility of HEV transmission via sexual intercourse. We collected articles that assessed
HEV in patients’ samples and in vivo and in vitro model systems used to evaluate the
possibility of HEV infection in the male reproductive system as well as the infectivity of
HEYV particles excreted in these organs or fluids (summarized in Figure 1).

B f '\f..alm. -
\ ?? /{‘\{:’}\

a

X Semen ¥ g l
; & specimen y © w .
Z
. ‘ i \ ' " -

Clinical studies

)) Q i) Ex vivo studies
. ¢ \ Testicular ’ N

tissue

-

= In vivo studies

LD

Figure 1. Experimental approaches used for studying the effect of HEV infection on the male
genital system.

2. Effect of HEV Infection on the Male Reproductive System and
Excretion in Semen

2.1. Studies That Include Patients” Samples

A small number of studies conducted in various countries have examined the preva-
lence of HEV in semen samples and the effect of infection on the male reproductive system
yielding contrasting results. However, it is not clear if this contraindication was due to the
patient cohort, tested patients, virus genotype, stage of diseases, etc. These findings are
discussed further in this section of the review and summarized in Table 1.

Table 1. Summary of the effect of HEV infection on patients’ male reproductive system and evaluation
of the viral infectivity using in vitro cell culture model.

Patient Samples

HEV Genotype  HEV in Effect on Testis In Vitro Cell Culture Reference
Ejaculate/Semen/Seminal Fluid (Male Infertility
o No link to male o No replication on human
infertility testes explants
o Not affect sex o  Replicate in primary
Genotype 1 No hormones human Sertoli cells only [49,50]
o Not affect the sperm in presence of
quality immunosuppressant

drugs (tacrolimus)




Viruses 2025, 17, 66 40f16
Table 1. Cont.
Patient Samples
HEV Genotype HEV in Effect on Testis In Vitro Cell Culture Reference
Ejaculate/Semen/Seminal Fluid (Male Infertility
Replicate in optimized
PLC/PRF/5 but not
HepG2/C3
) ) Replicate in testis
© Yes, In Chronlcally explants, and replication
(H7]/E;/)-mfected patients ot e t was increased in
o ot recorded, up to ¢
: presence o N
Genotype 3 o  No, in acutely . our knowledge immunosuppressant [50-53]
HEV-infected patients dru
.. . gs.
o No in infertile men Replicate in primary
human Sertoli cells, and
replication increased in
the presence of
tacrolimus
o Yes, in semen of
infertile men Yes Not recorded, up to our
Genotype 4 No, in semen of No knowledge [54,55]

infertile men

2.1.1. Studies Report an Effect of HEV Infection on the Male Reproductive System and
Excretion in Semen

In 2018, a study was conducted in Kunming, China, which analyzed semen samples
of 185 infertile men and found a high prevalence of HEV RNA (28.1%) [54]. The viral
titers in semen were comparable to those detected in urine. Phylogenetic analysis showed
that it was of genotype 4 h. This isolate was highly similar to the HEV isolate circulating
among pigs and ruminants in the same region [54]. Moreover, a higher HEV seroprevalence
was recorded in infertile men than in the general population and pregnant women in this
region [54]. Importantly, the author highlighted that HEV infection impaired semen qual-
ity, decreased motility and vitality, and increased the percentage of abnormal sperm [54].
Computer-assisted semen analysis (CASA) revealed that 97% of the sperm of HEV-infected
patients were asthenospermia [54] and about 54% of the oligospermia patients were HEV
RNA-positive [54]. However, future studies need to confirm these findings. Another study
was performed in Germany; the authors analyzed the blood, urine, stool, and ejaculate from
chronic HEV-infected patients (n = 3) and acute HEV-infected immunocompetent patients
(n = 6) [52]. HEV RNA was detected in the ejaculation of two out of three chronically
infected individuals in both semen and seminal plasma but not in the acute immunocompe-
tent patients [52]. Later, the same group assessed another small cohort of immunocompro-
mised patients (1 = 6), and five out of the six patients also tested positive for HEV RNA in
the patient ejaculation [51]. The isolated HEV subtypes belonged to 3c, and one isolate was
not classified and assigned to 3abjk, but the isolates from the patients who tested negative
for HEV in the ejaculate were 3i (n = 1) and 3c (n = 1) [51,52]. The HEV loads were higher in
seminal plasma and semen (2-3 logs) than in urine [52]; the load reached 107 IU/mL in the
ejaculate of three patients and the blood of one patient [51,52]. The HEV titer was 100 times
higher in the ejaculate than in the serum in five patients, while the titer was lower in the
ejaculate than in the serum in two patients [51]. Electron microscopy examination and
density gradient approaches revealed that the HEV particles excreted in the semen were
enveloped, similar to the particles excreted in the blood (enveloped) and different from
the naked non-enveloped released in the patients’ feces [52]. However, by sequencing and
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multiple sequence alignment, the HEV particles excreted in the ejaculates were genetically
different by 15 amino acids than the particles in blood or stool, mainly in the hypervariable
region of ORF1 [52]. The viral particles excreted in the ejaculate did not show infectivity
to HepG2/C3A cells in vitro [52] but were infectious to optimized PLC/PRF/5 cells [51].
However, HEV RNA was not detected in the semen of immunocompetent HEV-infected
patients [52].

Interestingly, after ribavirin therapy, HEV could be detected in the ejaculate of one
patient even after the clearance of the virus from blood and stool [52]. HEV RNA was
detectable in the ejaculation of this patient after stopping ribavirin [52]. The previous
findings suggest that HEV could persist in the semen for a longer period than the blood
and stool, and the ribavirin could differentially affect HEV loads in different compartments.
Since the findings of this study were derived from a small cohort, further studies should
confirm these data.

2.1.2. Studies Report No Effect of HEV Infection on Male Reproductive System and
Male Infertility

Horvatits and colleagues assessed HEV RNA in the semen of infertile men (n = 87;
79 retrospective, and 8 samples were prospective), and the authors did not detect HEV
RNA in any of these samples, concluding that there is no link between male infertility
and HEV genotype 3, which is the common genotype circulating in Europe [53]. Likewise,
Wang and colleagues prospectively analyzed the semen of infertile men (n = 1183), collected
from the Department of Reproductive Medicine Centre, Peking, China (2018-2019), for
the presence of HEV RNA. None of the tested patients were positive for HEV [55]. Since
HEV genotype 4 is the common genotype in China [13], the authors concluded that the
link between HEV genotype 4 and male infertility is weak [55]. In a parallel line, EL.
Mokhtar et al. retrospectively analyzed the semen and blood of infertile patients (n = 120)
for HEV markers including HEV RNA, HEV Ag, and HEV-antibodies and these patients
were negative for these markers [49]. Moreover, the same study prospectively assessed
HEV markers in the blood, urine, and semen of acute HEV-infected patients (n = 25), and
there was no evidence of HEV markers in the semen of acute HEV-infected patients, though
some makers were positive in the blood and urine of the same patients [49]. In addition,
there was no difference in the level of reproductive hormones including follicle-stimulating
hormones (FSH), luteinizing hormone (LH), testosterone, prolactin, and estradiol between
the HEV-infected patients and healthy control subjects. Moreover, sperm quality was not
impacted by HEV infection, and sperm motility, abnormal form, and liquefaction time were
comparable in both groups [49]. Collectively, these authors concluded that HEV genotype
1 (the most prevalent genotype in Egypt [29,56]) is not harmful to the male reproductive
system [49].

2.2. Ex Vivo and In Vitro Studies

Researchers used human hepatoma cell lines to assess the infectivity of HEV particles
in the patients” ejaculation. Also, testes explants and primary human Sertoli cells were
used to evaluate the infectivity of HEV in these organs, summarized in Table 1.

2.2.1. Human Hepatoma Cell Lines

Hepatoma cell lines such as HepG2/C3A, PLC/PRF/5, and Huh7.5 are the most
common hepatoma cell lines that support HEV replication [25,26,57]. These cell lines are
permissive to stool-derived HEV preparations, plasma-derived HEV preparations, and
HEV cell culture preparations [26,58]. Hepatoma cell lines were used to assess the infectivity
of HEV particles excreted in the semen. Horvatits et al. used the HepG2/C3A cell line
to assess the infectivity of HEV particles in the ejaculates of two immunocompromised
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patients; one patient underwent a heart transplant, and the second patient had chronic
lymphatic leukemia [52]. Both patients were chronically infected with HEV genotype
3 subtype c. HepG2/C3A cells were not permissive to the ejaculation of the previous
patients [52]. Also, stool, plasma, and urine from those two patients were not infectious to
the cells [52]. Later, Schemmerer et al. used an optimized cell culture system to assess the
infectivity of HEV particles in the patients’ ejaculates. This optimization includes the use of
overconfluent PLC/PRF/5 cells, to which supplements were added such as amphotericin
B, fetal calf serum, and distinct salt to enhance the infectivity and virus production [57].
Schemmerer et al. retested the infectivity of two patients” samples that were not infectious
to HepG2/C3A cells [51,52]. The ejaculate of the first patient (heart transplant [52]) was
infectious to PLC/PRF/5 cells as the HEV RNA was increased in the culture supernatant
at day 14 post-infection and the titer increased till day 70 post-infection [51]. Moreover,
the extracellular HEV ORF2 antigen was detected in the culture supernatant and the level
was increased with time, indicating robust infection [51]. In addition, HEV ORF2 was
detected intracellularly in the infected cells by immunofluorescence [51]. Importantly, the
ejaculate supernatant and ejaculate lysate are infectious to PLC/PRE/5 cells; however, the
ejaculate lysate was more infectious than the ejaculate supernatant, probably due to the
particles in the former one were naked particles [51]. The ejaculate of the second patient
(chronic lymphatic leukemia [52]) was not infectious to overconfluent PLC/PRF/5 cells [51].
Then, Schemmerer et al. assessed the infectivity of the ejaculate of other HEV-infected
patients (n = 5) using this optimized culture media, and they were infectious to the cells
in vitro [51]. However, the infectivity was varied based on patients’ samples [51]. In one
patient (kidney transplant, infected with HEV genotype 3 subtype c), the patient’s fecal
preparation was less infectious than the ejaculate and the urine from this patient was
not infectious to PLC/PRF/5 cells [51]. In another patient (Lymphoma, HEV genotype 3,
unassigned subtype), the patient’s fecal preparation was more infectious than the ejaculate
to PLC/PRE/5 cells [51]. The RNA load in the PLC/PRF/5 culture supernatant reached
10° copies/mL in the supernatant of cells challenged with the patient’s ejaculate, suggesting
the infectivity and replicative competence of HEV from the ejaculate [51]. The difference
between the infectivity of HEV particles among patients” materials could be attributed
to the difference in properties of HEV particles (naked, enveloped), viral load, patient’s
medication history, storage condition, etc.

2.2.2. Human Testicular Tissues (Testis Explants)

Li and colleagues studied the susceptibility of stool-derived HEV genotype 3 (subtype
3b), stool-derived HEV genotype 1 (subtype 1b), and stool-derived rat HEV (HEV-C1) to
testis explants isolated from healthy donors [50]. HEV genotype 3 replicates efficiently
in 70% (7 out of 10 donors) of the testis explants, as indicated by the detection of HEV
RNA in the culture supernatant day 1 post-infection and detection of HEV OREF2 intra-
cellularly [50]. HEV ORF2 was detected mainly in the germ cells, Sertoli cells, and semi-
niferous tubules [50]. Interestingly, treatment of testis explants with immunosuppressant
(tacrolimus) increased the infectivity and permissiveness of the testes to HEV genotype 3;
100% infection (10 out of 10 of donors) was attained and the viral load was significantly
higher after 1-3 days in treated cells than non-treated cells [50]. The viral particles released
in the culture supernatant of testis explants were infectious as they could establish the in-
fection in gerbils [50]. In contrast, testis explants were not permissive to stool-derived HEV
genotype 1 and rat HEV [50]. Finally, HEV genotype 3 infection induced damage in the
testis explants, distorted germ cells, and slightly stimulated pro-inflammatory responses,
except IL-18, which was highly up-regulated [50].
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2.2.3. Primary Human Sertoli Cells

HEV genotype 3 can replicate efficiently on primary human Sertoli cells, and the RNA
titer increased in the culture supernatant [50]. In contrast, HEV genotype 1 cannot replicate
in these cells [50]. The addition of tacrolimus enhanced the replication of HEV genotype 1
and genotype 3. Efficient replication of HEV genotype 1 was only successful after tacrolimus
treatment [50]. The efficiency of replication was higher in HEV genotype 3 compared to
HEV genotype 1 as the viral load was higher in the former one with time [50]. Unlike testis
explants, HEV genotype 3 infection induced significant changes in the secretome of Sertoli
cells, especially in the proinflammatory cytokines, chemokines, and colony-stimulating
factors [50]. It is worth noting that the changes in Sertoli’s cytokine microenvironment
were achieved without tacrolimus [50].

2.3. In Vivo Animal Model Studies on the Effect of HEV Infection on Male Reproductive System

Various animal models have been employed to investigate the effects of HEV infection
on different aspects of the male reproductive system.

2.3.1. Pigs

Pigs are the main reservoir for HEV genotypes 3 and 4 [59-61]. Previous studies
showed that HEV can replicate in the extrahepatic tissues in pigs such as the intestine,
kidney, spleen, and lymph nodes [62]. Li and colleagues were the first study to assess HEV
in pig semen (1 = 26) in Shaanxi province, China [63]. In total, 1 sample out of 26 of the
semen samples collected was positive for HEV RNA [63]. Phylogenetic analysis revealed
that this isolate belonged to genotype 4 subtype 4i, the prevalent sub-genotype reported in
the feces and bile of the pigs included in that study [63].

In another study by Yadav et al., HEV was detected in the epididymis and semen of
pigs experimentally infected with HEV genotype 3 (US-2 strain) [64]. HEV ORF2 protein
was detected in the acrosomal region of the sperm head [64], and the sperms were infectious
to hepatoma cell lines in vitro [64]. HEV RNA titers were significantly higher in sperm
cell suspensions compared to seminal fluid and bile from the infected pigs [64]. Moreover,
analysis of the semen from infected pigs showed that HEV infection was associated with
decreased sperm muotility, increased abnormal form, and sperm immobility [64]. The
authors hypothesized that HEV could infect spermatogonia, impact Leydig and germ cells,
damage the blood-testis barrier, and induce inflammation [64].

On the other hand, Horvatits et al. examined HEV RNA in the testes of HEV-infected
male pigs (n = 12). The pigs were experimentally infected with HEV genotype 3 derived
from the liver of naturally infected wild boars in Germany, at different doses of 10~ to
108 dilutions (equal 2.6 x 10* TU/dose-2.4 TU/dose, respectively) [52,65]. The infected
pigs with doses (10~* to 10~7 dilutions, n = 8) developed viremia (8/8, 100%) and viral
excretion in stool and bile (8/8, 100%) [52,65]. Also, HEV RNA was detected in the liver of
infected pigs (8/8, 100%), gall bladders (6/8, 75%), spleen (5/8, 62.5%), hepatic lymph node
(6/8, 75%), and mesenteric and other lymph nodes [52,65]. However, HEV RNA was not
detected in the testis of any of these pigs (0/8, 0%) [52]. In the other four pigs infected with
10~8 dilution of the viral inoculum, HEV RNA was not detectable in any organs [52,65].
The authors hypothesized that HEV was not excreted in the semen of experimental infected
immunocompetent pigs [52].

The discrepancy between the two studies, especially those including the HEV genotype
(genotype 3) as inoculums, is not clear. One possible explanation is the origin of the
virus used. Yadav et al. used the gastrointestinal-derived HEV US2 strain, which was
isolated from acute hepatitis patients in the US [66,67], while the virus used in the study
conducted by Horvatits et al. was derived from the liver of naturally infected wild boars
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in Germany [65]. Also, the inoculum doses are different in both studies, and the ages of
pigs at the time of inoculation were not the same. Moreover, the time of collection of testes
tissues was different. Yadav et al. collected tissues at day 84 post-inoculation, while in the
other study, the collection of tissues was earlier than this time. Further studies should be
conducted to assess the factors that contribute to infection with the possible effect of HEV
on the male productive organs in the pig model.

2.3.2. Mongolian Gerbils

Mongolian gerbils are used for studying the pathogenesis of HEV genotypes 1, 3,
and 4 [68-71]. Mongolian gerbils were also used for studying extrahepatic disorders
associated with HEV infection such as neurological manifestations [72]. Soomro et al.
studied the impact of HEV infection on the structure and function of testes in the Mongolian
gerbils” model. The authors used liver homogenates of swine-derived HEV genotype 4
as inoculums [73]. HEV was detected in the sera of infected animals starting from day
7 post-inoculation till day 42, while HEV was recorded in the testes of infected animals
one week later (day 14-day 42 post-inoculation) [73]. Negative strands of HEV RNA, HEV
ORE2 antigen, and HEV ORF3 antigens were detected in the infected testes, suggesting
replication of HEV in these organs [73]. The peak of HEV RNA titers in the testes ranged
from 4.65 at day 28 post-inoculation to 6.23 at day 42 post-inoculation [73]. The serum
level of testosterone was significantly lower in the infected animal compared to non-
infected control animals on day 21- 42 post-inoculation [73], while the level of estradiol
was comparable in both groups in all time points (day 7-day 56 post-inoculation) [73]. The
diameter of seminiferous tubules and the level of abnormal sperms were notably higher in
the HEV-infected animals [73]. There were clear pathological abnormalities in the testes
of HEV-infected animals such as necrosis in the spermatogonia, shedding of germ cells,
development of multinucleated giant cells, programmed cell death, etc. [73]. Electron
microscopy examination for the infected testes revealed severe DNA fragmentation in the
cells with the formation of apoptotic bodies and increased vacuolation [73]. Moreover,
upregulation of apoptosis-related genes such as Fas, FasL, caspase-3, B-cell lymphoma
2 (Bcl-2), and Bcl-2-associated protein X (Bax) was detected in the testis of HEV-infected
animals [73]. Collectively, the swine-derived HEV genotype 4 could damage the blood—
testis barrier in Mongolian gerbils, causing testicular injury, distortion, necrosis, and
apoptosis of several sperm cells [73].

Liu and colleagues also studied if HEV genotype 3 can affect the testes. Three gerbils
were challenged with fecal preparations of human-derived HEV genotype 3 subtype b
(dose 8 x 10° copies/animal), and the viral load was quantified in the liver, testes, and
epididymis three weeks post-infection [50]. HEV RNA was detected in the liver (3/3, 100%),
epididymis (3/3, 100%), and testes (2/3, 66.7%) of the infected animals [50]. The viral load
was higher in the liver than in the epididymis and testes [50].

Also, gerbils were used to test if the ex vivo human testes explants can produce
infectious viral particles following the HEV challenge. To this end, human testes explants
(treated with tacrolimus) were challenged with fecal preparation of human-derived HEV
genotype 3, and the supernatants were collected after 24 h. and used as inoculum for the
animals. Gerbils challenged with the culture supernatants became HEV seropositive after
9-10 weeks (66 days post-inoculation) and HEV RNA was detected in the stool after about
5 weeks (34 days post-inoculation) [50].

2.3.3. Non-Human Primates (Rhesus Monkeys)

Non-human primates are the ideal model for studying HEV isolates that cause in-
fection in humans [74]. Huang et al. used rhesus macaques to study the impact of HEV
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infection on the male reproductive system and male infertility [54]. Two rhesus macaques
were challenged with swine-derived HEV genotype 4. HEV markers (RNA and antigens)
were detected in the testes and epididymis of the infected animals, suggesting the ability of
HEV to replicate in these sites [54]. Histological examination of the HEV-infected testes
and epididymis revealed a loss of the seminiferous epithelium, spermatocytes, and Sertoli
cells with increased infiltration of inflammatory cells leading to testis congestion [54]. Ad-
ditionally, the infection disrupted the transcription factor Ets-variant gene 5 (ETV5), which
mediates the function of the blood—testis barrier [75], suggesting damage in the blood—testis
barrier [54,75]. Moreover, HEV infection caused a significant drop in serum testosterone
levels, which is indicative of functional testicular impairment [54]. The HEV infection-
induced decrease in Leydig cell counts could be a factor in lower testosterone synthesis,
consistent with the dysregulated testosterone levels observed in infertile men [54].

2.3.4. Balb/c Mice

Some studies report that Balb/c mice cannot support the replication of HEV genotypes
isolated from Europe [24,76-78]. On the other hand, one group reported that Balb/c is an
ideal model for studying the HEV genotype 4, which is isolated from China, and the viral
pathogenesis in the male reproductive system, pregnancy, and kidney [43,79-81]. Situ and
colleagues infected Balb/c mice with a fecal preparation of human-derived HEV genotype
4 and assessed the effect of HEV infection on the male reproductive system [81]. HEV
RNA was recorded in the testes after 1 week of infection and reached a maximum after
3—4 weeks of infection and was detectable in the testes longer than in the blood [81]. HEV
RNA was also detected in the seminal vesicles, epididymides, and epididymal fluid [81].
The kinetics of RNA in the epididymal fluid was slower (delayed) compared to the testes,
i.e.,, RNA appeared 1 week later in the epididymal fluid. However, the HEV load persisted
longer in the epididymides and the epididymal fluid than in sera, feces, and liver (up to
day 70-90 post-infection) [81]. The previous finding was probably due to a weak innate
immune response stimulated by the virus in the testes compared to the blood due to the
immune-privileged nature of the testes [81]. RIG-I, IFN-{3, TNF-«, IL-6, and IL-10 were
not activated in the testes of infected mice, while IFN-A was activated [81]. Not only the
viral RNA but also HEV ORF2 antigen was observed in the testes, seminal vesicles, and
epididymides of HEV-infected mice, suggesting that these sites are permissive to HEV
replication [81]. More specifically, the authors reported that testicular peritubular-myoid
cells and Leydig cells support HEV replication [81]. Moreover, HEV infection caused a
reduction in sperm quality, damage to the blood—testis barrier, spermatogonia decline,
and hormonal changes as shown by a reduction in the level of testosterone and inhibin
B, suggesting that HEV infection causes serious damage to the testis and epididymal [81].
Importantly, the level of these hormones returned to normal after the viral clearance [81].
Also, HEV-mediated male infertility can be partially reversed after the viral recovery [81].

2.3.5. Rabbits

Rabbits are an ideal model for studying the pathogenesis of rabbit-derived HEV
strains, HEV genotype 4, and some isolates of HEV genotype 3 [82-84]. Rabbits infected
with HEV can develop chronic infection and extrahepatic manifestations in the intestine,
spleen, and kidney [85,86]. Rabbits were used as a model for testing the effect of HEV
infection on the female reproductive system [44]. Liu and colleagues studied the effect of
HEYV infection on the intratesticular transcriptome changes in the rabbit model [50]. Chronic
HEYV infection was successfully developed in immunocompromised rabbits (treated with
tacrolimus) and challenged with a fecal preparation of rabbit HEV strain (genotype 3,
HEV-3ra) [50]. HEV RNA was detected in the testes of the rabbits at week 13 post-infection.
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RNA sequencing analysis of the testes collected from HEV-infected immunocompromised
rabbits showed downregulation of 887 genes including genes related to spermatogenesis,
spermatid differentiation, sperm motility, reproduction, gamete generation, germ cell
development, etc. [50].

2.3.6. Other Naturally Infected Animals

Qian and colleagues investigated the presence of HEV genotype C1 (Rocahepevirus
ratti, rat HEV) in the testes of naturally infected male wild rats, present in Yunnan Province,
China [87]. HEV-C1 RNA and antigens were detected in 8 out of 37 (21.6%) testis samples
from the wild male rats [87]. Another study by Risalde et al. tested the presence of HEV in
the testes of naturally infected wild boars [88]. Wild boars are reservoirs of HEV genotypes
3 and 4 in many countries, especially European countries [89]. HEV RNA and antigens
were tested in the blood, testes, liver, and lymph nodes of male wild boar. HEV RNA was
detectable in the serum of four animals, with three of these confirmed to be infected with
HEV genotype 3f through phylogenetic analysis [88]. Only one animal exhibited detectable
viral load in its testis, where HEV-specific labeling was observed in a small number of
fibroblasts and some Sertoli cells. Importantly, despite the presence of HEV in the testis,
the study did not find any tissue damage associated with the infection [88].

The in vivo animal models used to assess HEV infection on the male genital system
are summarized in Table 2.

Table 2. Animal models used to evaluate the effect of HEV infection on the male reproductive system.

Animal Model Virus/Source Findings Sign of Infertility Reference
or Testes Damage
Pigs . o Naturally infected.
GT4, subtype 4 y N 63
subtype & o HEV RNA in semen. © L63]
GT3. US2 strain o Experimental Infection.
Human derived © H]fiV RN,A iln ﬂspf;m C(;EHS Yes [64]
Gastrointestinal and seminal fluid, an
astromtestina HEV ORE2 in sperm head.
GT3 E i tal infecti
Wild boar derived o xperimental infection. N 50
Liver o O;lr‘::t . o NoHEV RNA in testis. ° 521
Mongolian gerbils GT4 . .
Swine-derived o Experimental Infection. Yes [73]
Liver homogenate o HEV RNA in testes.
GT3- subtype 3b o Experimental Infection.
human-derived o HEV RNA in testes and Not recorded [50]
fecal preparation epididymis
GT3- subtype 3b o Experimental Infection.
human-derived © Suplernatant Of, tc;stls. Not recorded [50]
supernatant of testis explants explants were infectious
to gerbils
Non-human primates
GT4 o Experimental Infection.
Swine-derived O HEV RNA in testes and Yes [54]

Fecal preparations

epididymis
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Table 2. Cont.
Animal Model Virus/Source Findings Sign of Infertility Reference
or Testes Damage

Rabbit
GT3- rabbit strain o Experimental Infection. Ye [50]
Fecal preparations o HEV RNA in testes €s

Balb/c mice o Experimental Infection.
GT4 o HEV RNA in testes,

@ human-derived epididymis, seminal Yes [81]

Fecal preparations

vesicles, and

epididymal fluid.

3. Is HEV a Sexually Transmitted Pathogen?

Men having sex with men (MSM) is a high-risk factor for the spread of fecal-oral
infections, such as the Hepatitis A Virus (HAV), especially via the analingus route [90].
Since HAV and HEV are excreted in the feces, the transmission of HEV via the sexual route
or among MSM with anal practice is therefore questionable. Moreover, the excretion of HEV
in patients’ ejaculate raises concerns about the possibility of HEV transmission via sexual
intercourse, specifically when the excreted particles are infectious [50,51]. It is worth noting
that the infectivity of HEV particles in the ejaculate was comparable to or higher than the
infectivity of HEV particles excreted in the patients’ stool and higher than the infectivity
of HEV particles circulating in the blood or urine [50-52]. Blood transfusion is confirmed
as a method of HEV transmission [12,91,92]. Blood-derived HEV particles were infectious
to the human liver chimeric mouse model [58]. Also, urine-derived HEV particles were
also infectious to animal models such as non-human primates [93]. Therefore, the initial
expectation is the possibility of HEV transmission through sexual intercourse. However,
previous studies showed that the transmission of HEV through sexual transmission is
rare [94,95]. Rodriguez-Tajes and colleagues assessed HEV infection among MSM during
acute HAV outbreaks in Spain [94]. HEV markers were tested among MSM (1 = 83), and
there was no difference in the prevalence of anti-HEV IgG between MSM and non-MSM.
Moreover, all the samples tested negative for HEV RNA, and only two samples were
anti-HEV IgM positive [94]. The authors concluded that the incidence of HEV transmission
among MSM is very low (zero incidence) [94]. In Italy, Spada and colleagues assessed HEV
markers among MSM (n = 196) during HAV outbreaks and blood donors (1 = 3912) from the
same geographic regions [96]. The seroprevalence of HEV was higher among blood donors
than MSM, suggesting that sexual intercourse does not play a role in the transmission
of HEV [96]. In France, Migueres and colleagues assessed the risk of HEV transmission
among MSM who received HIV preexposure prophylaxis (1 = 147) and blood donors
(n = 147) of matched age, gender, and area [97]. There was no difference in the seropreva-
lence of HEV among both groups, and there was no evidence of HEV infection among the
MSM, despite the detection of other sexual pathogens including HAV and bacterial infec-
tions [97]. Another study was conducted in France on MSM who used HIV preexposure
prophylaxis, concluding that HEV infection is not commonly transmitted by sexual inter-
course [95]. These findings suggest that sexual transmission of HEV is rare. One possible
explanation is that the excretion of HEV in the ejaculate is high among immunocompro-
mised patients, not immunocompetent ones [52]. Only organ transplants and patients with
leukemia had positive HEV in the ejaculate [51,52], and these groups were probably not
included in the tested MSM groups or the tested MSM groups had not developed chronic
infection. Future studies should ascertain these points.
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4. Conclusions and Future Perspectives

The excretion of HEV in the semen and its role in male infertility and sexual transmis-
sion is a hot research topic. Studies on patients’ samples revealed that the possibility of
HEV excretion in the semen is high with chronicity, especially in organ transplants and
patients with leukemia. However, all the published data include only a few cases. It is
important to assess HEV markers in the ejaculate of a larger cohort. To date, the risk of HEV
excretion in the semen of HIV-infected patients, another category of immunocompromised
patients with a risk of chronic infection, is not known. The HEV particles on patients’
ejaculate seem to be infectious to in vitro optimized cell culture models and animal models.
The role of HEV in male infertility has been described in animal models including testicular
damage, inflammation, blood-testis barrier breakdown, etc. However, these data have not
been confirmed in human samples. Still, the factors contributing to the excretion of HEV
particles in the semen are not completely known. For example

(@) Do the viral genotypes and subtypes affect the rate of HEV excretion in the semen?

(b) What is the minimum infectious dose of HEV in the ejaculate?

(c) What are the levels of male sex hormones in chronically HEV-infected patients such
as organ transplants and leukemia patients?

(d) Isthere any observed deformity in the semen of chronically HEV-infected patients?

Also, it is not known if sexual intercourse could be a natural source of infection, even if
the semen is HEV-RNA positive. We believe that this topic needs a lot of investigation and
research. Furthermore, understanding the molecular mechanisms underlying HEV’s impact
on the male reproductive system is crucial for developing targeted therapeutic strategies.
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