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Abstract: As a ubiquitous human pathogen, the Epstein–Barr virus (EBV) has established
lifelong persistent infection in about 95% of the adult population. The EBV infection is
associated with approximately 200,000 human cancer cases and 140,000 deaths per year.
The presence of EBV in tumor cells provides a unique advantage in targeting the viral
genome (also known as episome), to develop anti-cancer therapeutics. In this review, we
summarize current strategies targeting the viral episome in cancer cells. We also highlight
emerging technologies, such as clustered regularly interspersed short palindromic repeat
(CRISPR)-based gene editing or activation, which offer promising avenues for selective
targeting of the EBV episome for anti-cancer therapy. We discuss the challenges, limitations,
and future perspectives associated with these strategies, including potential off-target
effects, anti-cancer efficacy and safety.
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1. Introduction
The Epstein–Barr virus (EBV) was discovered from Burkitt lymphoma cells in 1964 [1],

and it is estimated that over 90% of the adult population worldwide has been infected with
EBV at some point in their lives, mostly asymptomatic. However, in sub-Saharan Africa,
where Plasmodium falciparum malaria is highly prevalent, EBV infection may contribute to
the development of Burkitt lymphomas (BLs) in children, commonly referred to as endemic
BLs [2]. In other places, EBV infection is detected in up to 30% of BL cases [3]. EBV infection
in adolescents and young adults can lead to mononucleosis [4], which is associated with an
increased risk of developing EBV+ Hodgkin Lymphoma (HL) [5]. In addition to lymphomas
in immunocompromised patients (such as HIV-associated and post-transplant cases), EBV
infection is associated with most cases of nasopharyngeal carcinoma (NPC) in southern
China, southeast Asia, and north Africa, though genetics and environmental factors also
contribute to its development [6–8]. It is estimated that 10% of gastric cancer cases are
linked to EBV infection, referred to as EBV-associated gastric cancer (EBVaGC) [9–11]. Virus
latent gene expression is considered to be a driver of the oncogenesis in EBV-positive
malignancies, but increasing evidence suggests that lytic infection also contributes to the
early stages of EBV-induced tumor development [12,13]. Furthermore, EBV infection is
associated with multiple sclerosis, a neurodegenerative disease that affects the central
nervous system [14–17].
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EBV is primarily transmitted through oral routes, where it initially targets epithelial
cells for lytic infection. During this phase, the virus actively replicates and produces
new virions. Subsequently, EBV infects B cells to establish a latent state, during which
the viral genome becomes circularized and chromatinized as an episome, resembling the
tightly packed form of cellular chromatin, which contributes to the repression of lytic
genes [18]. Periodically, EBV reactivates from latency to produce new virions, which
enable the virus to infect other B cells and epithelial cells, facilitating its spread within the
host and transmission to other individuals. Although significant progress has been made
toward our understanding of EBV infection, replication, and viral pathogenesis, there are
no viral-specific therapeutic strategies to treat EBV-associated cancer. The development
of viral-specific therapeutics is hindered by the lack of suitable virus-specific targets in
cancer cells, where EBV stays latent and is expressed in only a limited set of genes. Another
challenge stems from the potential off-target effects of targeting host proteins. Furthermore,
the development of EBV-specific therapies is restricted by the lack of robust animal models
that accurately mimic EBV infection and associated cancers in humans.

EBV typically persists with over 10 episomes per malignant or transformed cell, with
copy numbers well-characterized in various cell lines. Akata BL cells contain approximately
20 copies of the EBV genome per cell [19], while Mutu cells harbor 30–45 copies [20]. The
B95-8 marmoset lymphoblastoid cells carry about 18 copies per cell [21]. Raji cells, derived
from a Nigerian BL patient and characterized by defective virus production, contain
approximately 55 copies per cell [22]. A population study reported EBV copy numbers
ranging from 16 to 29 across 915 lymphoblastoid cell lines (LCLs) from the HapMap and
1000 Genomes projects [23]. In EBVaGC cells, EBV can maintain up to 800 episomes per
cell [24]. The unique presence of EBV episomes in tumor cells provides a way to specifically
target EBV for anti-cancer therapy. In this review, we will discuss the current research
status of targeting viral episome as anti-cancer strategies.

2. Targeting the EBV Episome for Anti-Cancer Therapy
2.1. Targeting EBV Episome Maintenance Protein EBNA1

Epstein–Barr nuclear antigen 1 (EBNA1) plays a crucial role in the maintenance and
replication of the EBV genome within host cells. This protein is responsible for tethering
the EBV episomes to the host cell chromosomes, ensuring the stable maintenance and repli-
cation of the viral genome during cell division (Figure 1) [18,25]. EBNA1 accomplishes this
task through its bipartite structure: the N-terminal domain interacts with host chromatin,
while the C-terminal domain binds to specific regions of the viral genome. This mechanism
enables the efficient segregation of viral DNA during mitosis, facilitating the persistent
infection without losing EBV genome in daughter cells [25,26].

There are multiple EBNA1 binding sites within the latent origin of plasmid replication
(OriP), including 4 in the dyad symmetry (DS) and 18 in the family of repeats (FR) (see
recent review on EBNA1-targeted inhibitors [27]). Recent cryo-electron microscopy (cryo-
EM) studies have provided new insights into EBNA1 binding to DS and FR. EBNA1 binding
to DS induces significant DNA bending, whereas its binding to FR results in a linear DNA
structure [26].

In addition, EBNA1 also binds to the host genome and induces chromosome breakage
and genome instability [28,29]. Targeting EBNA1 disrupts the tethering of EBV episomes to
chromosomes, leading to the loss of the viral genome from infected cells. Since EBNA1 is
consistently expressed in all EBV tumors and the EBV genome contributes to the survival
and proliferation of EBV-associated tumor cells by driving oncogene expression and modu-
lating host cellular pathways, eliminating the viral genome through EBNA1 inhibition can
lead to tumor cell death.
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Figure 1. In latently infected cells, EBV episomes are tethered to host chromosomes by EBNA1. 
There are three major approaches to eliminating EBV-positive cancer cells: (1). EBNA1 Inhibi-
tion/Degradation: EBNA1 tethers the EBV episomes to the host chromosomes, and targeting this 
protein can lead to episome loss and cell death. (2). Direct Genome Cleavage: This strategy involves 
using tools like CRISPR/Cas9 to cut and remove the EBV genome. (3). Lytic Reactivation Therapy: 
This involves reactivating the virus into its lytic phase, allowing antiviral drugs [e.g., ganciclovir 
(GCV)] to selectively target and kill EBV-infected cells through the activity of viral protein kinase 
BGLF4. (Created with Biorender.com). 

Using the RNAi strategy, Ian et al. found that silencing EBNA1 suppresses the 
growth of and promotes cell cycle arrest of EBV+ NK/T cell lymphoma cells and HANK1 
cells [30]. By using in silico virtual screening, Li et al. identified several compounds capa-
ble of inhibiting EBNA1–DNA binding in vitro and reducing EBV genome copy numbers 
in Raji BL cells [31]. Subsequently, Thompson et al. developed a high-throughput screen-
ing method using a homogeneous fluorescence polarization assay and identified 3 com-
pounds (LB2, 3, and 7) that inhibit EBNA1 binding to DNA. One of the compounds, LB7, 
was shown to reduce EBV genome copy number in Raji BL cells [32]. Roscovitine, a cyclin-
dependent kinase (CDK) inhibitor, inhibits EBNA1 phosphorylation, nuclear localization, 
and episome maintenance in the BJAB-derived FE1-OF cells and suppresses the growth 
of EBV+ LCLs [33]. 

EBNA1 forms homodimers, which are essential for its various functions, including 
DNA binding, replication initiation, and segregation [34,35]. Three EBNA1 dimers can 
form a hexameric ring that is important for plasmid maintenance [36]. Consequently, tar-
geting EBNA1 dimerization has emerged as a promising therapeutic strategy to disrupt 
EBNA1 function and treat EBV-associated diseases. 

EBNA1 dimerization inhibitor EiK1 and small peptide covering EBNA1 aa 560-574 
blocks EBNA1’s dimerization as well as DNA binding function in vitro and in EBNA1-
expressed BJAB cells [37]. Compound H31 was reported to inhibit EBNA1-OriP DNA 
binding and, therefore, reduce the growth of EBV+ Akata BL cells and LCLs [38]. In addi-
tion, a pyrrole-imidazole polyamide was reported to bind the EBNA1 recognition se-
quences as a DNA ligand to inhibit EBNA1-OriP binding and it suppressed the growth of 
EBV+ LCLs and limited EBV-induced B cell transformation [39]. JLP2 is another EBNA1 
dimerization inhibitor that binds and inhibits EBNA1 in vitro and suppresses the growth 
of EBV+ NPC cells, C666-1 [40]. Subsequently, the same group developed another EBNA1-
targeting probe, L2P4, based on rational design and molecular dynamics simulations [41]. 
L2P4 is a peptide-based inhibitor that luminesces upon binding to EBNA1 in EBV+ cells 
and selectively kills EBV+ NPC cells (C666-1 and NPC43) and Raji BL cells by blocking 
EBNA1 dimerization. Recently, a series of small molecule inhibitors were developed us-
ing structure-based design, including VK-1727 and VK-1850, that block EBNA1 DNA 

Figure 1. In latently infected cells, EBV episomes are tethered to host chromosomes by EBNA1.
There are three major approaches to eliminating EBV-positive cancer cells: (1). EBNA1 Inhibition/
Degradation: EBNA1 tethers the EBV episomes to the host chromosomes, and targeting this protein
can lead to episome loss and cell death. (2). Direct Genome Cleavage: This strategy involves using
tools like CRISPR/Cas9 to cut and remove the EBV genome. (3). Lytic Reactivation Therapy: This
involves reactivating the virus into its lytic phase, allowing antiviral drugs [e.g., ganciclovir (GCV)]
to selectively target and kill EBV-infected cells through the activity of viral protein kinase BGLF4.
(Created with Biorender.com).

Using the RNAi strategy, Ian et al. found that silencing EBNA1 suppresses the growth
of and promotes cell cycle arrest of EBV+ NK/T cell lymphoma cells and HANK1 cells [30].
By using in silico virtual screening, Li et al. identified several compounds capable of
inhibiting EBNA1–DNA binding in vitro and reducing EBV genome copy numbers in
Raji BL cells [31]. Subsequently, Thompson et al. developed a high-throughput screening
method using a homogeneous fluorescence polarization assay and identified 3 compounds
(LB2, 3, and 7) that inhibit EBNA1 binding to DNA. One of the compounds, LB7, was
shown to reduce EBV genome copy number in Raji BL cells [32]. Roscovitine, a cyclin-
dependent kinase (CDK) inhibitor, inhibits EBNA1 phosphorylation, nuclear localization,
and episome maintenance in the BJAB-derived FE1-OF cells and suppresses the growth of
EBV+ LCLs [33].

EBNA1 forms homodimers, which are essential for its various functions, including
DNA binding, replication initiation, and segregation [34,35]. Three EBNA1 dimers can form
a hexameric ring that is important for plasmid maintenance [36]. Consequently, targeting
EBNA1 dimerization has emerged as a promising therapeutic strategy to disrupt EBNA1
function and treat EBV-associated diseases.

EBNA1 dimerization inhibitor EiK1 and small peptide covering EBNA1 aa 560-574
blocks EBNA1’s dimerization as well as DNA binding function in vitro and in EBNA1-
expressed BJAB cells [37]. Compound H31 was reported to inhibit EBNA1-OriP DNA
binding and, therefore, reduce the growth of EBV+ Akata BL cells and LCLs [38]. In
addition, a pyrrole-imidazole polyamide was reported to bind the EBNA1 recognition
sequences as a DNA ligand to inhibit EBNA1-OriP binding and it suppressed the growth
of EBV+ LCLs and limited EBV-induced B cell transformation [39]. JLP2 is another EBNA1
dimerization inhibitor that binds and inhibits EBNA1 in vitro and suppresses the growth
of EBV+ NPC cells, C666-1 [40]. Subsequently, the same group developed another EBNA1-
targeting probe, L2P4, based on rational design and molecular dynamics simulations [41].
L2P4 is a peptide-based inhibitor that luminesces upon binding to EBNA1 in EBV+ cells
and selectively kills EBV+ NPC cells (C666-1 and NPC43) and Raji BL cells by blocking
EBNA1 dimerization. Recently, a series of small molecule inhibitors were developed using
structure-based design, including VK-1727 and VK-1850, that block EBNA1 DNA binding,
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and EBV tumor growth in vivo using xenograft models with LCLs, C666-1 NPC cells,
patient-derived C15/C17 NPC cells, and EBVaGC cells (SNU719 and YCCEL1) [42,43].

Another EBNA1 inhibitor developed by the same group, VK-2019, was selected for
clinical trial due to its favorable chemical and pharmacological properties [44]. Two clinical
trials were initiated: An ongoing trial recruiting patients with nasopharyngeal carcinoma
(NPC) and lymphoma, including post-transplant lymphoproliferative disorder (PTLD)
(ClinicalTrials.gov ID: NCT04925544) and a terminated trial that focused exclusively on
NPC patients (ClinicalTrials.gov ID NCT03682055). In addition to small molecule inhibitors,
antibodies targeting EBNA1 DNA-binding domain have been shown to block ongoing EBV
DNA replication in C666-1 NPC cells and Raji BL cells [45].

2.2. Targeting Viral Genome by Genome Editing

Apart from targeting EBNA1, directly disrupting the viral genome represents an-
other way to kill virus-infected cells (Figure 1). Recent advances provide new ways to
manipulate viral genome by zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and clustered regularly interspersed short palindromic re-
peat (CRISPR)-associated protein 9 (Cas9) [46]. For example, Wang and Quake utilized
the CRISPR/Cas9 approach to delete a portion of the EBV episome, including EBNA1,
EBNA3C, and LMP1 genes. This led to reduced viral load and apoptosis of EBV+ BL
cells [47]. van Diemen et al. used a similar method to target EBNA1 and OriP with double
guide RNAs (gRNAs), resulting in over 95% loss of EBV genomes in Akata BL cells [48].
Subsequently, Yuen et al. tested CRISPR/Cas9 editing of EBV EBNA1, OriP, and W repeats
in NPC cells and found that it reduces the EBV episome number by 50% [49]. Huo et al.
employed CRISPR/Cas9 targeting for the LMP1 gene in NPC, which resulted in a reduction
in EBV replication and decreased colony size [50].

2.3. Lytic Induction Therapy

Lytic induction therapy for EBV-associated cancers is a promising approach that aims
to reactivate the latent virus for lytic replication [51–55]. Historically, chromatin-targeting
drugs, such as histone deacetylase (HDAC) and DNA methyltransferase inhibitors, have
been employed to induce lytic reactivation by altering the epigenetic silencing of viral
lytic genes (see recent review in [56]). Recent clinical trials are evaluating the use of the
HDAC inhibitor nanatinostat to induce EBV reactivation in patients with EBV+ lymphomas
that were relapsed or refractory to prior systemic therapy. EBV reactivation leads to the
expression of viral protein kinase BGLF4, a key enzyme for EBV replication that phos-
phorylates both viral and cellular targets [57–61]. BGLF4 also phosphorylated nucleoside
analogs [62,63]. The activated nucleoside analogs are incorporated into viral and cellular
DNA, leading to cell death. Subsequently, the lysed cells release activated analogs, which
can pass through gap junctions or be transported via apoptotic vesicles to neighboring
cells. This triggers cell death in adjacent cells without direct viral reactivation, a process
known as bystander killing [64]. When combined with valganciclovir (vGCV), this mecha-
nism selectively eliminates EBV-infected tumor cells, achieving an overall response rate
of 40% in patients with EBV+ lymphoma [65] (clinicaltrials.gov IDs: NCT03397706 and
NCT05011058). While these approaches have shown potential, they often lack specificity
and can cause off-target effects. Indeed, nanatinostat treatment led to nausea and cytopenia
as the common adverse events [65].

Emerging technologies, such as CRISPR/dCas9 activation [66–73] and transcription
activator-like effector (TALE) systems [46], provide precise tools to target and activate gene
expression. These approaches can be tailored to specifically reactivate EBV by targeting its
immediate-early (IE) gene ZTA/BZLF1 [74]. Recently, our group developed an approach

ClinicalTrials.gov
ClinicalTrials.gov
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called CRISPR/dCas9-mediated EBV reactivation (CMER) to induce EBV reactivation in
cancer cells [75]. We employed an enzymatically inactive dCas9 fused with VP64 and
designed guide RNAs (sgRNAs) targeting the EBV ZTA/BZLF1 promoter. Among these,
nine successfully reactivated EBV in Burkitt lymphoma cells, with CMER sgRNA-5 showing
strong reactivation in multiple cancer cell types, including lymphoma, EBVaGC, and NPC.
Combining CMER with GCV selectively eliminated EBV+ but not EBV− cancer cells [75].
In another study, a ZTA/BZLF1-specific TALE system is employed to reactivate EBV in
EBVaGC and NPC cells [76]. The TALE system uses nucleoside-modified mRNAs to encode
a BZLF1-specific TALE-transcriptional activator. These mRNAs were then encapsulated in
lipid nanoparticles (mTZ3-LNPs) for delivery to mice bearing EBV+ tumors xenografted
with EBVaGC (SNU719) and NPC (C666-1, C17, Xeno-76) cells. The combination of mTZ3-
LNP and GCV displays specific cytotoxic effects against EBV-associated tumor in vivo
using these mouse models [76].

3. Limitations and Future Perspective
Targeting EBV episome presents significant potential for treating EBV-associated

cancers. Inhibiting EBNA1 with small molecules can eliminate the EBV episome from
cancer cells, while CRISPR/Cas9 editing offers a direct approach to excise the viral genome.
Additionally, lytic induction therapy leverages the presence of the EBV episome to express
viral protein kinase for therapeutic purposes. However, the toxicity and anti-cancer efficacy,
as well as the clinical utility of EBNA1 inhibitors, are still under investigation. EBV+

cancer cells harbor numerous episomes, with 20–50 copies in B lymphoma cells and up to
800 copies in epithelial cancer cells [24]. As a result, completely removing all EBV genomes
by CRISPR-based genome editing poses a significant challenge and may not be entirely
feasible. Moreover, delivering CRISPR/Cas9 and mRNA efficiently into cancer cells also
poses difficulties, as LNP-mediated mRNA delivery has shown only 15% efficiency in
reactivating EBV in mouse models of EBV-associated tumors.

Several strategies could address these limitations:
PROteolysis TArgeting Chimeras (PROTACs) represents a novel approach to target

previously “undruggable” proteins [77]. The PROTAC molecule acts as a bridge between
the target protein and an E3 ubiquitin ligase, facilitating the formation of a ternary complex.
This proximity-induced interaction triggers the ubiquitination of the target protein for
ubiquitin-dependent degradation by the proteasome. Once the protein is degraded, the
PROTAC is released to target another copy of the target. The catalytic nature allows a single
PROTAC molecule to initiate multiple rounds of protein degradation, potentially leading to
enhanced efficacy compared to traditional inhibitors [78–80]. Therefore, PROTAC-mediated
degradation could utilize existing EBNA1 inhibitors to promote EBNA1 degradation. The
PROTAC mechanism offers several advantages over conventional therapeutic approaches.
By inducing protein degradation rather than mere inhibition, PROTACs may achieve more
potent and sustained effects. This approach also holds promise in overcoming drug resis-
tance mechanisms associated with traditional inhibitors due to mutations. However, the
development of PROTACs faces challenges, including the optimization of physicochem-
ical properties to ensure suitable drug-like characteristics and the enhancement of oral
bioavailability [78].

In addition, new generation EBNA inhibitors with better specificity and less off-
target effects could also be developed for direct inhibition or for PROTAC development.
Adenoviral vectors, adeno-associated viral vectors, and lentiviral vectors -mediated CRISPR
delivery might improve targeting efficiency [81]. Engineered delivery vehicles with cell-
specific targeting capabilities could be developed [82,83].
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Small activating RNA (saRNA) represents a novel class of therapeutic agents with
unique properties that set them apart from other RNA-based therapies. Unlike small inter-
fering RNAs (siRNAs) [84], microRNAs (miRNAs) [85], and antisense oligonucleotides [86],
which typically function to silence or modulate gene expression, saRNAs are designed
to upregulate specific target genes by interacting with promoter regions and recruiting
RNA polymerase II [87–89]. This distinctive mechanism of action allows saRNAs to induce
long-lasting gene expression, potentially leading to sustained therapeutic effects. In the con-
text of EBV+ cancer cells, saRNAs could be adapted to target the viral IE promoter, which
represents another avenue for advancing EBV-targeted therapies. The small size of saRNA
may facilitate its delivery into target cells, potentially overcoming some of the delivery
challenges associated with larger therapeutic molecules or gene-editing/activation systems.
However, the off-target effects and stability of saRNA should be carefully examined.

Recently, the editing of the herpes simplex virus (HSV) genome by virus-specific
meganucleases delivered by adeno-associated virus (AAV) vectors could eliminate over 90%
of the HSV genome in mouse models [90,91]. These large and highly specific endonucleases
possess the ability to recognize and cleave DNA sequences ranging from 18 to 24 base pairs
in length, a characteristic that sets them apart from other gene-editing technologies [92].
The mechanism of action of meganucleases involves a series of steps, beginning with
the precise recognition of their target DNA sequences. This recognition is followed by
the induction of a double-strand break (DSB) at the specific site, which in turn triggers
DNA repair mechanisms. These repair processes, primarily non-homologous end-joining
(NHEJ) or homology-directed repair (HDR), can be harnessed to introduce desired genetic
modifications, including insertions, deletions, or precise alterations when a donor DNA
template is provided [93].

This strategy can also be applied to EBV by designing EBV-specific meganucleases
to eliminate EBV episome in cancer cells. However, meganucleases are more difficult
to develop than CRISPR/Cas9 approaches due to their larger recognition sites and the
need for extensive protein engineering [92]. Additionally, the delivery mechanisms for
meganucleases face similar obstacles as those encountered with CRISPR/Cas9 systems.

In conclusion, the unique presence of EBV episomes in tumor cells offers a compelling
target for the development of anti-cancer therapies. This review has outlined current
approaches to targeting the EBV episome, including EBNA1 inhibition, viral genome
cleavage, and lytic induction through emerging strategies. Each of these methods holds
the potential to disrupt cancer progression linked to EBV infection by destabilizing the
episome or eradicating infected cells. However, the success of these therapeutic strategies
will rely on factors such as the specific type of EBV-associated cancer, individual patient
characteristics, and the potential for eliciting an immune response against EBV antigens.
Future advancements in this field are likely to yield novel therapeutic avenues, offering
improved strategies for treating EBV-associated malignancies.
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