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Abstract: Respiratory avian viral diseases significantly impact the world poultry sector,
leading to notable economic losses. The highly contagious DNA virus, infectious laryn-
gotracheitis virus, and the RNA virus, avian metapneumovirus, are well known for their
prevalent effects on avian respiratory systems. The infectious laryngotracheitis virus (ILTV),
stemming from the Herpesviridae family, manifests as an upper respiratory disease within
birds. Characterized by acute respiratory signs, it sporadically emerges worldwide, pre-
senting a persistent threat to poultry health. Avian metapneumovirus (aMPV), belonging to
the Pneumoviridae family is identified as the cause behind severe rhinotracheitis in turkeys
and swollen head syndrome in chickens. This disease can lead to heightened mortality
rates, especially when coupled with secondary bacterial infections. This review offers a
comprehensive analysis and understanding of the general properties of these specific avian
respiratory viruses, control measures, and their global status.

Keywords: infectious laryngotracheitis virus; avian metapneumovirus; herpesvirus; pneu-
movirus

1. Introduction
Respiratory avian viral diseases have significantly and negatively impacted the global

poultry industry for decades. Such diseases can cause profound implications within
densely packed flocks, as the etiologic agents use the respiratory tract as the primary route
of infection, leading to prompt and wide dissemination of the virus. Due to the nature of
these viruses, they are highly prevalent and can express various levels of morbidity and
mortality, leading to performance and especially financial loss due to costly intervention
measures. Among the primary causative agents of these diseases, avian influenza virus
(AIV), Newcastle disease virus (NDV), and infectious bronchitis virus (IBV) are mainly
focused on because of their high mutation rates, high mortality, and prevalence [1–3].
Avian influenza is often at the forefront of global discussions due to its zoonotic features,
the possibility of interspecies transmission to humans, and pandemic potential. On the
other hand, other respiratory viruses, such as infectious laryngotracheitis virus (ILTV)
and avian metapneumovirus (aMPV), tend to gain less focus despite their capability of
causing significant economic losses and have greater or equal global impacts as other
prominent avian viral pathogens. Nonetheless, both viruses are globally distributed, with
new subtypes and cases arising in recent years and challenges unique to each virus.

Infectious laryngotracheitis (ILT) is a significant economic burden on the global poultry
industry. Infection can reduce egg production, causing weight loss and enhancing bird
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susceptibility to other respiratory pathogens [4–6]. First reported in 1925 [7], the causative
agent of ILT is the infectious laryngotracheitis virus (ILTV), a member of the Herpesviridae
family, specifically within the Alphaherpesvirinae subfamily, iltovirus genus, and identified
as species Gallid alphaherpesvirus-1 which was formally known as Gallid herpesvirus-1 [8–10].
ILTV primarily affects galliform birds, demonstrating a highly selective host range [11].
While chickens are the most common hosts, the virus has also been isolated from pheasants,
peafowl, and, under experimental conditions, turkeys [5,12,13]. The transmission of ILTV
occurs not only directly but can also proceed indirectly via fomites, including contaminated
equipment, clothing, and trucks, and through improper disposal of manure and infectious
litter [14].

Avian metapneumoviruses (aMPVs), classified within the Pneumoviridae family of the
genus Metapneumovirus, are traditionally distinguished into four subgroups (A, B, C, D)
based on their sequence analysis and virus neutralization patterns [15]. Initially identified
in South Africa during the 1970s, aMPV was believed to infect only turkeys, with chicken in-
fections later linked to swollen head syndrome (SHS) [16–18]. The virus worsens secondary
bacterial infections, increasing mortality rates, notably with Ornithobacterium rhinotracheale
(ORT) and Mycoplasma gallisepticum (MG) [19,20]. Research has shown that aMPV can
enhance ORT’s ability to adhere to and colonize the epithelial cells of the turbinate and
trachea, indicating a synergistic relationship between these two pathogens [21]. Despite
some level of viral replication in the lungs, aMPV primarily replicates briefly in the upper
respiratory tract. Studies have demonstrated that the virus can replicate significantly in
turkeys in nasal and sinus tissues for up to 10 days post-inoculation without spreading
to other tissues [22,23]. Although mortality rates rarely exceed 2% in chickens, morbidity
can affect up to 10% of the population [24]. In addition to causing significant morbidity,
the disease is also known to affect egg production, leading to decreased egg quality [25].
Fortunately, vertical transmission in domestic poultry seems relatively uncommon, as
only a few cases have been reported, and no viable viruses were isolated from offspring,
suggesting that vertical transmission would unlikely play a significant role in virus dis-
semination [26,27]. AMPV caused USD 15 million in economic losses alone in the United
States from 1997 to 2000, further emphasizing the importance of disease control [28]. Like
many other RNA viruses, aMPV is known for its heterogeneity, with various subtypes
of the strain being distributed and circulating worldwide, primarily by migratory wild
birds. This review will focus on these two critical yet frequently overshadowed respiratory
viral pathogens.

2. The Viral Structure and Classification of ILTV and aMPV
Although ILTV and aMPV are recognized as major respiratory viral pathogens in

poultry, they are distinct in several aspects. ILTV shares a similar icosahedral morphology
to the herpes simplex virus-1 (HSV-1), featuring a hexagonal nucleocapsid that encapsulates
its double-stranded DNA. This nucleocapsid, with an 80–100 nm diameter, comprises
162 elongated and hollow capsomeres [29]. The genome spans approximately 150 kilobase
pairs (kb). It includes 79 predicted open reading frames (ORFs) alongside long and short
unique regions (UL, US) that are bordered by inverted repeats (internal repeat (IR), terminal
repeat (TR)) adjacent to the US region [30,31] (Figure 1). Notably, the genome encompasses
two specific gene clusters: one of five ORFs (A-E) located between UL45 and UL22 [32]
near the genome’s 5′ end and the UL0, UL(-1) cluster near the 3′ end [11]. In a knockout
study, deleting the UL(-1) genes prevented ILTV from replicating in susceptible cell lines,
suggesting its crucial role in viral replication [33]. Unlike other alphaherpesviruses, which
carry only one or two origins of replication (Ori), ILTV carries three Ori of replication: the
OriL located in the UL regions and the OriS located at the IR and TR regions [34]. The
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nucleocapsid is encased in an irregular envelope measuring 195–350 nm in diameter and
is adorned with viral glycoproteins on its surface [29,35,36] (Figure 1). Given the genetic
and protein similarities between ILTV and HSV-1, the nomenclature for many ORFs and
proteins in ILTV has been adopted from HSV-1 [37]. Like other alphaherpesviruses, these
surface glycoproteins play critical roles in virus mediation, egress, and eliciting immune
responses [38]. Historically, five major envelope glycoproteins—gB, gC, gD, gK, and gX—
and a unique glycoprotein, gp60, were identified as primary antigens and extensively
studied [39,40]. Several glycoproteins (gB, gC, gD, gE, gG, gH, gI, gJ, gK, gL, gM, gN)
and their corresponding ORFs have been currently recognized [41]. However, not all their
functions and interactions are fully understood [42].
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Figure 1. The viral structure of ILTV. (a) A schematic diagram of ILTV. (b) The genome of ILTV.
(Created in https://mindthegraph.com/ (16 September 2024)).

Apart from the DNA virus ILTV, aMPV is an enveloped RNA virus with a negative-
sense, non-segmented RNA genome. It shares structural characteristics with members of
the Paramyxoviridae family. [43]. Its molecular structure showcases a pleomorphic, spherical
form with sizes ranging from 50 nm to 200 nm, typically around 150 nm in diameter, and
presents a predominantly filamentous appearance [44,45]. Within the virus, the helical
nucleocapsid, encased by the matrix (M) protein layer, houses the 13 kb RNA genome.
The genomic structure of aMPV encodes eight genes flanked by the 3′ leader and 5′ trailer
regions (3′-N-P-M-F-M2-SH-G-L), which are the nucleoprotein (N), phosphoprotein (P),
matrix protein (M), fusion protein (F), second matrix protein (M2), small hydrophobic
protein (SH), attachment protein (G), and the large polymerase protein (L) [46] (Figure 2).
Among them, the most heterogeneous gene in terms of genetic variability is the G gene,
which encodes the G protein and is the main target for virus identification and genetic
subtyping. This nucleocapsid is notably smaller than paramyxoviruses, such as the New-
castle disease virus (NDV). The lipid envelope of aMPV is embedded with three viral
glycoproteins essential for its lifecycle: the G protein, which facilitates host cell attachment;
the F; and the SH protein [47]. The F and G proteins form spikes, ranging from 10 to 14 nm
in length, on the virus’s surface and are crucial for interacting with the internal side of
the viral membrane’s matrix protein layer. For viral entry into a host cell, the G proteins
engage with heparin-like or glycosaminoglycan receptors on the cell surface, mediating
attachment [48–50]. Following this initial attachment, the F protein triggers fusion between
the viral envelope and the host cell membrane through a pH-independent mechanism.

https://mindthegraph.com/
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This fusion facilitates the unpacking of viral components within the cytoplasm, setting
the stage for subsequent viral replication. The G protein of aMPV stands out due to its
unique sequence and structural properties, differing significantly from the hemagglutinin-
neuraminidase (HN) attachment proteins found in other paramyxoviruses [51]. Despite
the differences in the G protein, the F proteins of aMPV and other paramyxoviruses share
structural similarities despite their sequence heterology [52–54]. In the processing of the
precursor F0 protein into its active form, it is cleaved into two disulfide-linked subunits,
F1 and F2, a mechanism consistent with other paramyxoviruses, mediated by host cell
proteases like Furin [55,56]. This cleavage is critical for the virus to fuse with host cell
membranes, a crucial step in viral entry. AMPV also encodes nonstructural proteins NS1
and NS2 that play significant roles in evading the host immune response. These proteins
are expressed in higher quantities than other viral proteins and function by inhibiting
RNA synthesis and interferon activation, facilitating viral replication and spread within the
host [57–59].
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protein, SH: Small hydrophobic protein, G: Attachment protein, L: Large polymerase protein (Created
in https://mindthegraph.com/ (16 September 2024)).

The M2 gene encodes two overlapping proteins, M2-1 and M2-2, which are involved
in the virus’s replication process. Although the function of these proteins is not fully
understood, the zinc-binding ability of the M2-1 protein is thought to be involved in
regulating viral mRNA transcription and enhancing pathogenesis, while the M2-2 protein
functions as a negative regulator of RNA transcription. Some evidence exists for other
viruses in the same group suggesting that the M2-2 protein could completely inhibit viral
RNA replication [60,61]. The SH protein is an accessory protein commonly found in
pneumoviruses and categorized as a type 2 integral membrane glycoprotein [62]. Although
the function of this protein is not well known, it is thought to aid in the viral entry process by
increasing the membrane permeability of the target cells, inhibiting host immune signaling
pathways, and helping the virus evade the host’s immunity [63]. However, based on gene
knockout studies, the SH protein does not seem essential for viral replication, as its absence

https://mindthegraph.com/
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did not significantly affect the fitness of the virus in both in vitro and in vivo settings
regarding replication [64,65].

On the other hand, like most DNA viruses, ILTV’s surface proteins are more diverse
and numerous than those of aMPV. ILTV glycoprotein B (gB), gC, gG, gJ, gM, and gN have
explicitly been identified at the protein level, demonstrating their presence and roles in
the viral structure [11,66–69]. Research has shown that gG, gJ, gM, and gN are not critical
for the virus’s ability to replicate in cell cultures [70,71], suggesting alternative functions
outside primary viral replication. A particularly intriguing aspect of ILTV’s biology is the
attachment mechanism of its glycoproteins B (gB) and C (gC) to host cells. Unlike other
alphaherpesviruses, sequence analysis has revealed that these ILTV glycoproteins lack the
consensus motifs for heparin binding. This finding indicates that ILTV relies on a heparin-
independent method for host cell attachment, significantly different from the mechanisms
observed in other viruses within the same family [67]. Further comparison of the ILTV
gC protein with other alphaherpesviruses highlights a notable difference: the absence of
arginine and lysine-rich sequences. This deficiency leads to the deletion of approximately
100 amino acids in ILTV gC, resulting in a protein significantly shorter than other gC
homologs and lacking the positively charged region in the ectodomain typically required
for interaction with heparin [67]. The implications of these structural and functional
differences in ILTV’s glycoproteins are profound, especially considering the virus’s host
specificity. The absence of heparin-binding features in gB and gC suggests that ILTV’s
entry into host cells—and, by extension, its narrow host range—may be determined by
relying on alternative cell surface receptors alongside heparin-independent entry pathways.
This adaptation could play a crucial role in defining the susceptibility of host species to
ILTV infection. Glycoproteins H (gH) and gL are heterodimeric complexes that participate
in herpesviruses’ core fusion machinery. They are also the primary targets for virus-
neutralizing antibodies [72]. Viral entry mediated by the gH/gL complex is another method
of heparin-independent entry. Functional homologs of gL co-processed in a complex with
gH are commonly discovered in most herpesviruses, including ILTV. N-terminal signal
sequences, N-glycosylation sites, and two cysteine residues are also present in gL of ILTV,
suggesting a similar function to other herpesviruses [32]. Glycoprotein H is a type I integral
membrane protein needed for the viral incorporation of gL, which lacks the membrane
anchor [73], thus forming the gH/gL complex.

Glycoprotein D (gD) is also a major immunogenic glycoprotein that plays a vital role
in cell receptor binding. Like other herpesviruses, gD of ILTV acts as a receptor for virus
binding to target cells and triggers entry through receptor-mediated displacement of its
C-terminal region [74]. During the fusion process of the viral and cell membranes, gD must
interact with susceptible cell receptors such as herpesvirus entry mediators (HVEMs) and
nectins to achieve successful viral entry. An HVEM is a tumor necrosis factor receptor
(TNFR)-like receptor found mainly on the surface of immune cells, while nectins are cell
adhesion molecules commonly expressed in neural or epithelial cells [75,76]. Viral entry
using nectins may be related to the virus’s neuro-invasive property when infecting the
host’s trigeminal ganglion [77,78]. Glycoprotein D is also a well-known target for inducing
neutralizing antibodies [76] and has been the main target immunogen for recombinant
vaccine development [79].

Although viral recombination of ILTV as a DNA virus is not as dynamic as other
highly mutative avian RNA viruses, recombinants still emerge based on co-infections
within the same host, especially between attenuated vaccine and wild-type strains [80].
Events of recombination between ILTV wild-type strains and vaccine strains are well
documented, and further evidence was revealed in a recent study based on an analysis of
the complete genome of ILTV [81]. Also, regarding recombinational breakpoints within
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the viral genome, single-nucleotide polymorphisms (SNPs) were discovered in the US5,
US6, US7, US8, US9, and UL43 and UL47 genes, confirming potential high recombination
sites within the viral genome [82]. Genetic mutations in some regions of the ILTV genome
are associated with strain virulence. For instance, nonstructural genes such as UL28, UL5,
and ICP4 genes are believed to be the determinants of the virulence or attenuation of
ILTV [83] which encode the DNA packaging protein [84], the helicase-primase [85], and the
major transcriptional regulatory protein, respectively [86,87]. Nucleotide changes in the
thymidine kinase (TK) gene also seem to increase or decrease virulence [88,89]. Moreover,
single nucleotide changes in the open reading frame (ORF) of C, gB, UL39 (ribonucleotide
reductase), and UL41 (virion host shutoff protein) are known to be related to events of live
ILTV vaccines regaining virulence [90]. The UL0 gene encodes an abundantly expressed
protein that accumulates in the nucleus of ILTV-susceptible cells and is known to be directly
involved in viral replication and virulence [91]. One of the well-known and fully proven
virulence factors in ILTV is the gG gene [70]. In contrast, the UL50 gene that encodes the
deoxyuridine triphosphatase (dUTPase) required for dTTP synthesis was discovered to be
a non-virulence factor [92]. Such genes can serve as targets for live attenuation of the ILTV
virus to produce deletion mutant strains that can be used as vaccines. Since live attenuated
vaccines were among the first developed to control ILTV, this field has a long history of
identifying the roles of specific genes and performing knockout studies to establish a safe
and stable vaccine that can be used in the field.

Like other RNA viruses, aMPV is more prone to mutations compared to other DNA
viruses such as ILTV and is classified into four subtypes (A, B, C, D) based on nucleotide and
amino acid sequence analyses, particularly of the G protein, and by using neutralization
assays involving monoclonal antibodies [93,94]. On the other hand, ILTV classification
is usually based on restriction fragment polymorphism (RFLP) of genome regions to
characterize field isolates [95–97]. Due to their more conservative genetic homogeneity and
similarities in the genome compared to aMPV, classification is crucial once live attenuated
vaccine strains are introduced in the field [98].

Regarding the classification of ILTV, RFLP of polymerase chain reaction products (PCR-
RLFP) greatly facilitated the identification of ILTV field isolates [97]. Nowadays, ILTV field
isolates are differentiated based on the ICP4 region or the complete genome [83,99,100].
The ICP4 gene has been utilized intensively as a target to identify and group ILTV
in various regions worldwide due to its highly conserved regions with fewer genetic
similarities [88,100–103]. Moreover, it was proven that partial analysis of the ICP4 gene can
provide comparable results to conventional PCR-RFLP analysis [104]. Recent cases show
that the analysis of ICP4 was successful in differentiating live attenuated vaccine strains
and field ILTV isolates, with distinctive differences in nucleotide sequences [102,105]. In ad-
dition, three clades of ILTV have been proposed based on complete genome sequencing [6];
Clade I: strains originating from the US chicken embryo-originated (CEO) vaccine Hudson
strain, the European CEO vaccine Serva strain, and the Australian CEO-like ACC78 (CL8)
virulent strain; Clade II: US embryonic tissue culture origin (TCO) strains and virulent US
strains (USDA reference and 81658); and Clade III: an Australian vaccine (SA2 and A20)
and virulent strains (CSW-1 and VI-99), and one virulent strain from China (LJS09).

3. The Clinical Manifestations of ILTV and aMPV
Despite both being major respiratory viral pathogens in avians, while similarities

between their clinical signs exist, there are some significant differences regarding their
pathogenesis and disease progression. The clinical signs of ILTV infection typically emerge
between six and twelve days following natural exposure to the virus [4]. Signs can vary
from hemorrhagic conjunctivitis, watery eyes, and nasal discharge to respiratory difficul-
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ties, including rales, gasping, and the expulsion of blood-stained mucus, especially in
severe disease cases [6,90]. Gross lesions of the disease are typically confined to the upper
respiratory tract and sinuses [106]. Based on the anatomy of the upper respiratory tract,
ILTV is likely to infect cells within the nasal cavity, conjunctiva, and harderian glands in the
early stages of infection. These structures contain immune tissues that can act as first-line
barriers against the virus [107] and can determine the overall outcome of infection. As the
disease progresses, the virus can further infect the tracheal basal cells and conjunctival mu-
cosa, leading to rapid transmission within the flock [108]. Existing evidence also suggests
a systemic distribution within the host, as ILTV was detected by quantitative real-time
polymerase chain reaction (qPCR) in multiple organs outside the upper respiratory tract,
from the brain, lung, and heart to the liver, kidney, and bursa of Fabricius in experimentally
infected birds [109]. The exhibition of tissue tropism other than in the respiratory tract may
be somewhat related to the severity of the disease.

Multiple factors, such as the virulence of the strain and its concentration in the en-
vironment, alongside co-infections with other respiratory pathogens, can influence the
severity of ILTV infection. In some instances, particularly severe outbreaks of the disease
have led to morbidity rates reaching up to 100% and mortality rates soaring to 70% [98].
Following infection, the virus undergoes replication predominantly within the trachea, ini-
tiated by ingestion through the upper respiratory and ocular pathways [36,110]. Peak viral
replication in the tracheal epithelium is observed from two to five days post-infection [111],
with low levels of ILTV occasionally detectable up to ten days post-infection. However,
active replication is generally restricted to the first week following infection [112,113]. Like
other herpesviruses, ILTV can become a latent infection, which can be reactivated and shed
in response to various stress factors (Figure 3), a distinctive feature compared to aMPV.
The trigeminal ganglion (TRG) is identified as the primary site for viral latency during the
lytic phase of ILTV infection [40]. Stress factors that can trigger the virus’s reactivation
include vaccination, the onset of laying, relocation, etc. [10]. More problematically, latent
or reactivated ILTV carriers are also well-known transmission sources apart from direct
virus dissemination from active virus-shedding birds. Other external viral sources include
contaminated dust, litter, and fomites (Figure 3).

Compared to ILTV, the host range of aMPV is rather broad. It affects various avian
species, while its natural hosts are turkeys and chickens. Evidence of virus infection has
been discovered in a variety of wild birds, such as wild geese [114,115], pheasants [116],
guinea fowl [117], waterfowl [118], mallard ducks [119], crows and coots [120], and many
others [121,122]. Increasing evidence of the prevalence of aMPV in wild birds suggests a
strong possibility of them being reservoirs and inter-regional carriers of this virus, capable
of being introduced into domestic poultry. Moreover, the species of the principal hosts
(chickens, turkeys, ducks) infected in past cases differ depending on the subtype, as the
majority of aMPV-A, B, and C were detected in chickens and turkeys, Eurasian subtype
C lineage in ducks, and subtype D in turkeys [123]. The virus’s ability to replicate and
transmit depends on how well the virus is adapted to a specific group of hosts. Experimental
evidence suggests that aMPV can quickly modify its genome to readily adapt to a new
host [124].

AMPV causes rhinotracheitis in turkeys (Figure 4). Clinical signs in infected turkeys
typically appear after an incubation period of 3–7 days. Infected birds generally exhibit res-
piratory signs such as tracheal rales, watery nasal discharges, coughing, and signs around
the eye such as periorbital edema and conjunctivitis [24,125]. The clinical signs around
the sinus area are attributed to the accumulation of mucoid fluid following infection [126].
One of the notable signs in chickens is swollen head syndrome (SHS), which is associated
with head and facial edema resulting from the accumulation of mucous exudates in the
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subcutaneous tissue [127]. The development of SHS is typically associated with secondary
bacterial infections such as Escherichia coli (E.coli), followed by initial aMPV infections [128].
Environmental conditions are also linked to the severity of SHS, such as high concentrations
of ammonia and dust, as well as improper ventilation and hygiene [129]. Regarding egg
production, it was found that aMPV can replicate in the epithelial cells of the oviduct in
turkey layers, leading to lower eggshell quality and a decline of 10–40% in egg production,
causing massive economic losses [24]. Additionally, a disease caused by aMPV can get
worse with co-infections with other pathogens, notably Mycoplasma gallisepticum (MG) [129],
and with other respiratory viral diseases such as Newcastle disease virus (NDV) [130].
Vertical transmission of aMPV from layers to progeny may seem possible, although there
are few cases. In an experimental trial of infecting turkey layers with aMPV subtype C,
the presence of the virus was confirmed on the eggshell and the embryo [131]. How-
ever, despite evidence of vertical transmission, it has not yet been fully proven [121,132]
(Figure 4).
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ILTV’s outbreaks and field infections are somewhat unique compared to aMPV, in
which the introduction of aMPV to domestic birds is mainly thought to have directly
originated from wild-type strains by wild birds. Genetic analysis based on PCR-RFLP
analysis has consistently shown that most ILTV isolates from commercial poultry within the
US bear close relation to the strains used in commercial chicken embryo-originated or CEO
vaccines [133–135]. This relationship appears stable over time, as indicated by a more recent
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study employing the same genotyping technique, which found no significant changes in the
genetic makeup of these isolates over the years [97]. Similar findings have been observed
in studies conducted outside the US, where field isolates of ILTV were also traced back
to vaccine strains, confirming that this is not a unique phenomenon [136,137]. What is
more alarming is that these CEO vaccine-related ILTV recombinant strains are beginning to
appear in regions where ILTV vaccination is prohibited. In 2024, it was reported from an
epidemiological study in Switzerland that two-thirds of the analyzed ILTV strains were
related to CEO vaccines in a country where vaccination is de facto prohibited [138]. This
likely was a result of virus spillovers from neighboring countries.
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4. The Global Distribution of ILTV and aMPV
Like other prominent avian respiratory viral pathogens, ILTV and aMPV are also

prevalent worldwide, although ILTV has a more extended history of global distribution.
ILTV has been prevalent for decades, covering nearly every continent, from Asia [139–142]
to Europe [41,138,143], Africa [144], North and South America [97,104,145,146], and Ocea-
nian regions [6,10]. Recent outbreaks include areas in Australia [147,148], Iraq [139], and
Egypt [149], where the circulation of recombinant strains with increased virulence was
confirmed (Figure 5). Further cases of ILTV circulation in the region were reported in
Switzerland [138], Turkey [150,151], Bangladesh [152], Ethiopia [153], and China [154]
between 2020 and 2024. Historically, ILTV outbreaks were reported in over 100 nations be-
tween 2000 and 2013 [6]. In the United States, 88 cases of ILTV were confirmed in California
alone during the period 2007–2017 [100], although most of the cases involved mild clinical
forms of ILT. Nonetheless, ILTV remains a severe threat to the world poultry sector. The
morbidity and mortality of reported cases largely depend on the virulence of the strain [70]
circulating in the region alongside concurrent infection with other respiratory bacterial and
viral pathogens.
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Regarding aMPV, subtypes A and B are the most common, with a significant presence
on many continents, including Asia, Africa, Europe, and South America. Subtype C is
categorized into two lineages, North American and Eurasian, with the North American
lineage being the first to be identified in the mid-1990s in the US and the latter in France
and China. Subtype D, considered a relatively minor subtype, was first identified in 2000
and only confirmed in France [15]. In the past, subtypes A and B were geographically
confined in continental Europe and the UK [155,156], subtype C in North America, and
subtype D in France [15,118] (Figure 6). However, recently, in the US, starting from the fall
season of 2024, the spread of subtypes A and B was reported in California and Virginia,
respectively, with subtype A being dominant in the western states and subtype B in the
eastern states [157,158]. Even though these subtypes have only been circulating for a short
time, as turkeys are known to be more susceptible to the disease, the spread of aMPV
may have more devastating effects on the US poultry industry because domestic turkey
production is significantly higher than in other countries [159,160]. The rapid re-emergence
of subtypes A and B in the U.S. is interesting because aMPV has not been present in the U.S.
for an extended period since the early 2000s. The genetic sequence of the newly identified
aMPV subtype A was first revealed from a sick turkey in California in 2024 [161]. The new
strain was phylogenetically grouped with Mexican aMPV strains from 2022, indicating
possibilities of a transborder spillover between the two countries [162]. The increasing
prevalence of aMPV cases is a global phenomenon. In 2022, cases involving aMPV subtype
B causing SHS in broilers in Iraq were first reported [163]. Subtype B was reported in
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Brazil [164] and Tunisia [165] in 2023. Subtype C was also isolated from China in the
same year [166]. In 2024, an epidemiological survey of aMPV in Morocco revealed that
subtype B has been prevalent in broiler farms, indicating the wide spread of this subtype
nationwide [167]. Subtype C was also recently reported to be widespread in wild birds in
Italy [123], suggesting their role as carriers or reservoirs. Also, in the same year, 2024, the
seroprevalence of aMPV was reported in pullet and layer hens in Thailand, highlighting the
endemicity of the virus [168]. The circulation of subtype B was also confirmed in Columbia
in 2024 [132].
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Besides the four former subtypes, new aMPV strains forming distinctive subtypes
have recently been reported from wild birds involving North American aquatic birds
and monk parakeets [169,170] (Figure 5). The first member of a newly emerging subtype
was identified based on whole-genome sequencing of a strain isolated from a sick monk
parakeet residing in a captive breeding center. This new representing aMPV strain only
shared 61–66% similarities with the former subtypes [170]. In another case, a new aMPV
strain was discovered in American herring gulls and great black gulls, which leads to a
new intermediate subgroup between aMPV-C and the other A, B, and D subtypes [124].
Whether the discovery of these new strains is the start of a newly emerging subtype group
warrants further investigation. Such worldwide distribution emphasizes the ongoing
global impact of various subtypes of aMPV, including potentially new groups. Both ILTV
and aMPV significantly threaten poultry industries worldwide and affect domestic birds.
Therefore, the differentiation of their subtypes is crucial and aids in understanding the
epidemiological landscape and controlling infections caused by these viruses.
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5. Vaccine Development for ILTV and aMPV
Vaccination, strict biosecurity measures, and rapid diagnosis are cornerstones in the

control of ILTV and aMPV. Vaccination programs for ILTV are predominantly administered
in regions where ILTV is endemic, given that live attenuated vaccines have the potential to
remain in a latent state within the sensory ganglia or trigeminal ganglion of birds, leading
to the creation of long-term carriers or reservoirs [36,98,171,172] (Figure 3). Despite this,
vaccination during an outbreak can effectively curb the spread of the virus and reduce the
disease’s duration. The primary vaccines administered against ILTV include live attenuated
and recombinant viral-vectored vaccines. Historically, two live attenuated ILT vaccines
have been approved and utilized: those of chicken embryo origin (CEO) [173] and those
developed from embryonic tissue culture origin (TCO) [174]. Although these vaccines are
generally effective, there are concerns regarding their use, particularly with CEO vaccines,
which in some instances have resulted in reduced performance due to potential residual
virulence. This residual virulence may even escalate through animal passage, posing a risk
of transmission from vaccinated to unvaccinated birds and the possibility of reverting to
more virulent forms after multiple passages within a flock. Outbreaks caused by virulently
reverted ILTV strains derived from CEO vaccines have been reported globally, affecting
regions across North and South America, Australia, and Europe [6]. Conversely, outbreaks
linked to TCO vaccine strains are comparatively rare [83].

The origins of CEO vaccine strains trace back to virulent US field strains from the
1950s and 1960s which underwent attenuation through serial passages [90]. Administration
methods for CEO vaccines include drinking water, coarse spray, and eye drops, while TCO
vaccines are administered explicitly via eye drops [97,174]. The CEO vaccine is noted for
providing superior protection compared to the TCO vaccine, particularly in clearing the
challenge virus and the higher replication rates of the vaccine strain. Nonetheless, CEO
strains reverted to virulent strains can induce more severe clinical signs than TCO revertant
strains at comparable passage levels, highlighting the complexity of vaccine choice and
administration in managing ILTV.

Vaccines for aMPV have been available in Europe since the late 1980s, offering means
to control the disease effectively [175,176]. Despite the wide availability of these vaccines,
disease outbreaks in vaccinated flocks still have occurred, similar to the challenges observed
with NDV, indicating events of vaccine failure [177,178]. Early theories suggested that
vaccine failure could be attributed to poor vaccination techniques or vaccine strains not
matching the subtypes of circulating field strains. While mismatched vaccine seeds con-
tributed to some failures, a more complex issue was revealed, as sometimes protection was
not guaranteed even when a vaccine strain matched the target field strain’s subtype [177].
This pointed toward genetic variations within field isolates, particularly in the G protein
region, as a potential cause for vaccine escape. For instance, a study genetically analyzing
Italian subtype B strains isolated between 1987 and 2007 identified consistent mutations in
the G gene region [179]. This led to non-synonymous mutations that altered the amino acid
sequence, which could undermine vaccine efficacy. Further analysis revealed that changes
in the SH protein were as significant as those observed in the G protein, while other viral
genes remained relatively stable. This observation was supported by further vaccination tri-
als and complete genome sequencing data, which correlated significant amino acid changes
in the G and SH proteins with reduced vaccine protection. Although its function is yet to be
fully understood, the SH protein is an integral membrane protein thought to interact with
the host immune system, potentially influencing viral fitness and immunogenicity within
the host. A knockout study deleting the SH gene speculated that its absence could affect
mounting immune responses [180]. Recombinant strains lacking the SH gene displayed
markedly reduced fitness in both in vitro and in vivo experiments [180]. These findings



Pathogens 2025, 14, 55 13 of 23

highlight the SH protein’s potential role in aMPV’s pathogenesis and vaccine interaction,
emphasizing the need for continuous monitoring of viral evolution to enhance vaccine
design and efficacy.

Regarding vaccine development trends for ILTV, in response to epidemics linked to
CEO vaccine-derived strains, recombinant vaccines based on fowl poxvirus (FPV) or turkey
herpesvirus (HVT) as viral vectors have been developed [5]. These include an FPV vector
vaccine incorporating glycoprotein B and UL32 genes as immunogens, initially introduced
for use in breeders and commercial layers [181]. HVT-vectored vaccines that utilize glyco-
protein B, or glycoproteins I and D, as immunogens have also been formulated [5]. The key
advantages of using HVT and FPV as vaccine vectors are their inability to transmit within
the flock and their low risk of reverting to a virulent form [182,183]. Vector vaccines based
on NDV are also popular and have been intensively focused. The Lasota-based NDV strains
encoding ILTV glycoproteins have been developed to overcome conventional vaccines’
safety and biosecurity concerns [184–186]. The protective efficacy of such NDV-vectored
vaccines seemed suitable. Three NDV-vectored vaccines, each expressing gB, gV, and gD
of ILTV, were developed and tested [184]. It was found that gD was mostly efficiently
expressed on the surface of the NDV envelope, and the gD-encoded vaccine could fully
protect against highly virulent ILTV and NDV challenges. Another NDV-vectored vaccine
produced after eight serial passages in embryonated chicken eggs (ECEs) that expressed
gD of ILTV still maintained its genetic stability, showing its potential as a safe and stable
vaccine [185]. NDV-vectored vaccines expressing other glycoproteins besides gD have also
turned out to be successful. Recently, in 2023, a recombinant thermostable NDV-vectored
vaccine expressing gB provided efficient protection against the ILTV challenge, significantly
reducing viral shedding [186]. Since NDV vaccines based on thermostable avirulent stains
have been proven to be advantageous as they can be administered through the environment
(water, sprays, feed, etc. [187]), using this backbone for developing future ILTV vaccines is
not surprising.

While these viral vector vaccines have shown efficacy in reducing the clinical signs
of infection, they are generally less effective than traditional live attenuated CEO/TCO
vaccines in minimizing virus shedding. The success of these vector vaccines largely depends
on the accuracy of vaccine administration methods; improper application can significantly
reduce their effectiveness, resulting in partial protection. Other issues such as technical
failures in delivering vaccines to their intended sites (amniotic cavity, embryo muscle)
during in ovo vaccination or reductions in vaccine doses due to economic reasons pose
significant challenges to such vaccine strategies [14,188,189].

Gene-deletion-based recombinant ILTV vaccines have been extensively explored to
create recombinant strains that maintain robust growth without presenting growth de-
fects [190,191]. One of the notable advancements in this area is the development of an
ORF C gene-deleted strain (∆ORF C), which demonstrates no impact on the fitness of the
recombinant strain in vitro. This strain exhibited protection titers similar to the parental
strain and has shown efficacy comparable to TCO vaccines when administered via eye
drops [192]. Other gene-deleted mutant recombinant ILTV vaccines also exist. Various
attempts to develop safe and stable recombinant ILTV vaccines by deleting specific genes
have been made in the past and are still being made. Targets of deletion include genes
like gG [70,193], gC [42], UL47 [194], UL0 [91], TK [195], and gJ [71]. Deleting these genes
seems reasonable, as they are primarily involved in modulating host immune responses,
viral attachment, replication, and virion assembly. Recently, more sophisticatedly designed
recombinant ILTV vaccines have been developed using immunoinformatic tools. Several
T-cell and B-cell epitopes have been suggested for multiepitope peptide vaccines aiming
to bind gB to these candidate epitopes [196]. In a similar study, a multiepitope vaccine
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against gD of ILTV was also designed using immunoinformatic tools [197]. The advantage
of immunogenically tailored vaccines is that they may effectively induce sufficient humoral
and cell-mediated responses from the host. As promising as these vaccines are, as they
were only validated at the in silico stage, further in vitro and animal studies are imperative
for their use in the field.

Vaccination to reduce consistent virus shedding from aMPV-infected flocks is consid-
ered a primary objective, as virus shedding can contribute to mutating aMPV field strains.
Research indicates that when live aMPV vaccine strains persist in the environment, these
strains can revert to a virulent form [178,198]. This reversion and mutation can occur under
the selective pressure of immune responses in vaccinated flocks, leading to the emergence
and dissemination of mutant strains capable of sustaining their fitness and viability despite
the immunological barriers presented by the host. Given this backdrop of vaccine-induced
selective pressure and the potential for live vaccines to shed and revert to virulence, there is
an ongoing exploration of alternative vaccination strategies. Such types of vaccines include
viral-vectored vaccines based on recombinant strains developed from reverse genetics
systems (RGSs). Like ILTV vaccines, NDV vectors are also widely used in aMPV vaccine
development [199–201]. Most of these NDV-vectored vaccines aim to express the G protein,
which is responsible for viral attachment to susceptible host cells and is the main target
for neutralizing antibodies. However, there were some cases where expression of the G
protein alone did not provide complete protection against pathogenic aMPV, suggesting
co-expression of other immunogenic proteins [199,201]. A bivalent NDV-vectored vaccine
expressing both the G and F proteins was able to provide efficient protection against a
virulent aMPV challenge [200]. Despite the main focus on RGS-based vectored vaccines,
live attenuated vaccines produced through serial passage in cells are still being developed,
with some exhibiting complete protection efficacy [202].

Utilizing RGSs for aMPV vaccines represents a significant advancement in this area.
Past research involving RGSs has opened up pathways for developing non-shedding live
attenuated vaccines [180,203]. Such vaccines, engineered not to be shed by vaccinated
birds into the environment, could mitigate the risk of generating virulent revertants or
promoting the evolution of vaccine-resistant strains. However, successfully developing and
implementing these vaccines requires a deeper understanding of aMPV genetics and the
interactions between viral proteins and the host immune system. Focusing on virus–host
interplay is crucial for developing vaccines that are effective in inducing immunity and safe
in terms of viral mutation and spread. This approach underscores the need for continuous
research and innovation in vaccine technology to address the challenges posed by aMPV
and similar pathogens.

Overall, such advancements will lead to the development of safe and effective ILTV
and aMPV vaccines, potentially offering new solutions for managing and preventing
outbreaks within the poultry industry.

6. Conclusions
ILTV and aMPV share key similarities and differences in clinical manifestations and

epidemiology. ILTV primarily causes respiratory distress and is typically confined to the
upper respiratory tract in chickens. In contrast, aMPV, in addition to respiratory signs,
can additionally impact the reproduction system in both turkeys and chickens, leading to
reduced egg production. ILTV tends to exhibit higher mortalities, while aMPV generally
results in lower mortality rates but causes significant economic losses due to declined per-
formance. Both ILTV and aMPV exhibit species-specific prevalence and seasonal patterns,
with ILTV being more common in broilers and aMPV impacting a wider range of avian
hosts, including wild birds, particularly waterfowls. ILTV is more prone to fomite trans-
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mission, and like other herpesviruses, it can go through a latent stage which complicates
control strategies as reactivation can lead to intermittent shedding of live viruses within
densely packed flocks. In the case of aMPV, multi-species involvement makes intervention
more challenging, requiring a focus on wild bird populations and natural reservoirs. De-
spite the key differences, both viruses are major respiratory avian pathogens that require
vaccination and strict biosecurity as primary control measures.

In conclusion, respiratory viral diseases are common in avians and cause economic
loss worldwide, including in the poultry industry. Like most avian viral respiratory
pathogens, infectious laryngotracheitis virus and avian metapneumovirus have a long
history of causing problems and, to date, still are problematic. They are highly transmissible
and can cause high morbidity and mortality within flocks if not appropriately treated.
Therefore, early detection of these viruses is crucial so appropriate control measures can
be implemented promptly. As there are increasing reports of the re-emergence of these
viruses, including new cases from regions that have never been reported before, constant
and active surveillance based on new sequencing technology, alongside frequent updates
of the genetic information of the newly circulating viruses, is imperative.
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150. Kardoğan, Ö.; Sarıçam İnce, S. Molecular characterization and phylogenetic analysis of infectious laryngotracheitis virus isolates
from commercial chicken flocks in Turkey. Arch. Virol. 2024, 169, 231. [CrossRef] [PubMed]
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